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Abstract. We model the notion of k-resilient distribution of com-
putation graphs supporting agent decisions, over dynamic physical
multi-agent systems (e.g. IoT systems). We devise a self-organizing
repair method, namely DRPM[DMCM], based on distributed op-
timization to repair the distribution as to ensure the system still
performs collective decisions and remains resilient to upcoming
changes. Resilience is based on the concept of replicas of computa-
tions so that those hosted by disappearing agents can activate on other
agents. We focus on a particular type of reasoning process to repair:
distributed constraint optimization (DCOP), where computations are
decision variables and constraints distributed over a set of agents.
We provide a full stack of mechanisms to install resilience in operat-
ing stateless DCOP algorithms, which results in an robust approach
using MGM-2 to repair any stateless DCOP algorithm at runtime.
We experimentally evaluate the performances of our methods on dif-
ferent topologies (uniform or problem-dependent) operating DCOP
algorithms (A-MaxSum and A-DSA) to solve classical benchmarks
(random graph, graph coloring) while agents are disappearing.

1 INTRODUCTION

We consider the problem of distributing a set of computations sup-
porting decisions over a set of agents embodied in physical de-
vices (or nodes), like robots, sensors or autonomous cars. Coordi-
nated decisions are organized in a computation graph, where ver-
tices represent computations and edges represent a dependency re-
lation between computations. This appears in many decision mod-
els, like factor graphs and constraints graphs when solving Dis-
tributed Constraints Optimization Problems (DCOP) [6], or compu-
tation graph algorithms such as those addressed by Pregel or other
BSP-based frameworks [12]. While these frameworks usually target
high-performance cluster computing, we consider here Internet-of-
Things, edge computing or robot swarm scenarios, where compu-
tations run on distributed, highly heterogeneous nodes and where a
central coordination might not be desirable or even not possible [3].

Such systems must be able to cope with agents failures: when an
agent stops responding, other agents in the system must run the or-
phaned computations. We define the notion of k-resilience, which
characterizes systems able to provide the same functionalities or de-
cisions even when up to k nodes disappear. As far as we know, only
[19, 20]3 addressed the problem of adapting decisions distribution at
runtime and proposed a model for computing such distribution.

The contributions structure the paper as follows. Section 2 defines
the notion of optimal distribution of graph-based computations over
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Figure 1: DRPM[DMCM] life cycle in a glance.

a given physical infrastructure. Section 3 expounds the notion of k-
resilience and the life cyle of a k-resilient system. Section 4 presents
DRPM, a solution method to deploy replicas of decision at runtime,
to ensure k-resilience. We devise a distributed repair method, namely
DMCM, based on a DCOP model using replicated computations
to adapt the decision deployment following failures in the physical
multi-agent system in Section 5. The general framework of our ap-
proach is summarized in Figure 1. We evaluate experimentally our
algorithmic contributions on different topologies of multi-agent sys-
tems whose functionality is to operate distributed constraint reason-
ing while agents are leaving the system, in Section 6. Collective prob-
lems to solve are classical DCOP benchmarks. We notably execute
asynchronous versions of Max-Sum and DSA algorithms in such dy-
namic settings. Finally, we conclude the paper on some perspectives.

2 ASSIGNING COMPUTATIONS TO AGENTS

The placement of decision-related computations on physical agents
has an important impact on the performance characteristics of the
global system: some placements improve response time, as studied
by [10], some others favor communication load between agents and
some others optimize for other criteria like QoS or running cost.

Let G = 〈X, D〉 be a computation graph, where X is the set of
computations xi, and D is the set of edges (i, j) representing the
dependencies between computations (which implies that messages
between neighbors computations are passed along these edges). Let
A be the set of agents which can host the computations xi ∈ X. We
note μ : X �→ A the function that maps computations to agents and
μ−1(am) the set of computations hosted on agent am. An agent can
only host a limited quantity of computations, constrained by agent’s
capacity wmax(am) ≥ 0, and computation’s weight, w(xi) ≥ 0.
We note xm

i the boolean value in {0, 1} stating whether computation
xi is hosted on agent am.

Definition 1 Given a set of agents A and a set of computations X,
a distribution is a mapping function μ : X �→ A that assigns each
computation to exactly one agent and respects the agents’ capacity.
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Finding a distribution is a constraint satisfaction problem with:

∀xi ∈ X,
∑

am∈A
xm
i = 1 (1)

∀am ∈ A,
∑

xi∈μ−1(am)

w(xi) ≤ wmax(am) (2)

When communication is constrained (like in IoT), distribution
should generate as little load as possible and favor the cheapest com-
munication links. We model communication costs with a matrix:
route(m,n) ≥ 0 is the communication cost between agents am

and an. These costs may represent the financial cost of using a com-
munication link or other characteristics like throughput or latency
and infinite costs can be used when there is no communication link
between agents. Let msg(i, j) ≥ 0 be the size of the messages be-
tween xi and xj , the communication cost between xi on am and xj

on an is ∀xi, xj ∈ X, ∀am, an ∈ A:

ccom(i, j,m, n) =

{
msg(i, j) · route(m,n) (i, j) ∈D,m 
= n
0 otherwise

(3)

where there is no communication cost between computations hosted
on the same agent. Costs to host some computation on an agent are
modeled as a host function assigning a cost for each pair (am, xj).
These hosting costs model some affinity or repulsiveness between an
agent and a computation, or financial infrastructure costs. Notice that
one can easily force a computation to be hosted on a specific agent
by assigning an infinite hosting cost for all other agents. The charac-
teristics of many real-world systems can be accounted for, thanks to
these flexible definitions of communication and hosting costs.

