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Abstract. Real-world security problems are generally characterized
by uncertainty about attackers’ preferences, behavior, or other char-
acteristics. To handle such uncertainties, security agencies (defender)
typically rely on historical attack data to build a behavior model of
the attacker, and incorporate this model into generating an effective
defense strategy. For example, in wildlife protection, rangers can col-
lect poaching signs (e.g., snares) to learn the behavior of poachers.
However, in the real-world, a clever attacker can manipulate its at-
tacks to fool the learning algorithm of the defender towards its own
benefit. Unfortunately, existing state-of-the-art algorithms for gen-
erating defense strategies are not equipped to handle such deceptive
behavior by the attacker, and this could lead to arbitrary losses for the
defender. To address these challenges, this paper investigates a basic
deception strategy of the attacker, termed imitative behavior decep-
tion, in which the attacker intentionally pretends to follow a specific
behavior model and consistently plays according to that model, in
order to optimize its utility. We have three main contributions. First,
built upon previous work on attacker-behavior modeling, we intro-
duce new algorithms to compute an optimal imitative behavior de-
ception strategy of the attacker. Second, we propose a novel game-
theoretic counter-deception algorithm which determines effective de-
fense strategies, taking into account the deceptive behavior of the at-
tacker. Third, we conduct extensive experiments, which shows that
under the attacker’s deception, the defender accrues a significant loss
whereas the attacker achieves a significant gain in utility. Our exper-
imental results also demonstrate the impact of our counter-deception
algorithm on substantially diminishing the attacker’s deception.

1 Introduction

Security is a critical concern around the world in a variety of do-
mains, including public safety and security, wildlife protection, and
cyber security. Defender-attacker Stackelberg security games (SSGs)
have been widely applied to address these security problems. In fact,
there are several high-impact deployments of SSG-based algorithms
in the real world [24]. A key challenge in these security problems is
that security agencies (defender) are often uncertain about attackers’
behaviors and/or preferences. Thus, prior work in SSGs has proposed
several different models of attacker behavior [6, 10, 20, 23, 27]. Es-
sentially, in the learning phase of the defender, these models of the
attacker’s behavior are trained based on historical attack data. In the
defender’s planning phase, new game-theoretic algorithms are then
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developed to generate optimal defense strategies to play, assuming
that an attacker responds according to the learnt behavior model.

A crucial assumption in existing work is that the attacker always
responds honestly to the defender’s algorithm so that the true be-
havior model of the attacker can be learned. However, given the de-
fender’s reliance on historical attack data, a deceptive attacker can
alter its attack behavior to mislead the defender’s learning algorithm.
That is, the attacker may select attack actions during the learning
phase of the defender which could influence the learning outcome to
the benefit of the attacker in the planning phase. Facing such a decep-
tive attacker, the defender may suffer an arbitrary loss in his utility if
he does not address the attacker’s deception (we provide a concrete
example in Section 4.1). A shrewd defender should thus consider the
attacker’s deception explicitly in designing his defense strategy.

This paper studies the strategic deception of the attacker in SSGs
given the defender attempts to learn a behavior model of the attacker
based on historical attack data and the attacker is aware of the de-
fender’s learning. We investigate a basic deception strategy, imitative
behavior deception, in which the attacker pretends to follow a be-
havior model (which may not represent the true behavior of the at-
tacker) and consistently plays the game according to this model. As
a result, the defender will eventually learn this (deceptive) behavior
model of the attacker. The defender then decides on a defense strat-
egy based on the learning outcome. The ultimate goal of the attacker
is to find an optimal deceptive behavior model to imitate such that
the attacker’s utility is maximized in the planning phase.

This paper has three main contributions. First, based on previ-
ous work on attacker behavior modeling [27], we formulate the
problem of finding an optimal attacker deception strategy as a
bi-level optimization problem. We propose two new algorithms
(named Discretization-based deception and KKT (Karush-Kuhn-
Tucker)-based deception) to solve this problem. The former dis-
cretizes the domain of the behavior model parameter and iteratively
searches through the discretized space to find an optimal deceptive
model. The latter leverages KKT conditions [2] to reformulate the
attacker-deception problem as a single-level optimization problem.

