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Abstract. This paper studies minimum cost spanning tree (MCST)
problems, in which an agent can behave as multiple agents by adding
fake accounts. Since such split manipulations may increase the cost
of MCST, it is important to (i) design a cost allocation rule under
which no agent has an incentive to split her accounts, and (ii) ana-
lyze the resistance of the existing cost allocation rules against split
manipulations. We first show that there exists no cost allocation rule
that is both efficient and split-proof under the general domain. We
then focus on the MCST problems with monotonic weight functions
and show that there exists a cost allocation rule that is efficient, core-
selecting, and split-proof. We finally analyze the resistance of the
Bird rule, one of the most studied cost allocation rules in the liter-
ature, against split manipulations from three different perspectives:
the mixed price of anarchy, the computational difficulty of manipu-
lation, and domain restrictions.

1 INTRODUCTION

In micro-economics literature, designing rules/mechanisms that
achieve good properties is a critical problems (also known as mech-
anism design). In this paper we study cost allocation problems [27],
where there is a set of agents and a cost function that assigns a cost
to each nonempty coalition/subset of agents. The intuition is that
each coalition needs to pay a corresponding cost to receive a service.
Cost allocation problems arise in many real life situations, including
where individuals work together, all of whom have their own pur-
poses. For example, the cost share for building a landing slot in an
airport was determined based on the well-known Shapley value [20].

Efficiency and core-selection are well-studied properties in cost
allocation problems. A cost allocation rule is said to be efficient if
for any coalition, the cost assigned by the cost function is just barely
covered by the coalition. Designing an efficient cost allocation rule
is crucial from the perspective of feasibility; the service cannot be
provided if the cost is not covered. Also, a cost allocation rule is said
to be core-selecting if no coalition of agents has an incentive to make
a cartel and abandon the other agents. By definition, core-selecting
cost allocation rules encourage the participation of agents.

Manipulations by splitting accounts (and their variants) have been
considered in several mechanism design environments, such as auc-
tions [30, 31], resource allocation [12, 14], matching [29], cooper-
ative games [23, 1], and scheduling [21]. As well as such environ-
ments, in an application of cost allocation problems, agents represent
groups of accounts, e.g., labor unions or nations, and therefore might
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have incentive to split themselves into smaller units. Such split ma-
nipulations have also been studied in cost allocation problems [17].
In this paper we analyze the effect of split manipulations in cost al-
location rules that are both efficient and core-selecting.

Split-proofness can be defined as an analogy of strategy-proofness
in the literature of mechanism design. A cost allocation rule is said
to be split-proof if no agent can benefit by splitting its account, re-
gardless of the actions of other agents. Even for a restricted class of
cooperative games, there is no cost allocation rule that is both core-
selecting and split-proof [17]. Thus, in this paper we further restrict
the domain of problems by focusing on minimum cost spanning tree
(MCST) problems, which are one of the most common cost allocation
problems.

In an MCST problem, there is a complete graph, where each agent
has a subset of nodes (say, houses) under its control, including its true
node, and needs to be connected to a special node called a source. A
cost allocation rule for an MCST problem determines how to share
(among all participating nodes) the cost of the MCST. A split ma-
nipulation by an agent uses multiple nodes, in addition to its true
node. In our model, mechanism designers can observe possible par-
ticipating nodes but cannot observe who owns which nodes. Since
split manipulations increase the cost of the MCST (and thus reduce
social welfare), designing split-proof cost allocation rules is crucial.

There have been several cost allocation rules for MCST prob-
lems [4, 11, 15, 9, 28, 3], especially the Bird rule [4], which has
attracted much attention. Among several good properties including
efficiency and core-selection achieved by the Bird rule, its simplicity
is perhaps its greatest advantage: for an agent i and a given minimum
cost spanning tree γ, the cost of i is the weight of the first edge that i
uses to access the source node in γ. From an algorithmic viewpoint,
the cost of i is given as the cost of the edge that connects i to the
(growing) spanning tree by Prim’s algorithm [24] starting from the
source node.

Our contribution: We first show that there exists no cost allocation
rule that is both efficient and split-proof under the general MCST
problem domain. We then focus on MCST problems with monotonic
weight functions and show the existence of a cost allocation rule that
is efficient, core-selecting, and split-proof. We finally analyze the ef-
fect of splitting manipulations in the Bird rule and obtain the follow-
ing results: (i) the Bird rule is not split-proof even under the domain
of MCST problems with monotonic weight functions; (ii) the mixed
price of anarchy [18] of the Bird rule is proportional to the number
of agents; (iii) determining the existence of a beneficial split manipu-
lation is NP-complete; and (iv) the provision of a sufficient condition
for the Bird rule to become split-proof.
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Figure 1. Example of MCST problem

2 PRELIMINARIES

Let N be the set of all possible nodes, and let N ⊆ N be the set
of all agents. For a given subset of nodes N ′ ⊆ N , let GN′

=

(N ′ ∪ {0}, EN′
) denote a complete undirected graph, where {0}

indicates a special node called a source and EN′
indicates the set

of all possible edges connecting the nodes in N ′. Also, let w be a
weight function that assigns a non-negative value to each edge, i.e.,
w : EN → R≥0. A minimum cost spanning tree (MCST) problem is
defined as M = (N , N,w), where the second argument corresponds
to the set of participating nodes. For a given MCST problem M =
(N , N,w) and a subset N ′ ⊆ N of the nodes, let M(N ′) denote the
MCST problem s.t. the participating nodes are replaced by N ′, i.e.,
M(N ′) = (N , N ′, w). Let M denote the set of all possible MCST
problems.