The quality of a distribution can then be evaluated using the fol-
lowing function, with ω ∈ [0, 1] a penalty parameter to be tuned de-
pending on the scenario (prefering communication cost over hosting
cost, and vice versa):

ω ·
∑

(i,j)∈D

∑
(m,n)∈A2

ccom(i, j,m, n) · xm
i · xn

j (4)

+ (1− ω) ·
∑

(xi,am)∈X×A

xm
i · chost(am, xi) (5)

Definition 2 An optimal distribution is a distribution μ that mini-
mizes the cost of communication between agents and the cost of host-
ing computations as stated in eq. (4-5).

Assigning computations to agents as stated in Definition 2 is
equivalent to graph partitioning [18], which typically falls under the
category of NP-Hard problems [2] and can be mapped to a binary
Integer Linear Program (ILP) using linearization [5] of (4) and (5)
as the minimization objectives, (2) as constraints, and adding con-
straints so that computation are only assigned to one agent. It may
however drastically stress centralized modern solvers and can only
be used, when bootstrapping the system, to compute an initial distri-
bution for relatively small instances. For larger problems, a greedy
heuristic (which we do not include here due to space constraints) can
be used and yields close to optimal results.

3 k-RESILIENCE PRINCIPLES

Now consider the case of a dynamic system where agents may dis-
appear. In centralized settings, when some agents fail, one could use
the ILP or greedy heuristic to compute a new optimal distribution.

But, such a centralized computing may not be possible or desirable,
depending on the requirements of the application scenario.

We define the notion of k-resilience as the capacity for a system to
repair itself and operate correctly even when up to k agents disappear.
This means that after a recovery period, all computations must be
active on exactly one agent and communicate one with another as
specified by the graph G.

Definition 3 Given a set of agents A, a set of computations X, and
a distribution μ, the system is k-resilient if for any F ⊂ A, |F | ≤ k,
a new distribution μ′ : X → A\F exists.

Our approach for k-resilience is based on replication and reloca-
tion. Assuming initial deployment and replica placement have been
performed at system bootstrap, and the graph is dense enough and re-
mains connected, even with very prohibitive costs (e.g. backup wire-
less connections) the system will execute the following repair cy-
cle all along its lifetime (see Figure 1): (a) Detect agents’ failures;
(b) Activate replicas of missing computations; (c) Place new replicas
for missing computations, and continue nominal operation.

3.1 Replication

Replication ensures that the definitions of the computations (which
contain the definition of the system itself) are not lost and is in-
spired by distributed databases [24, 23]. Indeed, one pre-requisite
to k-resilience is to still have access to the definition of every com-
putation after a failure. Our approach is to keep k replicas (copies of
definitions) of each active computation on different agents. Provided
that the k replicas are placed on different agents, no matter the subset
of up to k agents that fails there will always be at least one replica left
after the failure. Here, we apply these ideas except we keep replicas
of computation definitions instead of data records, which implies that
computations must be stateless or that their state must be restorable.
Let’s note that given the capacity constraints on the agents, keeping k
replicas is not enough to warrant k-resilience and there might be no
possible distribution. The maximum k value for which k-resilience
can be achieved depends on the system and especially on agent’s ca-
pacities. Additionally, the k-resilience characteristic of the repaired
system should be restored, as long as there are enough nodes avail-
able. Notice that this approach to resilience has an impact on privacy,
as computations might be shared with any agent in the system.

We call Distributed Replica Placement Method (DRPM) our
method for replication, described in Section 4.

3.2 Relocation

Relocation consists in assigning a computation, whose host agent has
left the system, to a another agent. As the computation’s definition is
required to run it, the agents on which a computation could be relo-
cated are the agents holding a replica for that computation. Of course,
the repaired system is still subject to the same conditions as for the
initial distribution. Thus, the relocation problem aims at selecting the
agents in a way that minimizes the communication and hosting costs,
while honoring the capacity constraints. Starting the relocation pro-
cess requires that agents are aware of failures in the system; here we
assume that an agent holding a replica for a computation ci monitors
the agent hosting that computation and detects its departure (using
keep alive messages). Notice that this knowledge is still local and
that no entity needs to be aware of the status of all agents in the sys-
tem.