Second, we propose a novel game-theoretic counter-deception al-
gorithm to generate effective defense strategies, taking into account
the attacker’s deception. Essentially, our algorithm generates a map-
ping function identifying which defense strategy to play against each
possible (learnt) deceptive behavior model. Finding an optimal map-
ping function is challenging given that the domain of model param-
eters is continuous and the resulting optimization problem is non-
convex. To tackle this challenge, we exploit intrinsic properties of
extreme points and apply optimization techniques such as piece-wise
linear approximation to convert the counter-deception problem to a
Mixed Integer Linear Program (MILP), which can be solved exactly.
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Finally, we conduct a rigorous evaluation of our proposed methods
on a variety of different game settings. We provide a detailed empiri-
cal analysis of the attacker’s deception, showing that the attacker ob-
tains a significant benefit by playing deceptively while the defender
suffers a significant loss when he does not address the attacker’s de-
ception. Furthermore, our results on counter-deception demonstrate
the advantage of our counter-deception algorithm in drastically re-
ducing the defender’s utility loss (due to the attacker’s deception).

2 Related Work

Behavioral Game Theory. There is a long line of prior work on
SSGs that focuses on developing behavior models for the attacker.
Parameterized models of attacker behavior such as Quantal Re-
sponse, and other machine learning models have been studied for
SSGs [6, 11, 17]. These models provide general techniques for mod-
eling the attacker decision making in security games. Prior work in
this area assumes that the attacker always plays truthfully. Thus, ex-
isting algorithms for generating defense strategies would be vulner-
able against deceptive attacks by an attacker who is aware of the
defender’s learning. Our work is different in that our proposed algo-
rithms explicitly account for such a strategic deceptive attacker by
planning strategies to counter the attacker’s deception.
Deception in Security Games. Deception is a widely studied re-
search area in security [3, 4, 8, 30]. In SSG literature, in particular,
a lot of prior work has studied deception by the defender, i.e., the
defender exploits his knowledge regarding uncertainties to mislead
the attacker’s decision making [7, 21, 22, 26, 29]. More recently,
deception on the attacker’s side has been studied. Existing work on
attacker deception focuses on situations in which the defender is un-
certain about the attacker type [5, 18, 19]. Our work, on the other
hand, studies the attacker deception when the defender attempts to
learn the attacker’s behavior based on historical attack data.
Adversarial Machine Learning. Previous work on adversarial
learning has investigated various types of attacks to machine learning
algorithms in various learning domains [1, 9, 13, 14, 25]. Prediction
accuracy is the main measure used in existing work. In particular,
the learner attempts to find a robust learning algorithm which maxi-
mizes the prediction accuracy. The problem of attacker deception in
SSGs can be considered as a type of causative attack to the defender’s
learning algorithms. However, unlike prior work in this space, the
defender’s goal in our problem is to find an optimal defense strategy
(based on the learning outcomes) which maximizes his utility.

3 Background

Stackelberg security games (SSGs) [24]. In SSGs, there is a set of
important targets N = {1, 2, . . . , N}. The defender has K < N se-
curity resources to protect these targets against an attacker. A pure
strategy of the defender is an allocation of these resources over
the targets. A mixed strategy of the defender is a probability dis-
tribution over all pure strategies. Each mixed strategy of the de-
fender can be compactly represented as a coverage probability vec-
tor x = {x1, x2, . . . , xN} in which xi ∈ [0, 1] is the probability
that the defender protects target i and

∑
i xi ≤ K [12]. We denote

by X the set of all mixed strategies of the defender. In SSGs, the de-
fender plays first by committing to a mixed strategy, and the attacker
responds against this strategy by choosing a single target to attack.