For a given M = (N , N,w) ∈ M, let γM denote an MCST
whose root is 0 for graph GN with weight function w. It is possible
that there is more than one MCST γM for a given M . For a given
γM and each i ∈ N , let λM

i denote the parent of i in γM . Also, let
m(M) denote the cost of the MCST of GN , i.e., m(M) equals the
sum of the edge weights in the MCST of GN .

We next define the agents’ possible actions. For a given M =
(N , N,w) ∈ M, let S = (Si)i∈N denote a partition of the remain-
ing nodes, s.t.

⋃
i∈N Si = N \N , Si ⊆ N \N for any i ∈ N , and

Si ∩ Sj = ∅ for any pair i, j( �= i) ∈ N . Here Si indicates the set
of nodes that agent i can use. Let SM be the set of all such partitions
for a given M ∈ M.

We now define the cost allocation rules. For a given M =
(N , N,w) ∈ M, a cost allocation π for M is a tuple (πi)i∈N ∈
R

|N|
≥0 , where πi indicates the cost of agent i. Also, let ΠM be the set

of all cost allocations for a given M ∈ M, and let Π =
⋃

M∈M ΠM .
A cost allocation rule is described as a function f : M → Π s.t. for
any M ∈ M, f(M) ∈ ΠM . For a cost allocation rule f , for a given
M = (N , N,w) ∈ M, and for i ∈ N , let fi(M) denote the cost
of agent i determined by the cost allocation rule f for the MCST
problem M .

Now we are ready to formally define several properties of cost al-
location rules. We define three properties: efficiency, core-selection,
and split-proofness.

Definition 1. A cost allocation rule f is efficient under M′(⊆ M)
if ∀M = (N , N,w) ∈ M′,

∑
i∈N

fi(M) = m(M)

holds.

Table 1. Split-proof cost allocation rule f

N ′ f1 f2 f3

{1, 2, 3} 2 2 2

{1, 2} 5/2 5/2

{1, 3} 4 2

{2, 3} 3 2

Table 2. Rule f ′ violating split-proofness

N ′ f ′
1 f ′

2 f ′
3

{1, 2, 3} 1 3 2

{1, 2} 4 1

{1, 3} 4 2

{2, 3} 3 2

Definition 2. A cost allocation rule f is core-selecting under M′(⊆
M) if ∀M = (N , N,w) ∈ M′, ∀T ⊆ N ,

∑
i∈T

fi(M) ≤ m(M(T ))

holds.

Efficiency requires that the cost of any MCST is just covered
enough by the participating nodes/agents. The core-selection prop-
erty requires that no coalition T of agents has an incentive to form
a cartel and get higher utility by abandoning all the other agents. By
choosing T s.t. |T | = 1, we can see that, under a core-selecting cost
allocation rule, each agent is incentivized to participate, i.e., core-
selection implies a property called voluntary participation. In this
paper, we focus on cost allocation rules that are both efficient and
core-selecting.

Definition 3. A cost allocation rule f is split-proof under M′(⊆
M) if ∀M = (N , N,w) ∈ M′, ∀S = (Si)i∈N ∈ SM , ∀i ∈ N ,
∀S′

i ⊆ Si,
fi(M) ≤

∑
i′∈i∪S′

i

fi′(M(N ∪ S′
i))

holds.

Here the left-hand side indicates the original cost of agent i when
she sincerely participates only under its true node i, and the right-
hand side indicates the sum of the costs of accounts S′

i submitted by
i’s split manipulation. That is, split-proofness requires that no agent
can be better off by splitting her account. The following example
demonstrates how such a split manipulation works in MCST prob-
lems.

Example 1. Consider an MCST problem M = (N , N,w) defined
as follows: N = {1, 2, 3}, N = {1, 2}, and w is s.t. w(0, 1) =
w(1, 3) = 4, w(0, 2) = 5, w(0, 3) = 2, w(1, 2) = 1, and w(2, 3) =
3, where w(i, j) is the weight of the edge between nodes i and j
(Fig. 1).

Consider a cost allocation rule f described in Table 1. When S =
(S1, S2) = ({3}, ∅), agent 1 cannot be better off by adding 3; her
cost is originally f1(M) = 5/2, and it increases to f1(M(N ∪

T. Todo and M. Yokoo / Split Manipulations in Cost Sharing of Minimum Cost Spanning Tree220



0

1 2

1 0

0

Figure 2. General incompatibility between efficiency and split-proofness

{3})) + f3(M(N ∪ {3})) = 2 + 2 = 4 by adding 3. Readers can
easily see that no split manipulation is beneficial.

Consider another rule f ′, described in Table 2. In contrast to the
above f , when S = ({3}, ∅), agent 1 has an incentive to add 3 in
f ′; her cost decreases from f ′

1(M) = 4 to f ′
1(M(N ∪ {3})) +

f ′
3(M(N ∪ {3})) = 1 + 2 = 3 by adding 3.