Our approach, called DCOP Model for Computation Migration
(DMCM) is exposed in Section 5.
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4 REPLICA PLACEMENT

The problem of assigning replicas to hosts could be considered as an
optimization problem, close to Definition 2. Ideally, we should op-
timize replica placement for communication and hosting costs. This
would ensure that when agents fail, replicas are available on good
candidate agents. However, the search space for this optimization
is prohibitively large. In a k-resilient system with n agents, there
is

∑
0<i≤k

(
n
i

)
potential failure scenarios (up to k agents out of n

can fail simultaneously). With m computations, the number of pos-
sible replica configurations is m · (n

k

)
(for each of the m compu-

tations, select k agents to host the replicas). In the end, the prob-
lem of optimally distributing the k replicas of each computation on a
given set of agents having different costs and capacities can be cast
into a quadratic multiple knapsack problem (QMKP) [21], which is
NP-hard. Moreover, even assuming we could compute every possi-
ble replicas placement, it would still not be obvious which would be
better. Indeed, defining the optimality for replica placement is very
problem dependent. Thus, given that complexity, we opt for a dis-
tributed heuristic approach, described in the next section.

4.1 Distributed Replica Placement Method

We propose here a distributed method, namely DRPM, to determine
the hosts of the k replicas of a given computation xi. The intuition
behind DRPM is that the initial distribution is either optimal or of
very good quality. Therefore, by placing replicas on closest neigh-
bors, with respect to communication and hosting costs, DRPM en-
sures that the distribution after repair will maintain a good quality,
as in case of failure a computation is relocated to one of the agents
holding it’s replica. If some privacy is required, one can use infinite
hosting costs to exclude some agent as potential host for a replica.

DRPM is a distributed version of iterative lengthening (uniform
cost search based on path costs) that finds the k best paths by search-
ing in a graph induced by computations dependencies. It outputs a
distribution of k replicas (and the path costs to their hosts) with min-
imum costs over a set of interconnected agents. If it is impossible
to place the k replicas, due to memory constraints, DRPM places as
much computations as possible and outputs the best resilience level
it could achieve. One hosting agent, called initiator, iteratively asks
each of his lowest-cost neighbors, in increasing cost order, until all
replicas are placed. Candidate hosts are considered iteratively in in-
creasing order of cost, which is composed of both communication
cost (all along the path between the original computation and its
replica) and the hosting cost of the agent hosting the replica.

Let’s first define the graph specifying the communication costs
which will be developed during the search process:

Definition 4 (route–graph) Given a computation graph 〈X, D〉,
the route–graph is the edge-weighted graph 〈A, E, w〉 where
A is the set of vertices, E is the set of edges with E =
{(am, an)|∃(xi, xj) ∈ D, and μ(xi) = am, μ(xj) = an} and
w : E → R

+ is the weight function w(am, an) = route(m,n).

Contrary to classical approach of routing like OSPF [9], as to take
into account both communication and hosting costs in the path costs,
the route–graph is extended into a route+host–graph with extra
leaf vertices attached to each agent in the neighboring graph, except
the original host of the computation, with an edge weighted using the
hosting cost of the agent, as in Figure 2.

Definition 5 (route+host–graph) Given 〈A, E, w〉 a route–
graph, a computation xi, and a mapping μ, the route+host–graph

is the edge-weighted graph 〈A′, E′, cost〉 where A′ = A∪Ã is the
set of vertices where Ã = {ãm|am ∈ A, am 
= μ(xi)} is a set of
extra vertices (one for each element in A except the host of xi), E′ =
E∪{(am, ãm)|am ∈ A} is the set of edges and cost : E′ → R

+ is
the weight function s.t. ∀am, an ∈ A, cost(am, an) = w(am, an),
∀ãm ∈ Ã, cost(am, ãm) = chost(am, xi).

A route+host–graph is a search graph, expanded at runtime
and explored for a particular computation xi. Each agent oper-
ates as many DRPM as computations to replicate over several
route+host–graph’s. For a given route+host–graph, each agent
may encapsulate two vertices (one in A and its image in Ã) and may
receive messages concerning their two vertices, and even self-send
messages. Additionally, when assessing if an agent can host a replica,
we ensure that it only accepts if it has enough capacity to activate
any subset of size k of its replicas, using a predicate can host?. Of
course this constraint is stronger than what might be actually needed,
so, this distribution is not optimal with respect to hosting cost, since
one agent reject hosting a computation whilst it may finally have
enough memory to host it. Even communication-wise, the algorithm
may results on a suboptimal distribution. However, if can host?
is provided by an oracle or if memory is not a real constraint, and
replica placement only concerns one computation, the distribution
would be optimal with respect to communication and hosting costs,
since our algorithm implements an iterative lengthening search [17,
p.90]. Otherwise, DRPM is not guaranteed to be optimal.

Example 1 Figure 2 shows a sample route+host–graph with 4
agents (in gray), where a1 search for hosting computation xi. For
k = 2, DRPM places a replica on a2 (cost of 1+1 = 2) and another
on a3 (cost of 1+3+1 = 5) if enough capacity on these two agents,
since the minimum cost path to host on a4 is higher (1 + 5 = 6).