When the attacker attacks target i, it obtains a reward of Ra
i while

the defender receives a penalty of P d
i if the defender is not protect-

ing that target. Conversely, if the defender is protecting target i, the

attacker gets a penalty of P a
i < Ra

i while the defender receives a re-
ward of Rd

i > P d
i . The expected utility of the defender and attacker

if the attacker attacks target i can be represented as follows:

Ud
i (xi) = xiR

d
i + (1− xi)P

d
i

Ua
i (xi) = xiP

a
i + (1− xi)R

a
i

Strong Stackelberg Equilibrium (SSE) [24]. In an SSE, both
players play a best response against each other’s strategies. In par-
ticular, a pair of strategies (x∗,BR(x∗)) are an SSE if and only if:

x∗ ∈ argmaxx∈X Ud
BR(x)(xBR(x))

BR(x) ∈ argmaxi∈N Ua
i (xi)

Quantal Response (QR) model [27]. QR is a well-known behav-
ior model used to predict human (attacker) decision making in be-
havioral economics, game theory, and security games [15, 16, 27].
In SSGs in particular, QR predicts the probability the attacker attacks
each target i, using the following softmax function:

qi(x, λ) =
eλU

a
i (xi)

∑
j e

λUa
j (xj)

(1)

where λ is the model parameter that governs the attacker’s rationality.
In particular, when λ = 0, the attacker attacks every target uniformly
at random. When λ = +∞, the attacker is perfectly rational. Given
that the attacker follows QR, the defender and attacker’s expected util-
ity is computed as an expectation over all targets, as follows:

Ud(x, λ) =
∑

i
qi(x, λ)U

d
i (xi) (2)

Ua(x, λ) =
∑

i
qi(x, λ)U

a
i (xi) (3)

When the attacker follows a QR model, the defender’s objective is to
find an optimal strategy which maximizes his expected utility:

maxx∈X Ud(x, λ)

4 Attacker Imitative Behavior Deception

Since the defender relies on an attacker behavior model to plan his
defense strategies [27], a clever attacker, who is aware of the de-
fender’s learning, can behave differently to mislead the defender. The
attacker aims at obtaining the most benefit from such deception. This
paper studies the attacker’s imitative behavior deception. Essentially,
the attacker pretends to have a behavior model (which may not rep-
resent its true behavior) and consistently plays the game according to
that model. Eventually, the defender would learn a wrong model of
the attacker’s behavior, resulting in an ineffective defense strategy.

This work considers a security scenario in which the defender uses
QR to learn the attacker’s behavior and the attacker knows that. The
deceptive attacker attempts to find a value of the parameter λ and
plays based on the QR model with that deceptive λ. The defender will
eventually learn this deceptive value of λ and play accordingly.

4.1 Example

To illustrate the attacker’s benefit and the defender’s loss as a result
of the attacker’s imitative behavior deception, we provide an example
of a simple 2-target game (shown in Table 1). The row player is the
defender and the column player is the attacker.
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In each cell of this payoff matrix, the first number represents the
defender’s payoff and the second number is the attacker’s payoff.
For example, if the attacker attacks target t1 and the defender also
protects t1, the defender obtains a payoff of 10 while the attacker re-
ceives a payoff of 1. The interpretation of other cells is similar. In this
game, the defender has one security resource (K = 1). If the attacker
is non-deceptive (i.e., the attacker always plays a best response to any
strategy of the defender), then the defender will eventually learn to
play an SSE strategy. In this game, the equilibrium strategy of the
defender is to always protect target t1 while leaving target t2 unpro-
tected. The attacker’s corresponding best response is to attack target
t1. As a result, the defender receives a utility Ud

non−deception = 10
and the attacker obtains a utility of Ua

non−deception = 1.

Target 1 Target 2
Target 1 10, 1 -100, 0
Target 2 -20, 10 1, -1

Table 1: An example of a simple 2-target game

On the other hand, the attacker can play deceptively. For example,
the attacker intentionally attacks targets uniformly at random. In this
case, the defender learns λ = 0. The corresponding optimal strategy
of the defender is to always protect target t2 while leaving target
t1 unprotected. As a result, the defender receives a utility of 0.5 ×
(−20) + 0.5 × 1 = −9.5 < Ud

non−deception. The attacker obtains
0.5 × 10 + 0.5 × (−1) = 4.5 > Ua

non−deception. This example
shows that in the presence of the attacker deception, the defender
would suffer a significant loss while the attacker obtains a significant
benefit if the defender does not address the deception of the attacker.