3 CORE-SELECTION AND SPLIT-PROOFNESS

In this section, we investigate the (in)compatibility of split-proofness
with efficiency and core-selection. We first show the incompatibil-
ity of these properties under M, even without the property of core-
selection.

Theorem 1. There is no cost allocation rule that is efficient and
split-proof under M.

Proof. Consider an MCST problem M = (N , N,w), where N =
{1, 2}, N = {1}, and the weight function w is s.t. w(0, 1) = 1 and
w(0, 2) = w(1, 2) = 0 (see Fig. 2). It is easy to see that

m(M(N)) = 1, m(M(N ∪ {2})) = 0.

Therefore, if a cost allocation rule is efficient, we must have both

f1(M) = 1

and
f1(M(N ∪ {2})) = f2(M(N ∪ {2})) = 0.

Thus, for a possible partition S = (S1) = ({2}),

f1(M) >
∑

i′∈{1,2}
fi′(M(N ∪ {2}))

holds. This means that the agent 1 has an incentive to add node 2,
which violates the condition of split-proofness.

We can easily verify the independence of the properties. A strange
rule, which forces every node to pay a sufficiently large constant,
regardless of the weight function, is split-proof but not efficient. On
the other hand, the Bird rule is efficient but not split-proof, which
will be shown in Example 3 of Section 4.

The essential point about the impossibility is that the weight func-
tion in Fig. 2 is not monotonic; adding node 2 reduces the cost of
the minimum cost spanning tree from 1 to 0. However, for such a
case, a mechanism designer might hesitate to prevent split manipula-
tions, since the social cost may also decrease by split manipulations.
Therefore, from the next subsection, we focus on monotonic weight
functions.

Notice that the above theorem only shows the existence of an
MCST problem with a non-monotonic weight function for which
there exists no cost allocation rule that is efficient and split-proof. In
other words, for some specific MCST problems with non-monotonic
cost functions, it may be possible to find such a cost allocation rule
with both properties.

3.1 Compatibility under Monotonic Domain

As discussed above, efficiency and split-proofness are incompatible
under M. In what follows, we focus on monotonic weight functions.

Definition 4. An MCST problem M = (N , N,w) ∈ M is an
MCST problem with a monotonic weight function (MCST-M) if
∀N ′′ ⊂ N ′ ⊆ N ,

m(M(N ′′)) ≤ m(M(N ′))

holds. Let M̄ denote the set (domain) of all possible MCST-Ms.

The main purpose in this section is to show the existence of a cost
allocation rule that is efficient, core-selecting, and split-proof under
M̄. First, we give a definition of another property called population
monotonicity [26].

Definition 5. A cost allocation rule f is population monotonic under
M′(⊆ M) if ∀M = (N , N,w) ∈ M′, ∀N ′′ ⊂ N ′ ⊆ N , ∀i ∈
N ′′,

fi(M(N ′)) ≤ fi(M(N ′′))

holds.

That is, in a population monotonic cost allocation rule, the cost
of an agent i ∈ N ′′ never increases after the entry of the set N ′ \
N ′′. The following theorem, which is the main contribution in this
section, is essential for the existence of efficient and split-proof cost
allocation rules.

Theorem 2. Under M̄, any efficient and population monotonic cost
allocation rule is core-selecting and split-proof.

Proof. Assume that a cost allocation rule f is efficient and popula-
tion monotonic. It is easy to see that population monotonicity im-
plies core-selection, as mentioned in, e.g., Gómez-Rúa and Vidal-
Puga [13]. We then show that f is also split-proof. For any M =
(N , N,w) ∈ M̄, any S = (Sj)j∈N ∈ SM , any i ∈ N , and any
S′
i ⊆ Si,

fi(M) = m(M)−
∑

j∈N\{i}
fj(M)

holds from efficiency, and

m(M) ≤ m(M(N ∪ S′
i))

holds from the fact that M ∈ M̄. Furthermore, since N ⊆ N ∪ S′
i,

fj(M(N ∪ S′
i)) ≤ fj(M)

holds for any j ∈ N from population monotonicity, and thus
∑

j∈N\{i}
fj(M(N ∪ S′

i)) ≤
∑

j∈N\{i}
fj(M).

Also, from efficiency, it holds that

m(M(N ∪ S′
i)) =

∑
j∈N∪S′

i

fj(M(N ∪ S′
i)),
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Figure 3. MCST problem M̂ , consisting of the same graph structure with
Example 1, the participating nodes N = N = {1, 2, 3}, and an irreducible

cost function w∗

which can be written as

m(M(N ∪ S′
i))−

∑
j∈N\{i} fj(M(N ∪ S′

i))

=
∑

i′∈{i}∪S′
i
fi′(M(N ∪ S′

i)).

Thus,

fi(M) = m(N)−∑
j∈N\{i} fj(M)

≤ m(M(N ∪ S′
i))−

∑
j∈N\{i} fj(M(N ∪ S′

i))

=
∑

i′∈{i}∪S′
i
fi′(M(N ∪ S′

i′)),

which coincides with the definition of split-proofness.

Since the existence of an efficient and population monotonic cost
allocation rule is shown [22], the following holds directly from
Proposition 2.

Corollary 1. An efficient, core-selecting, and split-proof cost allo-
cation rule exists under M̄.