DRPM makes use of two message types (REQUEST and ANSWER)
with the same fields: (i) current: path of the request, as a list con-
taining all vertices messages have been passed through from the ini-
tiator vertices to the one receiving the current message, (ii) budget,
spent: remaining budget for graph exploration and budget already
spent on the current path, (iii) known: map assigning cost to already
discovered paths to unvisited vertices which bookkeeps the cheapest
paths so far, (iv) visited: list of already visited vertices, (v) k: the
remaining number of replicas to host, (vi) xi: computation that must
be replicated. REQUEST messages propagate down along the graph
from the initiator, and correspond to the development of the graph.
ANSWER messages trace the solutions (if any) back to the initiator.

At the beginning, the agent requiring a computation replica-
tion initializes known with the paths to its direct neighbors in the
route+host–graph and sends itself a REQUEST message with a

a1

a2 a3

a4

ã2 ã3

ã4

route(a1, a2) = 1
route(a2, a3) = 3

route(a2, a4) = 1

route(a1, a4) = 1

host(a2, xi) = 1

host(a3, xi) = 1

host(a4, xi) = 5

Figure 2: A sample route+host–graph with 4 agents.

P. Rust et al. / Resilient Distributed Constraint Optimization in Physical Multi-Agent Systems 197



Algorithm 1: Handler for REQUEST messages
Data: current, budget, spent, known, visited, k, xi

1 known← known \ current
2 if me /∈ visited then
3 visited← visited ∪{me}
4 if can host?(xi) then
5 k ← k− 1
6 add xi to memory
7 if k = 0 then
8 ap ← predecessor of me in current
9 send ANSWER(current, budget+cost(me, ap),

spent-cost(me, ap), known, visited, k,
xi) to ap

10 return

11 p ← argmine∈{paths in known starting with current} known[e]
12 if p �= ∅ then
13 an ← successor of me in p
14 if cost(me, an) ≤ budget then
15 current← current + an
16 send REQUEST(current, budget-cost(me, an),

spent+cost(me, an), known, visited, k, xi)
to an

17 return

18 foreach an ∈ {am | (am, me) ∈ E′, am /∈ visited} do
19 if spent+ cost(me, an) <

mine∈{paths in known leading to an} known[e] then

20 known[current+ an] ← spent+ cost(me, an)

21 ap ← predecessor of me in current
22 send ANSWER(current, budget+cost(me, ap),

spent-cost(me, ap), known, visited, k, xi) to ap

Algorithm 2: Handler for ANSWER messages
Data: current, budget, spent, known, visited, k, xi

1 if k = 0 then
2 if me is root of current path then
3 terminate with target number of replicas placed
4 else
5 ap ← predecessor of me in current
6 send ANSWER(current, budget+cost(me, ap),

spent-cost(me, ap), known, visited, k, xi)
to ap

7 else
8 p ← argmine∈{paths in known starting with current} known[e]
9 if me is root of current path then

10 if p �= ∅ then
11 budget ← budget+ known[p]
12 an ← successor of me in p
13 current← current + an
14 send REQUEST(current,

budget-cost(me, an), cost(me, an), known,
visited, k, xi) to an

15 else
16 terminate with fewer replicas than requested

17 else
18 if p �= ∅ then
19 an ← successor of me in p
20 if cost(me, an) ≤ budget then
21 current← current + an
22 send REQUEST(current,

budget-cost(me, an),
spent+cost(me, an), known, visited,
k, xi) to an

23 ap ← predecessor of me in current
24 send ANSWER(current, budget+cost(me, ap),

spent-cost(me, ap), known, visited, k, xi)
to ap

budget equals to the cheapest known path. Then, agents handle mes-
sages as explained in the next paragraph. The protocol ends when all
possible replicas have been placed (at most k).

When receiving a REQUESTmessage (see Alg. 1), either the agent
can host a replica (line 2), and thus decreases the number of replicas
to place, or forwards the request to other agents. In the first case,
if all replicas have been placed, the agent answers back to its pre-
decessor with a ANSWER message (line 9). When looking for other
agents to host replicas, if there exists a minimum cost known path
starting with the currently explored path which is reachable with the
current budget (line 11), the agent forwards the request to its succes-
sor in this path with an updated cost and budget (line 16). If there
is no such path, the agent fill out the known map of known paths
with new paths leading to its neighbors in the route+host–graph,
when they improve the existing known paths, and sends this back via
an ANSWER message to its predecessor so that it will explore new
possibilities (line 22).

When receiving an ANSWER message (see Alg. 2), the message
can either notify that all replicas have been placed or that there exists
at least one replica left to place. In the former case, if the agent is the
initiator, it terminates the algorithm, whilst having all the requested
replicas placed (line 3), otherwise it forwards the answer back to its
predecessor, until it reached the initiator (line 6). In the later case, if
the agent is the initiator it increases the budget and send a request to
the closest neighbor if any (line 14); otherwise that means that there
is no more path to explore and that all replicas cannot be placed,
therefore the agent terminates (line 16). If the agent is not the ini-
tiator, but there exists some reachable path within current budget, it
requests replication to its successor in the best known path, as when
handling REQUEST messages (line 22). Finally, if there is no such
path, it simply forwards the answer to its predecessor in the current
path (line 24).