4.2 Imitative Behavior Deception Formulation

The problem of finding an optimal deceptive parameter λ for the
attacker can be formulated as the following optimization problem:

maxλ Ua(x∗(λ), λ) (4)

s.t. x∗(λ) ∈ argmaxx∈X Ud(x, λ) (5)

which maximizes the attacker’s expected utility. x∗(λ) is the de-
fender’s optimal strategy with respect to the QR parameter λ.

Proposition 1. In zero-sum security games, the attacker’s optimal
imitative behavior deception strategy is to play truthfully.

Proof. In zero-sum games, we have the zero-sum relation between
players’ payoffs: Ra

i = −P d
i and P a

i = −Rd
i for all targets i. There-

fore, the inner optimization problem (5) is equivalent to:

x∗(λ) ∈ argminx∈X Ua(x, λ)

As a result, finding an optimal deceptive λ becomes a maximin prob-
lem, represented as: maxλ minx∈X Ua(x, λ). On the other hand,
in zero-sum games, SSE strategies are equivalent to minimax strate-
gies [28]. Therefore, the attacker’s utility for playing truthfully is the
objective of the following minimax problem: minx∈X maxi U

a
i (xi).

Note that for every λ and every defender strategy x, the attacker’s
expected utility with respect to (λ,x) is less than its expected utility
for playing a best response against x. Therefore,

minx∈X Ua(x, λ) ≤ minx∈X maxi U
a
i (xi), ∀λ

which means that the attacker’s optimal deception is to always play
a best response (i.e., the attacker is truthful).

In general-sum games, finding an optimal deceptive λ is a bi-level
optimization problem as shown in (4–5), which is not easy to solve.
In the following, we propose two efficient algorithms to solve it.

4.3 Discretization-based Deception Algorithm

In our algorithm, we propose to discretize values of the model pa-
rameter λ into a finite set Λ = {λ1, λ2, . . . , λL} with an equal step
size σλ > 0, i.e., λ1 = 0, λl+1−λl = σλ for all l = 1, 2, . . . , L−1
where L is the number of values in consideration. We limit the search
space of λ to Λ and iterate over this set to find an optimal deceptive
parameter λ. At each iteration l, we compute the defender’s optimal
strategy x∗(λl) with respect to λl. This step can be done using exist-
ing game-theoretic methods [27]. We then computes the correspond-
ing expected utility of the attacker curAttU and uses it to update the
optimal deceptive value of λ, optAttLambda. Finally, our algorithm
provides an approximation of the optimal value of λ and a lower
bound of the attacker’s maximum deceptive utility.

4.4 KKT-based Deception Algorithm

We propose to apply Karush-Kuhn-Tucker (KKT) conditions [2] to
convert the inner optimization (5) into a set of mathematical con-
straints. As a result, we obtain the following single-level optimiza-
tion problem to find an optimal deceptive λ, formulated as follows:

max
λ,x,μ1,μ0,ν

Ua(x, λ) (6)

s.t. 0 ≤ xi ≤ 1, ∀i, and
∑

i
xi = K (7)

− ∂Ud(x, λ)

∂xi
+ μ1

i − μ0
i + ν = 0, ∀i (8)

μ1
i (xi − 1) = 0, ∀i (9)

μ0
ixi = 0, ∀i (10)

μ1
i , μ

0
i ≥ 0, ∀i. (11)

For each λ, constraints (7–11) are KKT conditions of the inner op-
timization problem (5). The variables {μ1

i }, {μ0
i } and ν are dual

optimal, which corresponds to the constraints xi ≤ 1, xi ≥ 0, and∑
i xi = K, respectively. We denote by (x∗, λ∗) a part of the opti-

mal solution of (6–11). Note that (x∗, λ∗) is not the optimal solution
of (4–5) since (5) is non-convex and thus KKT conditions represented
in (7–11) are not sufficient conditions for x∗ to be an optimal solu-
tion of (5). Finally, we obtain the following proposition:

Proposition 2. The optimization problem (6–11), denoted by
(x∗, λ∗), returns a lower bound Ua(x∗(λ∗), λ∗) and an upper
bound Ua(x∗, λ∗) of the attacker’s optimal deceptive utility in (4–5).