For example, the following cost allocation rule ϕ, called folk solu-
tion, is shown to be efficient and population monotonic [3], and thus
core-selecting and split-proof; for a given M = (N , N,w) ∈ M
and for any i ∈ N , ϕi(M) is the Shapley value of i in M∗ =
(N , N,w∗) with an irreducible weight function w∗ (also known as
irreducible cost matrix), which intuitively associates the minimum
weights to edges so that m(M) = m(M∗) holds and an MCST
γM∗

coincides with γM . Next we show how it works (and what the
irreducible weight function looks like). For more detail, please re-
fer to e.g., Bergantiños and Vidal-Puga [3] and Bogomolnaia and
Moulin [5].

Example 2. Consider the same graph with Example 1. For the same
MCST problem M = (N , N,w), the irreducible weight function w∗

is s.t. w∗(0, 1) = w∗(0, 2) = 4, and w∗(1, 2) = 1. Each agent’s
Shapley value is 5/2, i.e, ϕ1(M) = ϕ2(M) = 5/2. Also, for an-
other MCST problem M̂ = M(N ∪ {3}), the irreducible weight
function ŵ∗ is s.t. ŵ∗(0, 1) = ŵ∗(0, 2) = ŵ∗(1, 3) = ŵ∗(2, 3) =
3, ŵ∗(0, 3) = 2, and ŵ∗(1, 2) = 1 (see Fig 3). Each agent’s Shap-
ley value is then 2, i.e., ϕ1(M(N ∪ {3})) = ϕ2(M(N ∪ {3})) =
ϕ3(M(N ∪ {3})) = 2. Therefore, since the cost allocation by ϕ
coincides with Table 1, it is split-proof.

4 SPLIT MANIPULATIONS IN BIRD RULE

Although we have just seen that a core-selecting and split-proof cost
allocation rule exists, we remain interested in how resistant other ex-
isting rules are to split manipulations. In particular, we analyze the
Bird rule [4], whose definition is given below.

Definition 6. The Bird rule b is the following cost allocation rule:
for a given MCST problem M = (N , N,w) ∈ M and any i ∈ N ,

bi(M) = w(i, λM
i )

holds. Notice that λM
i is the parent of i in γM . When there is more

than one MCST γM , bi(M) is defined as an average of w(i, λM
i ) in

each γM .

It is known that the Bird rule is both efficient and core-selecting
under M. On the other hand, it is not split-proof even under M̄, as
the following example shows:

Example 3. Consider the MCST problem M = (N , N,w) de-
scribed in Example 1. Since γM consists of the edges (0, 1) and
(1, 2), b1(M) = 4 holds. Also, since γM(N∪{3}) consists of the
edges (0, 3), (3, 2), and (2, 1), b1(M(N∪{3})) = 1 and b3(M(N∪
{3})) = 2 hold. Therefore agent 1 has an incentive to use account
3. Actually, the cost allocation by b coincides with Table 2.

4.1 Price of Anarchy

The issue of split manipulations is that they decrement social welfare,
i.e., increase the cost of MCST. Since the Bird rule is not split-proof,
it seems crucial to evaluate its worst-case performance. In this sec-
tion we analyze the price of anarchy [18] of the Bird rule when split
manipulations are available.

Pure strategy Nash equilibria are not guaranteed to exist. On the
other hand, if we consider mixed strategies, the existence of Nash
equilirbia is guaranteed. In the rest of this subsection, we consider
mixed strategies. Given set Si, let ΔSi denote the set of possible
probability distributions (mixed strategies) over Si. Also, given a
mixed strategy δ′i ∈ ΔSi , we write S′

i ∼ δ′i when the set S′
i ⊆ Si of

accounts is realizable under the mixed strategy δ′i. Similarly, let δ′−i

denote the profile of mixed strategies chosen by the agents except i,
and S′

−i ∼ δ′−i denote a realizable set of accounts currently in use
under δ′−i.

Definition 7. For a cost allocation rule f , for M = (N , N,w) ∈
M, and for S = (Sj)j∈N ∈ SM , δ∗ = (δ∗j )j∈N is a (mixed-
strategy) Nash equilibrium if for any j ∈ N , δ∗j ∈ ΔSj holds, and
∀i ∈ N , ∀δ′i ∈ ΔSi ,

ES∗∼δ∗
[ ∑
i′∈S∗

i ∪{i}
fi′(M(N ∪

⋃
j∈N

S∗
j ))

]

≤ ES′
i∼δ′i,S

∗
−i∼δ∗−i

[ ∑
i′∈S′

i∪{i}
fi′(M(N ∪ S′

i ∪
⋃

j∈N\{i}
S∗
j ))

]
.

For a cost allocation rule f , for M = (N , N,w) ∈ M, and for
S = (Sj)j∈N ∈ SM , let S∗(f,M, S) denote the set of all possible
Nash equilibria.

Definition 8. Given f , M = (N , N,w) ∈ M̄, and S = (Sj)j∈N ∈
SM , the mixed price of anarchy P (f,M, S) is the minimum α ∈ R

s.t. ∀δ∗ = (δ∗j )j∈N ∈ S∗(f,M, S),

ES∗∼δ∗
[
m(M(N ∪

⋃
j∈N

S∗
j ))

] ≤ α ·m(M).