Example 2 In Figure 2, a1 initiates and considers two paths [a1 →
a2] and [a1 → a4] with same cost, and thus sets a budget equals to
1. a1 sends a REQUEST to a2, his first successor in the first path. a2

replies with an ANSWER containing two new paths [a1 → a2 → ã2]
of cost 2, and [a1 → a2 → a3] of cost 4. Path [a1 → a2 → a2 →
a4] of cost 2 is not considered because the best known path leading
to a4 in known costs 1. a1, upon receipt of the message from a2,
explores the best way by sending a message to a4, who adds a path
to known, [a1 → a4 → ã4] of cost 6 and answers back to a1. a1

sends a REQUEST to a2 to explore the best way forward. a2 can host
the replica, because this path has a leaf ã2. a2 can even continue
the exploration, because the next path in known goes through it and
leads to a3. So a2 sends a REQUEST to a3, but this time the number
of replicas to place is no longer 2 but 1. a3 adds the path a1 →
a2 → a3 → ã3, which is the best available at this time, and so
answers that it can host the last replica. a3 sends an ANSWER to
a2, which forwards it to a1. At reception, as all replicas have been
placed, a1 ends the placement.

Globally, each agent is responsible for placing k replicas of all
the computations it currently hosts, and thus executes DRPM once
for each of its computations. These multiple DRPM runs can be ei-
ther sequentially or concurrently executed, but their result depends
on message reception order. Note that even when running multiple
DRPM concurrently, an agent has only one message queue and han-
dle incoming messages sequentially, which prevents him from ac-
cepting replicas that would exceed its capacity.

Theorem 1 DRPM terminates.
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Proof. For k = 1, since costs are additive and monotonic, and
paths to unvisited vertices are bookkept, DRPM terminates like
classical iterative lengthening, with the minimum cost path or empty
path if not enough memory in agents to host xi. For k > 1, it
attempts to place each replica sequentially, searching first for the
best path (as for k = 1), then operates the same process for a second
best path, and so on until either (i) k replicas are placed or (ii) there
is not enough memory to host the nth replica . Bookkeeping ensures
the same path will not be considered twice, and thus consecutive
search iterations output different paths with increasing path costs.
In case (i), DRPM terminates when k replicas have been placed on
the k best hosts; and in case (ii), it terminates when k′ < k replicas
have been placed, with k′ the maximum number of replicas that can
be placed. �

Theorem 2 DRPM requires O(bl) messages to terminate, with b the
branching factor, l = d/e number of iterations, d the depth of the
tree, and 0 < e ≤ 1 the normalized step cost.

Proof. DRPM’s worst case is that the only possible hosts for
replica are the last explored ones or there is no possible host. The
number of explored nodes is (l)b + (l − 1)b2 + . . . + (1)bl which
is O(bl). It requires twice messages (request and answer), which is
still O(bl). �

5 DECENTRALIZED REPAIR METHOD

Computations being replicated, we now introduce DMCM, the
DCOP Model for Computation Migration, which is implemented by
agents, following a failure of up to k agents in the system.

5.1 DCOP Formulation

We note Ad the set of up to k agents that leave the system simultane-
ously. Xc = ∪am∈Adμ(am) denotes the set of orphaned candidate
computations xi that must be relocated For each of these compu-
tations, Ai

c = ρ(xi)\Ad is the set of candidate agents that could
host xi, i.e. agents holding a replica for xi. The set of all candidate
agents, regardless of computations, is noted Ac = ∪xi∈XcA

i
c and

Xm
c denotes the set of computations that agent am could host. De-

ciding which agent am ∈ Ac hosts each computation xi ∈ Xc can
be mapped to an optimization problem similar to the one presented
in Section 2, restricted to Ac and Xc: communication and hosting
costs should be minimized while honoring the capacity constraints
of agents. To ensure each candidate computation is hosted on exactly
one agent, we rewrite constraints (1) for each xi ∈ Xc:

∑
am∈Ai

c

xm
i = 1 (6)

Similarly, capacity constraints (2) can be reformulated as:

∑
xi∈Xm

c

w(xi) · xm
i +

∑
xj∈μ−1(am)\Xc

w(xj) ≤ wmax(am) (7)

The hosting cost objective in (5) can be similarly formulated using
one soft constraint for each candidate agent am:

∑
xi∈Xm

c

chost(am, xi) · xm
i (8)

Finally, the communication costs in (4) is represented with a set of
soft constraints. For an agent am, the communication cost incurred
by hosting a computation xi can be formulated as the sum of the
cost of the cut edges (xi, xj) from the computation graph 〈X, D〉,
(i.e. where μ−1(xj) 
= am). Let’s note Ni the neighbors of xi

in the computation graph. When a neighbor xn is not a candidate
computation (i.e. it might not be moved and xm ∈ Ni\Xc), the
communication cost of the corresponding edge is simply given by
ccom(i, j,m, μ−1(xm)). For neighbors that might be moved, com-
munication cost depends on the candidate agent that is chosen to host
it and can be written as