Proof. Given a λ, the optimization problem in (5) is generally non-
convex and all of its local optimal solutions satisfy constraints (7–11)
w.r.t λ. Thus, the feasible region of the defender strategy, x, repre-
sented by the constraints (7–11) is a super set of the optimal solution
set of (5). Therefore, the optimal objective of (6–11), Ua(x∗, λ∗), is
an upper bound of the attacker’s optimal deceptive utility.

Given λ∗ obtained by solving (6–11), we can solve (5) to obtain
a corresponding optimal strategy x∗(λ∗) [27]. This (x∗(λ∗), λ∗)
is a feasible solution of (4–5). Thus, the attacker’s expected utility,
Ua(x∗(λ∗), λ∗), is a lower bound of the optimal objective value of
(4–5) (i.e., the attacker’s optimal deceptive utility).
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5 Defender Counter-Deception

To tackle the attacker’s imitative behavior deception, the defender
has to choose which defense strategy to play with respect to each
possible learnt (deceptive) value of λ. In other words, the defender
commits to a mapping functionH : R→ X from a learnt (deceptive)
value of λ to a defense strategy. The defender’s goal is to find a map-
ping function which maximizes the defender’s expected utility, given
that the attacker would choose an optimal deceptive value of λ ac-
cordingly. In this work, we propose a novel game-theoretic counter-
deception algorithm which determines an optimal mapping function
for the defender. Essentially, finding an optimal mapping functionH
can be represented as the following bi-level optimization:

maxH Ud(H(λ∗(H)), λ∗(H)) (12)

s.t. λ∗(H) ∈ argmaxλ Ua(H(λ), λ) (13)

where λ∗(H) is the optimal deceptive value of λ with respect to H.
However, finding a closed form for the mapping function H is chal-
lenging given that it involves a bi-level optimization problem (12–
13). Therefore, we propose to divide the value range of λ into a finite
number of intervals I = {[λ0, λ1], [λ1, λ2], . . . , [λL, λL+1]} where
λ0 = 0 and λL+1 = +∞. We then find an optimal mapping func-
tion which maps each interval [λl, λl+1] to a single defense strategy
xl+1. Intuitively, for any learnt (deceptive) λ ∈ [λl, λl+1], the de-
fender will play the same strategy xl+1 accordingly. In the following,
we first provide a proposition to find an optimal deception strategy
of the attacker given the functionH.

Proposition 3. Given the mapping function H : I → X, the at-
tacker’s optimal deception belongs to {λ1, λ2, . . . , λL, λL+1}.

Proof. For any value of λ in each interval [λl, λl+1], the defender
commits to the same strategy xl+1. Finding an optimal deceptive
value of λ in an interval [λl, λl+1] is thus formulated as follows:

maxλ∈[λl,λl+1] U
a(xl+1, λ) (14)

The attacker’s expected utility Ua(xl+1, λ) is increasing in λ since

its derivative, ∂Ua(xl+1,λ)
∂λ

, is equal to:

1

2

∑
i,k

qi(x
l+1, λ)qk(x

l+1, λ)
[
Ua

i (x
l+1
i )− Ua

k (x
l+1
k )

]2
≥ 0

Thus, the optimal solution of (14) is λ = λl+1.

5.1 Mixed Integer Non-Linear Program

According to the Proposition 3, the attacker’s optimal deception
strategy is to choose a value of λ in the set {λ1, λ2, . . . , λL, λL+1}
such that the attacker’s expected utility is maximized. Therefore,
we propose a Mixed Integer Non-Linear Program (MINLP) (15–18)
to find an optimal mapping function H which maximizes the de-
fender’s expected utility. The binary variable zl ∈ {0, 1} indicates
if the attacker chooses λl to imitate (zl = 1) or not (zl = 0) where
l ∈ {1, 2, . . . , L + 1}. The variable r represents the attacker’s opti-
mal deceptive utility and T is a very large constant. Constraint (16)
ensures that the attacker will mimic one of the parameter values in
{λ1, λ2, . . . , λL+1}. Constraint (17) indicates that r is greater than
expected utility of the attacker with respect to every deception choice
λl. Constraint (18) ensures that r is less than the attacker’s utility at
λl if λl is the best deception choice for the attacker (i.e., zl = 1).