The lower the mixed price of anarchy of a cost allocation rule is,
the higher we regard the rule (at least from the perspective of the
worst-case performance). We first show the upper bound of the mixed
price of anarchy, and then show that there is an MCST problem in
which the ratio achieved by a pure strategy Nash equilibrium in the
Bird rule matches the upper bound.
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Theorem 3. For any M = (N , N,w) ∈ M̄, and any S =
(Sj)j∈N ∈ SM ,

P (b,M, S) ≤ |N ′|+ 1

holds, where N ′ = {j | j ∈ N,Sj �= ∅}, i.e., the set of agents with
multiple accounts is denoted as N ′.

Proof. Let δ∗ ∈ S∗(b,M, S) be an arbitrarily chosen Nash equi-
librium and, for each realization S∗ ∼ δ∗, N∗ := N ∪ ⋃

j∈N S∗
j

denote the whole set of accounts currently in use. Since the Bird rule
b is efficient,

m(M(N∗)) =
∑
i∈N′

∑
i′∈S∗

i ∪{i}
bi′(M(N∗)) +

∑
j∈N\N′

bj(M(N∗))

holds. Thus, it suffices to show that both

∀i ∈ N ′,ES∗
[ ∑
i′∈S∗

i ∪{i}
bi′(M(N∗))

] ≤ m(M) (i)

and ∑
j∈N\N′

bj(M(N∗)) ≤ m(M) (ii)

hold.
We first show the statement (i). Since δ∗ is a Nash equilibrium, for

any i ∈ N ′, it hold that

ES∗
[ ∑
i′∈S∗

i ∪{i}
bi′(M(N∗))

] ≤ ES∗
−i

[
bi(M(N ∪

⋃
j∈N\{i}

S∗
j ))

]
.

Also, since the Bird rule b is core-selecting,

ES∗
−i

[
bi(M(N ∪

⋃
j∈N\{i}

S∗
j ))

] ≤ ES∗
−i

[
m(M({i}))]

= m(M({i})).

Furthermore, since M is an MCST-M problem,

m(M({i})) ≤ m(M)

holds. Thus, we have

ES∗
[∑

i′∈S∗
i ∪{i} bi′(M(N∗))

]
≤ ES∗

−i

[
bi(M(N ∪⋃

j∈N\{i} S
∗
j ))

]
≤ m(M({i}))
≤ m(M).

We then show the statement (ii). Again, since b is core-selecting,

∑
j∈N\N′

bj(M(N∗)) ≤ m(M(N \N ′))

holds. Also, since M is an MCST-M problem,

m(M(N \N ′)) ≤ m(M).

Thus, we have
∑

j∈N\N′
bj(M(N∗)) ≤ m(M(N \N ′)) ≤ m(M).

From Theorem 3, the mixed price of anarchy in the Bird rule is
at most N ′ + 1, where N ′ is the number of agents with multiple
accounts. Since cost allocation rules cannot observe the exact number
N ′ (and also the number N of agents) in our setting with anonymity,
the price of anarchy is not guaranteed to be a constant, and thus, the
Bird rule is not good from the viewpoint of price of anarchy. Indeed,
the next theorem shows that there exists an MCST-M problem in
which the ratio achieved by a pure-strategy Nash equilibrium of the
Bird rule matches the upper bound.

Theorem 4. There exists an MCST problem M = (N , N,w) ∈ M̄
and a partition S = (Sj)j∈N ∈ SM such that

P (b,M, S) = |N ′|+ 1

holds, where N ′ = {j | j ∈ N,Sj �= ∅}.

Proof. Let ε  1, k be a natural number, and M = (N , N,w) is
s.t. N = {1, . . . , k, k + 1, 1′, . . . , k′}, N = {1, . . . , k + 1}, and w
is defined as follows (Fig. 4):

∀i, j ∈ N ∪ {0}, w(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(k + 1)ε if {i, j} ⊆ N

1− (2k + 1)ε if {i, j} ∈ I′

1− jε if (i, j) ∈ I
1− iε if (j, i) ∈ I
1 if {i, j} = {0, 1}
1 + ε otherwise,

where I′ = {{0, 1′}, {1′, 2′}, . . . , {(k − 1)′, k′}}, and I =
{(1′, 2), . . . , (k′, k + 1)}. Since it is not very difficult to show
that M ∈ M̄, the proof is omitted due to space limitations.
The minumum cost spanning tree γM consists of the edges
(0, 1), (1, 2), . . . , (k, k + 1), and thus m(M) = 1 + k(k + 1)ε
holds.

We next show that the ratio gets arbitrarily close to the bound.
Let N ′ = {1, . . . , k}, i.e., all the agents except k + 1 have mul-
tiple nodes, S = (S1 = {1′}, . . . , Sk = {k′}, Sk+1 = ∅), and
M ′ = M(N ∪ ⋃

j∈N′ Sj). Notice that γM′
consists of the edges

(0, 1′), (1′, 2′), . . . , ((k−1)′, k′), (k′, k+1), (k+1, k), . . . , (2, 1).
The action profile (Si)i∈N , under which every agent adds as
many nodes as possible, is a (pure-strategy) Nash equilibrium, i.e.,
S ∈ S∗(b,M, S), because for any i ∈ N ′, γM′′

consists of the
edges (0, 1′), (1′, 2′), . . . , ((i− 1)′, j), (i, 1), . . . , (i, i− 1), (i, i+
1), . . . , (i, i + 1) and

∑
i′∈Si∪{i} bi(M(N ∪ ⋃

j∈N′ Sj)) = (1 −
(2k+1)ε)+(k+1)ε = 1−kε and bi(M(N ∪⋃

j∈(N′\{i}) S
∗
j )) =

1−(i−1)ε hold where M ′′ = M(N ∪⋃
j∈(N′\{i}) S

∗
j ). Therefore,

it holds that m(M ′) = k((1− (2k+1)ε)+ (k+1)ε)+ (1−kε) =
(k + 1)(1− kε). Thus, we have

P (b,M, S) ≥ m(M ′)
m(M)

=
(k + 1)(1− kε)

(1 + k(k + 1)ε)
,

which converges to k + 1 = |N ′|+ 1 for ε → +0.