∑
an∈Aj

c
xn
j · ccom(i, j,m, n). With this we

can write the communication cost soft constraint for agent am:
∑

(xi,xj)∈Xm
c ×Ni\Xc

xm
i · ccom(i, j,m, μ−1(xj))

+
∑

(xi,xj)∈Xm
c ×Ni∩Xc

xm
i ·

∑
an∈Aj

c

xn
j · ccom(i, j,m, n)) (9)

We can now formulate the repair problem as a DCOP
〈A,X ,D, C, μ〉 where A is the set of candidate agents Ac, X and
D are the set of decision variables xm

i and their domain and C is
composed of constraints (6), (7), (8), and (9) applied for each agent
am ∈ Ac. (6) and (7) result in infinite costs when violated, while (8)
and (9) directly define costs to be minimized. The mapping function
μ assigns each variable xm

i to agent am.

5.2 Implementing Repair using a DCOP Solver

Now that our repair problem has been expressed as a DCOP, we dis-
cuss its resolution using a DCOP solution method. Several solution
methods for DCOPs exist, like search algorithms [11, 13] and in-
ference algorithms [14, 22, 6], to cite a few. In brief, using these
message passing protocols (synchronous or not), agents coordinate
to assign values to their variables.

In our case, we opt for MGM-2, a 2-coordinated variant Maximum
Gain Message (MGM) [11], a lightweight, fast and iterative method.
In MGM, each agent first assigns random values to its variables and
send the information to all its neighbors. Using all neighbors’ val-
ues, an agent calculates the maximum gain if it changes its value
and sends it to all its neighbors. Then, using all neighbors’ gains, the
agent changes its value if its gain is the largest. This process repeats
until a termination condition is met. MGM monotonic property fits
very well our needs: once the hard constraints (6) and (7) have been
satisfied they will not be broken while optimizing the soft constraints
(8) and (9). By comparison, a stochastic algorithm like DSA for ex-
ample, would not provide this guarantee.

The 2-coordination provided by MGM-2 allows for required co-
ordination: to move a computation from agent am to ap, the binary
variable xm

i must take 0 as a value, while simultaneously, xp
i must

switch from 0 to 1. We argue that, as moving a computation involves
a coordinated decision of exactly two agents, MGM-2 always even-
tually find a solution satisfying all hard constraints, if such solution
exist. Indeed, moving a computation from an agent where it violates
the capacity constraint to an agent with enough capacity will always
represent the maximum gain and be the best offer. However, as offer-
ers and receivers are selected at random, MGM-2 takes an indeter-
minate number of cycles to find a valid solution (less than 15 in our
experiment). However, MGM-2 is still a local search algorithm and
may yield a sub-optimal solution for the soft constraints.

By applying MGM-2 on DRPM[DMCM], we obtain a full solu-
tion for k-resilience called DRPM[MGM-2].
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5.3 Focus on Distributed Constraint Reasoning

The general framework we propose can be applied to several set-
tings, especially in distributed constraint reasoning and optimization.
Such decision problems can be represented as graphs, like constraint
graphs (CG) or factor graphs (FG), where computations can be de-
cision variables or constraints. Solving such problems requires op-
erating distributed algorithms over the graph by exchanging mes-
sages, which suits perfectly DRPM[MGM-2]. But, all distributed so-
lution methods may not suit well, especially those which are sensi-
tive to message or information loss. Since agents may disappear, al-
gorithms based on question-answer messages (e.g. DPOP [14], AFB
[8]), might be stuck in a deadlock or an inconsistent state. More-
over, algorithms hardly relying on information acquired and stored
by agents might not be able to restart after a reparation (e.g. ADOPT
[13]). Thus, suitable algorithms to be equipped with DRPM[MGM-
2] are asynchronous algorithms with small memory usage and robust
to message loss. Here, we identify two algorithms as relevant candi-
dates: Max-Sum and A-DSA.

Max-Sum is an inference-based algorithm based on belief propa-
gation [6], operating on factor graphs by performing a marginaliza-
tion process of the cost functions, and optimizing the costs for each
given variable. The value assignments take into account their impact
on the marginalized cost function. If a computation (variable or fac-
tor) disappears, it might quickly restore its past state from messages
received from its neighboring agents. Max-Sum can be implemented
as an asynchronous algorithm (A-MaxSum).

A-DSA [7] is an asynchronous version of the Distributed Stochas-
tic Algorithm (DSA) [25], a local search DCOP algorithm. At start,
agents assign a random value to their variable(s) and send this infor-
mation to their neighbors. Thus each agent can evaluate if the local
quality of its own partial assignment could be improved by selecting
a new value, in which case it decides randomly, with an probabil-
ity p, to select the corresponding value and send its updated state to
its neighbors. A-DSA is asynchronous, each agent evaluates period-
ically if it could improve its partial assignment.