Therefore, the combination of constraints (17-18) guarantees that the
attacker will select the best deceptive value of λ.

max
x1,x2,...,xL+1

∑
l
zlU

d(xl, λl) (15)

s.t.
∑

l
zl = 1, zl ∈ {0, 1}, ∀l (16)

r ≥ Ua(xl, λl), ∀l (17)

r ≤ Ua(xl, λl) + (1− zl)T, ∀l (18)

We can solve (15–18) using any non-convex solver. However,
solving this MINLP is computationally expensive. Moreover, there is
no guarantee of the quality of the returned solution. Therefore, we
propose a novel scalable counter deception algorithm to find an ap-
proximately optimal mapping functionH.

5.2 Scalable Counter-Deception Algorithm

Overall, our algorithm has three main components: (i) Dividing the
problem into multiple sub-problems — each sub-problem corre-
sponds to a particular optimal deception strategy of the attacker; (ii)
Applying binary search to convert the objective and constraint func-
tions of each sub-problem into variable-separable functions — each
resulting function is a sum of multiple uni-variate terms in which
each of the variables represents an individual coverage probability of
the defender; and (iii) Applying piecewise linear approximation to
reformulate each sub-problem as a MILP. In the following, we elab-
orate on each of the three components of our algorithm.

5.2.1 Multiple non-linear programs

We divide the problem of finding an optimal mapping function H
into multiple non-linear sub-problems, each of which corresponds
to a different optimal deception choice of the attacker. In particular,
conditioned on an optimal deception choice λl, we obtain:

NLPl : max
x1,x2,...,xL+1

Ud(xl, λl) (19)

s.t. Ua(xl, λl)≥Ua(xj , λj), ∀j (20)

which maximizes the defender’s expected utility given that the at-
tacker chooses λl to imitate. Constraint (20) guarantees that λl is the
optimal deceptive value of λ for the attacker. By solving NLPl, we
obtain a mapping functionHl that optimizes the defender’s expected
utility when the attacker deception choice is λl.

Finally, the optimal mapping functionH is chosen as the best one
among {Hl}, i.e., theHl which returns the highest utility for the de-
fender. In the following, we provide Proposition 4 which determines
part of the optimal solution of NLPl, for every l.

Proposition 4. Denote by {xj,∗}L+1
j=1 , the optimal solutions of the

following optimization problems:

xj,∗ ∈ argminx∈X Ua(x, λj), ∀j

Then, {xj,∗}j �=l is part of the optimal solution of NLPl for all l.

Proof. In NLPl, strategies of the defender, {xj} for all j �= l, only
appear in the RHSs of constraint (20). Therefore, for any feasible
solution (x1,x2, . . . ,xL+1) of NLPl, then ({xj,∗}j �=l,x

l) is also a
feasible solution since {xj,∗}j �=l provides lowest values of the RHSs.
As a result, {xj,∗}j �=l is part of the optimal solution for NLPl.
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Algorithm 1: Binary search

1 Initialize lb = mini P
d
i and ub = maxi R

d
i ;

2 while ub− lb ≥ ε do

3 Set v0 = ub+lb
2

;
4 Solve (x∗, isFeasible) = feasibility.check(v0);
5 if isFeasible then lb = v0; else ub = v0;

6 if isFeasible then xl = x∗ ; else

(xl, isFeasible) = feasibility.check(lb) ;

We denote by r∗ = maxj U
a(xj,∗, λj) which is a constant. Based

on Proposition 4, the sub-problem NLPl in (19–20) can be now
simplified as follows (constraint (22) is equivalent to constraint (20)):

NLPl : maxxl U
d(xl, λl) (21)

s.t. Ua(xl, λl) ≥ r∗ (22)

This resulting optimization problem is still non-convex. Thus, we
propose to apply a binary search to convert the objective and con-
straint functions of (21–22) into variable-separable functions. Each
resulting function is a sum of multiple terms, and each term only de-
pends on the defender’s coverage probability at a particular target.
Based on this conversion, we can apply piecewise linear approxi-
mation to represent the feasibility problem of the binary search as a
MILP, which can be solved exactly.