Here let us explicitly show the description of those MCSTs. As-
sume that all the agents except i are using as many nodes as possible.
If i also uses all the nodes she owns, i.e., both i and i′, one of the
MCST mentioned in the proof (notice that there are multiple MCSTs,
but the cost of i is the same) is a path graph, such that 0 → 1′ →
2′ → · · · → (k − 1)′ → k′ → k + 1 → k → · · · → 2 → 1, under
which she pays the costs of the two different edges, 1 − (2k + 1)ε
and (k + 1)ε. The sum is 1− kε.
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Figure 4. An MCST problem in which the price of anarchy of the Bird
rule matches upper bound obtained in Theorem 3.

If she only uses her true node i, the MCST is then such that 0 →
1′ → · · · → (i − 1)′ → i, i connects all the vertices in N ∪ {(k +
1)} \ {i}, and (k+ 1) → (k− 1)′ → · · · → (i+ 1)′. In this case, i
pays the cost of the vertical edge 1− (i−1)ε, which is strictly larger
than 1− kε for any i < k + 1.

4.2 Complexity of Finding a Beneficial
Manipulation

In practice, the computation power of each agent is limited, even
though she is rational. Under such a “bounded rationality” assump-
tion, we expect that agents will not try to solve NP-complete prob-
lems [2].

Indeed, in the Bird rule, even if a manipulator owns multiple
nodes, it is not always optimal to use all of them. In Example 3,
if the set N = {1, 2} of nodes are participating agents, the partition
is given as S = (S1, S2) = ({3}, ∅), and agent 1 is a manipulator,
then she can decrease her cost by adding account 3, as we have al-
ready seen; using all the nodes is optimal for this case. On the other
hand, if N = {1}, S = S1 = {2, 3}, and agent 1 is a manipulator,
just using her original node 1 is optimal.

Here we show that determining whether a beneficial split manip-
ulation exists in the Bird rule is NP-complete. We first formalize the
manipulation problem in the Bird rule as follows.

Definition 9 (BENEFICIAL-SPLIT).

Instance: An MCST-M M = (N , N,w) ∈ M̄, a partition S =
(Sj)j∈N ∈ SM , and an agent i ∈ N

Question: Does there exist a subset S′
i ⊆ Si of nodes such that

bi(M) >
∑

i′∈S′
i∪{i} bi′(M(N ∪ S′

i)) holds?

For instance, let M ∈ M be identical as Example 3, S =
(S1, S2) = ({3}, ∅) and i = 1. Agent i can decrease her cost by
adding account 3. Thus, this instance of BENEFICIAL-SPLIT is an
“Yes” instance.

Theorem 5. BENEFICIAL-SPLIT is NP-complete.

Proof. The problem is in the class NP since the cost allocation
of Bird rule can be computed in polynomial time. We prove the
NP-hardness by a reduction from 3-SAT. Given a 3-SAT instance
3-SAT(C = {c1, . . . , cm}, U), where C denotes a collection of
m(≥ 1) clauses and U denotes a set of variables, and two constants,
k ∈ K := {1, . . . ,m} and l ∈ L := {1, 2, 3}, let clk represent

the l-th literal of the k-th clause ck, i.e., ck = c1k ∨ c2k ∨ c3k for any
k ∈ K.

We begin by showing a transformation from a 3-SAT instance to
a BENEFICIAL-SPLIT instance. Let ε  1, N = {i, 1, . . . ,m,m+
1}, N ′

k = {x1
k, x

2
k, x

3
k} for any k ∈ K, Si =

⋃
k∈K N ′

k, and N =
N ∪ Si. Also, the weight function w is such that

w(p, q) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
5m

if {p, q} ∈ {{i,m+ 1}} ∪ I
1− 2ε if {p, q} ∈ Ī
1− ε if {p, q} ∈ {{0, 1}} ∪ I′

1 if {p, q} = {0, i}
1 + ε otherwise,

where I =
⋃

k∈K{{p, q} | p, q ∈ {k} ∪ N ′
k}, Ī = {{xl

k, x
l′
k′} |

k, k′ ∈ K, l, l′ ∈ L, clk = ¬cl′k′}, and I′ =
⋃

k∈K{{v, k+1} | v ∈
N ′

k}. Let M = (N , N,w) and S = (Si, (∅)j∈N\{i}). Since it is not
very difficult to show that M ∈ M̄, the proof is omitted due to space
limitations.