6 EXPERIMENTAL EVALUATIONS

We analyze here the quality of repaired distributions using
DRPM[MGM-2], and the impact of repair on the performance of
computations operated of the set of agents. We choose to illustrate
our DCOP-based repair framework applied to two DCOP solution
methods (A-MaxSum and A-DSA) where CGs and FGs are compu-
tation graphs to be deployed and repaired at runtime.

6.1 Experimental Setup

We run the experiments using the multi-threaded DCOP library pyD-
COP [16]. We generate instances composed each of: a problem defi-
nition, a topology (the infrastructure), and a disturbance scenario.

We study two different types of DCOPs: (i) random graph color-
ing problem and (ii) scale free graph coloring. Random graph color-
ing problem are generated by creating a random graph with density
p = 0.3. For scale free graph coloring problem, we generate a graph
using the Barabasi-Albert model [1] (starting for a 2-node connected
graph) . In both cases, each node is mapped to a variable and each
edge is mapped to a binary constraint whose costs are generated by
sampling from the uniform discrete distribution U [0− 9].

Depending on the chosen solution method (A-DSA or A-
MaxSum), the DCOP is encoded into either a CG (A-DSA) or a FG

(for A-MaxSum). For a same problem 〈A,X ,D, C, μ〉, this results in
placing either |V| = |X | computations for a CG or |V| = |X |+ |C|
computations for a FG, since constraints are mapped to computations
in FGs.

Once the computation graph is generated, we generate two dif-
ferent multi-agent infrastructures: uniform and problem-dependent.
An infrastructure is made of |A| agents, each holding one decision
variable (|A| = |X |), and is defined by chost, route, wmax, w and
msg as follows. The uniform infrastructure considers systems where
communication costs are uniform: ∀am, an, route(am, an) = 1.
In the problem-dependent case, route costs route(am, an) are de-
fined in a way that respects the structure of the computation graph:
agents with many neighbors have a low communication while agents
few neighbors have an higher communication cost, as in many phys-
ical infrastructures like IoT. More precisely, route(am, an) =
1+||N(am)|−|N(an)||
|N(am)|+|N(an)| where |N(ai)| is the number of neighbors of

ai in the computation graph In all cases, we set (i) hosting costs
chost(am, xj) = 0 if the computation xj is initially hosted by
agent am, chost(am, xj) = 10 otherwise; (ii) the capacity of each
agent depends on the weight of its decision variable and is set to a
large value, to ensure that all replicas can be hosted and k-resiliency
is possible, even after several repairs: wmax(ai) = 100 ∗ w(xi);
(iii) finally, w and msg depends on the solution method used. For
A-MaxSum, msg(i, j) = |Dj | = 10 and the weight of variable
and factors computations is respectively proportional to the size of
the variable’s domain and the sum of the size of the linked variable’s
domains. For A-DSA, msg(i, j) = 1 and w(xi) = |N(am)|.

Initially, each variable is assigned to an agent, and in case of FGs,
factors are placed using a greedy heuristic providing near-to-optimal
solutions to the ILP in Section 2. We use ω = 0.5 (hosting costs and
communication costs are equally considered).

We generate disturbance scenarios as sequences of perturbation
events happening every 30 seconds, starting at t = 20s. At each such
event, k randomly chosen agents disappear as to analyze the impact
on DCOP solution methods, and observe the k-resilience of our sys-
tem. We generate 20 instances (infrastructure and problem), and run
each instance 5 times. We also solve the same problems (5 runs for
each of the 20 instances) without any disturbance, as to assess the
impact of repair methods on the quality of the solution returned by
A-DSA or A-MaxSum. Results are averaged over all instances and
experiments are performed on an Intel core i7 CPU with 16GB RAM.

6.2 Impact of Repairing A-DSA Operations

Let us look at the runtime state of the current A-DSA with and with-
out disturbance, on the different infrastructures and problems. We
generate problems with |A| = |X | = 100, and use k = 3.

Figure 3a shows the cost of the solution found by A-DSA over
time. The cost of each of the 100 runs is displayed in transparent
grey, the overall shapes illustrates the fact that the system’s behavior
is consistent across the various instances. We can see that the solu-
tions on the disturbed system degrade when agents are removed, but
quickly improve again when the system recovers. Here, the replicas
that are activated by the repair process, as opposed to the computa-
tion that were hosted on removed agents, do not need accumulated
knowledge to recover a consistent state, thank to message passing
with neighbors. In A-DSA, computations are stateless, as required by
our approach of k-resilience (see Section 3): they gather new infor-
mation about costs from their neighbors at each message exchange.