5.2.2 Solving NLPl: Binary search

The overview of binary search is illustrated in Algorithm 1. Given
some lower and upper bound on the objective, say (lb, ub), it starts
by solving the feasibility problem of whether there exists a feasible
strategy xl such that the defender’s expected utility is no less than a
value v0 = (lb+ ub)/2. That is, is there xl such that:

Ua(xl, λl) ≥ r∗

Ud(xl, λl) ≥ v0

which is equivalent to (see Equations (1–3)):

FSPl : ∃xl s.t.
∑

i
eλlU

a
i (xl

i)(Ua
i (x

l
i)− r∗) ≥ 0 (23)

∑
i
eλlU

a
i (xl

i)(Ud
i (x

l
i)− v0) ≥ 0? (24)

If it is feasible, then binary search updates the lower bound as
lb = v0. Otherwise, it updates the upper bound as ub = v0. Bi-
nary search then solves the feasibility problem again with the up-
dated lower bound or upper bound. This feasibility-check process
will continue until it reaches a stopping condition (i.e., ub− lb < ε).
To solve FSPl given a v0 in (23–24), we introduce the following
corresponding optimization problem:

max
{xl

i}i,δ
δ (25)

δ ≤
∑

i
eλlU

a
i (xl

i)(Ua
i (x

l
i)− r∗) (26)

δ ≤
∑

i
eλlU

a
i (xl

i)(Ud
i (x

l
i)− v0) (27)

which finds the defender strategy that maximizes the minimum value
(i.e., δ) between the LHSs of the constraints (23–24) of the feasibility
problem FSPl. Proposition 5 shows the equivalence between FSPl

and the optimization problem (25–27).

Proposition 5. We denote by δ∗ the optimal objective value of the
problem (25–27). If δ∗ ≥ 0, then the problem FSPl is feasible.
Otherwise, if δ∗ < 0, then FSPl is infeasible.

The proof of Proposition 5 is straightforward. If δ∗ ≥ 0, then
the optimal solution {xl

i}i returned by solving (25–27) is a feasible
solution of FSPl. Conversely, if δ∗ < 0, it means the maximum of
the minimum value between the LHSs of the constraints (23–24) is
strictly less than zero. Therefore, FSPl is infeasible.

5.2.3 Solving FSPl: Piecewise linear approximation

The RHSs of (26–27) are the sum of uni-variate functions:

fa
i (x

l
i) = eλlU

a
i (xl

i)(Ua
i (x

l
i)− r∗), ∀i

fd
i (x

l
i) = eλlU

a
i (xl

i)(Ud
i (x

l
i)− v0), ∀i

Therefore, we can apply piecewise linear approximation to linearize
these functions. Overall, each feasible region [0, 1] of the defender’s
coverage probability at target i, xl

i, is divided into M equal segments
{[0, 1

M
], [ 1

M
, 2
M
], . . . , [M−1

M
, 1]}. Then the functions fa

i (x
l
i) can be

approximated by using the segments connecting pairs of consecutive
points

(
m−1
M

, fi(
m−1
M

)
)

and
(
m
M
, fi(

m
M
)
)
. In particular, fa

i (x
l
i) is

piecewise linear approximated as follows:

fa
i (x

l
i) = fa

i (0) +
∑M

m=1
samxl

i,m

where sam is the slope of the mth segment, computed as follows:
sam = M(fa

i (
m
M
) − fa

i (
m−1
M

)). In addition, xl
i,m refers to the por-

tion of the defender’s coverage probability xl
i at target i which be-

longs to the mth segment. In other words, xl
i =

∑
m xl

i,m. Note that
if xl

i ≥ m
M

, the mth segment is fully covered by the defender’s cov-
erage probability, xl

i, which means xl
i,m = 1

M
. If xl

i < m−1
M

, the
mth segment is completely uncovered and thus xl

i,m = 0. Finally, if
m−1
M

≤ xl
i <

m
M

, the mth segment is partially covered, which means
xl
i,m = xl

i − m−1
M

. The function fd
i (x

l
i) is approximated similarly:

fd
i (x

l
i) = fd

i (0) +
∑M

m=1
sdmxl

i,m

where sdm is the slope of the mth segment: sdm = M(fd
i (

m
M
) −

fd
i (

m−1
M

)). Based on piecewise linear approximation, we introduce
the following MILP representation of (25–27):