The transformed BENEFICIAL-SPLIT instance (M,S, i) appears
in Fig. 5. The weight of each edge between two nodes that are not
directly connected in Fig. 5 is 1 + ε. Notice that the participating
nodes in M are N = {i, 1, 2, . . . ,m,m + 1}. Thus, when agent i
does not add an additional node from Si =

⋃
k∈K N ′

k, it holds that
bi(M) = 1 because the minimum cost spanning tree γM contains
the edge (0, i).

We now show the equivalence, i.e., given any 3-SAT instance,
the answer is “Yes” if and only if the answer for the transformed
BENEFICIAL-SPLIT is “Yes”.

Only If Part: If the instance of 3-SAT is a “Yes” instance, there
exists an assignment a of the variables U s.t. all the clauses are sat-
isfied. For given k ∈ K, l ∈ L, let a predicate ρ(k, l) be true if
and only if a literal clk is true under assignment a. Let S′

i = {xl
k |

k ∈ K, l ∈ L, ρ(k, l)} and M ′ = M(N ∪ S′
i). Since the assign-

ment a satisfies all the clauses, for any k ∈ K, there exists l ∈ L s.t.
xl
k ∈ S′

i, i.e., at least one node in N ′
k is also in S′

i. Also, by definition
of Ī, there exists no pair p, q ∈ S′

i s.t. {p, q} ∈ Ī. Therefore, for any
i′ ∈ S′

i ∪ {i}, bi′(M ′) = 1/5m holds, because γM′
never contains

the edge (0, i). Thus,
∑

i′∈S′
i∪{i} bi′(M

′) =
∑

i′∈S′
i∪{i} 1/5m ≤

(3m+ 1)/5m < 1 = bi(M) for any m ≥ 1, which implies that the
transformed instance is also a “Yes” instance.

If Part: If the transformed instance is a “Yes” instance, there exists
a subset S′

i ⊆ Si s.t.
∑

i′∈S′
i∪{i}

bi′(M
′) < bi(M) = 1, (a)

where M ′ = M(N ∪ S′
i). Now we show that both (a-i) for any

k ∈ K, there exists l ∈ L s.t. xl
k ∈ S′

i, and (a-ii) there exists no
pair p, q ∈ S′

i s.t. {p, q} ∈ Ī hold. If the statement (a-i) does not
hold, then γM′

must contain the edge (0, i) whose weight is 1, which
contradicts the statement (a). We next assume that (a-ii) does not
hold. Let p = xl

k and q = xl′
k′(k < k′) s.t. {p, q} ∈ Ī. Then, γM′

contains the edge (p, q), instead of the edge (x1
k′−1, k

′), (x2
k′−1, k

′),
or (x3

k′−1, k
′). Thus, bq(M ′) = 1 − 2ε holds. Since bi(M

′) =
1/5m holds, we have

∑
i′∈S′

i∪{i} bi′(M
′) ≥ (1 − 2ε) + 1/5m >

1 = bi(M) for small enough ε, which contradicts the statement (a).
Therefore, both (i) and (ii) must hold. Let a be the assignment of
the variables of U s.t. for any k ∈ K, l ∈ L clk is true if and only
if xl

k ∈ S′
i. From (i) and (ii), a is the assignment that satisfies all

the clauses. Thus, if the transformed instance is a “Yes” instance, the
original instance is also a “Yes” instance.
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Figure 5. Transformation from 3-SAT into BENEFICIAL-SPLIT. Transformed BENEFICIAL-SPLIT is such that N = {i, 1, 2, . . . ,m,m+ 1} (white nodes),
and Si =

⋃
1≤j≤m{x1

i , x
2
i , x

3
i } (grayed nodes).

Theorem 5 implies that in the worst case, an agent must solve a
computationally difficult problem to find a beneficial split manipula-
tion. In this sense, the Bird rule has a reasonable level of resistance
against split manipulations.

As several recent papers have argued [10], discussing the com-
putational complexity of manipulation problems is not always suffi-
cient. Nevertheless, we believe that such a computational complexity
approach is a certain first step for understanding the effect of split
manipulations in MCST problems.

4.3 Split-proof Domain

It remains worthwhile to clarify under which condition on weight
functions the Bird rule becomes split-proof. In this section, we pro-
vide a very intuitive sufficient condition.

For M = (N , N,w) ∈ M, let anc(M, i, j) denote the predicate
that i ∈ N is an ancestor of j ∈ N in γM , and let ΣM denote
the set of all possible permutations of the nodes, i.e., σ : N ��
{1, . . . , |N |}, where �� indicates a bijection.

Theorem 6. The Bird rule b is split-proof under a domain M′ ⊆ M̄
of MCST-M problems if ∀M = (N , N,w) ∈ M′,

1. γM is unique, and
2. there exists a permutation σ ∈ ΣM s.t. ∀N ′ ⊆ N and ∀i, j ∈ N ′,

anc(M(N ′), i, j) ⇒ σ(i) < σ(j).

Proof. For the sake of contradiction, we assume that b is not split-
proof under M′ ⊆ M̄. Then it suffices to show that there exists
M = (N , N,w) ∈ M′ such that either γM is not unique, or ∀σ ∈
ΣM , ∃N ′ ⊆ N , ∃i, j ∈ N ′, it holds that

(σ(i) ≥ σ(j)) ∧ anc(M(N ′), i, j).