The recovering period is shorter on scale free models, while it
takes more time on random graphs. Indeed, our graph coloring prob-
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(b) A-MaxSum

Figure 3: Solution cost for A-DSA (3a) and A-MaxSum (3b) at run-
time, w/ (blue) and wo/ (red) perturbation, on uniform (left) and
problem-dependent (right) infrastructure, when solving scale free
(top) and random (bottom) graph coloring, using DRPM[MGM-2].

lems are more dense and more difficult to solve, and repair requires
more messages and time. For the same duration, agents solving and
repairing random graph systems must handle more repair-specific
messages (MGM-2 and DRPM) than agents solving scale free graph
systems, thus they handle less A-DSA messages to improve the so-
lution cost. This is the same reason why the overall cost is higher in
problem-dependent infrastructure: the replica activation and place-
ment processes require more messages. We evaluated the average
time to repair a distribution at less than 3 seconds. Another point of
attention is the fact that, in some settings, the average cost with per-
turbation is better than the average cost without perturbation. In fact,
removing some computations and relocating them to other agents,
and thus forgetting some information about the past neighborhood,
might extract A-DSA from some local optima. We can also observe
some time lag for some instances to repair the system, mainly due to
accumulated message processing latency.

6.3 Impact of Repairing A-MaxSum Operations

We look here at the runtime state of the current A-MaxSum, to an-
alyze how DRPM[MGM-2] changes the operation of the running
process, on the different infrastructures and problems. We consider
smaller problems, since A-MaxSum operates on FGs which requires
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Figure 4: Cost of the distributions of computation graphs on which
A-DSA (4a) or A-MaxSum (4b) operates, after each event, on uni-
form (left) and problem-dependent (right) infrastructure, when solv-
ing scale free (top) and random (bottom) graph coloring problems,
using DRPM[MGM-2] to repair.

more computations to distribute than CGs used by A-DSA. We con-
sider |A| = |X | = 25, and k = 2. On random graph with density
of 0.3, this requires on average 25 + 0.3 25×24

2
= 125 computations

to manage. In Figure 3b we can see that solution costs on the dis-
turbed system degrade when agents are removed, but improve again
when the system recovers, as for A-DSA. However, A-MaxSum op-
eration on very cyclic problems like random coloring is known to
be very noisy, even using a high damping factor (here 0.8 as in [4]).
Moreover, belief propagation algorithms like A-MaxSum, computa-
tions are not stateless: they accumulate information about constraints
and preferences from their neighbors. When activating a replica, the
new active computation start afresh and an indeterminate number of
message rounds are needed to restore information. So, A-MaxSum
is more impacted by the perturbations and repair procedure than A-
DSA.

6.4 Quality of Repaired Distributions

To evaluate the quality of the repaired distributions of computations,
we measure the degradation of the distribution all along the system
lifetime. At each event, we assess the cost of the current distribu-
tion of the constraint graphs (for A-DSA) and the factor graphs (for
A-MaxSum) using equations 4 and 5, against the initial distribution
cost (which is optimal, but cannot be computed at runtime). Figure 4
shows the distribution costs for the 100 runs. As the global distri-
bution cost is made of communication and hosting costs, we also
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plot these two costs independently. In every case, the hosting cost
logically increases by 10 · k at each perturbation event, as k com-
putations are moved from their initial agent to another (where the
hosting cost is 10). On scale free models, hosting costs and commu-
nication costs have the same order of magnitude. But, for random
graphs, higher density implies that there are more edges in the graph
and as a consequence the overall communication cost is higher. In
general, the communication costs decrease at each repair. Here, all
agents are homogeneous and computations are necessarily moved to
more costly agents, communication-wise (there is no agent less ex-
pensive or equivalent to the missing ones), and thus communication
costs increase incrementally. In other cases computations can move
to a less expensive agent, and thus communication costs decrease.

7 CONCLUSIONS

We investigated the resilient distribution of computations over a dy-
namic set of physical agents, and two distributed algorithms have
been devised: (i) a replica placement protocol (DRPM) and (ii) a
repair protocol (DRPM[MGM-2]) relying on replicas placed by
DRPM and based on DCOP solution method MGM-2. Our contri-
butions have been evaluated experimentally through operation of A-
MaxSum and A-DSA on dynamic systems where agents disappear
during the optimisation process. On the different settings we inves-
tigate, operating these algorithms is not much impacted by our re-
pair method DRPM[MGM-2], and the systems continue providing
solutions, whilst missing agents, which demonstrates the resilience
of these systems. Since our approach is based on the replication of
computations, using problem encoding requiring less computations
(choosing constraint instead of factor graphs) is a better choice. The
complexity of the repair process, encoded as a DCOP itself, strongly
depends on the number of computations and the density of the in-
frastructure. Moreover, on our experiments, A-MaxSum operation is
much more impacted by agent removals and repairing than A-DSA
which is very robust to such dynamics.

This paper raised promising results about resilience in operating
distributed optimisation processes. We only focused on the worst
scenario with agent removals only.We will investigate less stressing
scenarios, coming from a broader scope of graph-based computa-
tions, like high-performance computing or virtual network functions
[15], where agents may be added to replace disappeared ones. More-
over, we proposed to use MGM-2 as the core reparation algorithm,
resulting in DRPM[MGM-2] method, but, other lightweight DCOP
solution methods might be considered or even designed to the par-
ticular case of constraint graph or factor graph reparation. Finally,
approaches for preserving information disclosure while ensuring sys-
tem resilience, and the resulting trade-off between resilience and pri-
vacy will be investigated in future research.
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