Since b is not split-proof, ∃M = (N , N,w) ∈ M′, ∃S =
(Sj)j∈N ∈ SM , ∃i ∈ N , ∃S′

i ⊆ Si,

bi(M) >
∑

i′∈S′
i∪{i}

bi′(M
′),

where M ′ = M(N∪S′
i). Let i∗ be such an agent i ∈ N . If γM is not

unique, the proof is completed. We then consider the cases where γM

is unique and show that ∃j ∈ N , anc(M, j, i∗) and anc(M ′, i∗, j).
Let D = {j ∈ N | anc(M, i∗, j)}. For the sake of contradiction,

we assume that for any i′ ∈ S′
i∗ ∪ {i∗}, it holds that

λM′
i′ ∈ (N ∪ S′

i∗) \D.

Let ν be the nearest node to i∗ in {j ∈ N | anc(M ′, j, i∗)}.
Since bi∗(M) >

∑
i′∈S′

i∗∪{i∗} bi′(M
′) holds, we have∑

i′∈Q bi′(M
′) ≤ bi∗(M) = w(i∗, λM

i∗ ), where Q is the set of
nodes owned by i∗ in the path from i∗ to ν (note that ν is not in Q).
Since M ∈ M̄ and γM is unique, w(i∗, ν) ≤ ∑

i′∈Q bi∗(M) ≤
w(i∗, λM

i∗ ) holds. Here, λM
i∗ �= ν implies anc(M, i∗, ν), which

contradicts the definition of ν. Thus, there exists i′ ∈ S′
i∗ ∪

{i∗} s.t. λM′
i′ ∈ D holds, i.e., ∃j ∈ N s.t. anc(M, j, i∗) and

anc(M ′, i∗, j).

The intuition of the proof of Theorem 6 is that, although both i∗

and ν are in both M and M ′ (since ν is not owned by i∗), their order
differs in these MCSTs, i.e., anc(M, i∗, ν) and anc(M ′, ν, i∗). This
is because, since i∗ can benefit from the split manipulation that con-
nects the node i∗ to ν under M ′, she is not connected to ν (in other
words, ν must be a descendant of i∗ in M ) without manipulation.

The two conditions in Theorem 6 intuitively require that for any
pair of two participating nodes, their ancestor-descendant relation-
ship never switches for any set of participating nodes including them-
selves. For instance, in Example 3, the relationship between nodes 1
and 2 switches before and after node 3 joins.

When do the conditions hold in MCST problems? A very naive
example is building a service-providing network, e.g., electricity or
water, in a city where two main streets cross at a right angle, all the
houses are located along one of them, and the service provider is
located near the intersection. When the weight function is given as
an Euclidean distance function, we can easily imagine that no split
manipulation is beneficial.
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5 CONCLUDING REMARKS

In this paper we analyzed the effect of split manipulations in the
MCST problems and showed that no rule is both efficient and split-
proof under M. We further showed that under M̄, there exists a rule
that is efficient, core-selecting, and split-proof. Concerning the resis-
tance of the Bird rule against split manipulations, we showed that it is
not split-proof, its mixed price of anarchy is proportional to the num-
ber of agents, and finding an optimal manipulation is NP-complete.
We also provided a sufficient condition for the Bird rule to be split-
proof.

One future work will characterize the domain of MCST problems
under which an efficient, core-selecting, and split-proof rule exists. In
this paper we already identified a domain of MCST problems under
which the Bird rule is split-proof, but it is not tight. It might also be
interesting to analyze the convergence/diffusion of the agents’ selfish
behavior when the market size grows, e.g., the number of nodes in
the MCST problem. Considering monotonic MCST problems (mM-
CSTs), in which one can use non-participating nodes to minimize the
cost of the spanning tree, and analyzing the existing rules by recently
proposed measures such as incentive ratio [6, 7, 8], are other possible
directions. Finally, combining MCST problems with the framework
of mechanism design with information diffusion [19, 25, 16] will also
be interesting; their definition of strategy-proofness requires that hir-
ing more buyers into the market be a dominant strategy, which also
looks meaningful in some application domains of cost sharing.
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Maurice Salles, and Norman J. Schofield, chapter 4, Cambridge Uni-
versity Press, (1995).

[27] S. H. Tijs and T. S. H. Driessen, ‘Game theory and cost allocation prob-
lems’, Management Science, 32(8), 1015–1028, (1986).

[28] Stef Tijs, Rodica Branzei, Stefano Moretti, and Henk Norde, ‘Obli-
gation rules for minimum cost spanning tree situations and their
monotonicity properties’, European Journal of Operational Research,
175(1), 121–134, (2006).

[29] Taiki Todo and Vincent Conitzer, ‘False-name-proof matching’, Proc.
the 12th International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS-13), pp. 311–318, (2013).

[30] Makoto Yokoo, Yuko Sakurai, and Shigeo Matsubara, ‘The effect of
false-name bids in combinatorial auctions: New fraud in internet auc-
tions’, Games and Economic Behavior, 46(1), 174–188, (2004).

[31] Dengji Zhao, Siqi Luo, Taiki Todo, and Makoto Yokoo, ‘False-name-
proof combinatorial auction design via single-minded decomposition’,
Proc. the 21st European Conference on Artificial Intelligence (ECAI-
14), pp. 945–950, (2014).

T. Todo and M. Yokoo / Split Manipulations in Cost Sharing of Minimum Cost Spanning Tree226