PLAl : max δ (28)

s.t. δ ≤
∑

i
[fd

i (0) +
∑M

m=1
sdmxl

i,m] (29)

δ ≤
∑

i
[fa

i (0) +
∑M

m=1
samxl

i,m] (30)
∑

i
xl
i,m ≤ K, 0 ≤ xl

i,m ≤ 1

M
, ∀i,m (31)

hi,m
1

M
≤ xl

i,m, ∀i,m (32)

xl
i,m+1 ≤ hi,m, ∀i,m ≤M − 1 (33)

hi,m ∈ {0, 1}, ∀i,m. (34)

where RHSs of constraints (29–30) are the piecewise linear approx-
imations of RHSs of the constraints (26–27). Constraints (31–34)
guarantee that the segmentation of the coverage probability of the
defender at each target is valid. In particular, the binary variable hi,m

indicates if there is any portion of the defender’s coverage probabil-
ity xl

i which fully covers the mth segment (i.e., hi,m = 1) or not
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(i.e., hi,m = 0). Constraints (31–32) ensure that if hi,m = 1, then
xl
i,m = 1

M
. Finally, constraint (33) ensures that if hi,m = 0, then no

portion of the defender’s coverage probability at i overlaps with the
segments

[
m′
M

, m′+1
M

]
with m′ ≥ m (i.e., xl

i,m+1 = 0).

6 Experiments

In our experiments, we evaluate both the solution quality and runtime
performance of our proposed algorithms. We focus on analyzing the
impact of the attacker’s deception and the defender’s counter decep-
tion in terms of utility of both players. In addition, we examine the
attacker’s deception behavior when the defender addresses (and does
not address) the attacker’s deception. We compare four algorithms:

1. Non-Dec: the attacker is non deceptive and the defender also as-
sumes so. As a result, both play SSE strategies.

2. Dec-Discrete: the attacker is deceptive while the defender as-
sumes the attacker is not. The attacker’s deception strategy is gen-
erated based on our discretization-based deception algorithm.

3. Dec-KKT: the attacker is deceptive while the defender assumes
the attacker is not. The attacker’s deception strategy is generated
based on our KKT-based deception algorithm.

4. Counter-Dec: the attacker is deceptive while the defender also
assumes so. The defender’s counter-deception strategies (i.e., the
mapping function) are generated based on our scalable approxi-
mate game-theoretic counter-deception algorithm. Note that, we
do not show the results of the MINLP (15–18) formulation since
it is not scalable (it takes approximately more than four hours to
solve one single 20-target game instance).

We use Matlab (https://www.mathworks.com) to solve
non-linear programs and Cplex (https://www.ibm.com/
analytics/cplex-optimizer) to solve MILPs involved in
the evaluated algorithms. We use the covariance game generator,
GAMUT (http://gamut.stanford/edu) to generate rewards
and penalties of players within the range of [1, 10] and [−10,−1],
respectively. The covariance value r ∈ [−1, 0] controls the correla-
tions between the defender and the attacker’s payoff. In particular,
when r = −1.0, the generated games are zero-sum. When r = 0.0,
there is no relation between the players’ payoff. Since the attacker
plays truthfully in zero-sum games (Proposition 1), we only consider
the covariance value in the range of [−0.8, 0] with the step size of
0.2: r ∈ {−0.8,−0.6,−0.4,−0.2, 0}. Regarding the value range
for the parameter λ, we limit its range to [0, 10] to avoid the issue
of overflow due to the computation of exponential functions. We dis-
cretize this range into a set of 50 values for λ with a step size of 0.2:
λ ∈ {0, 0.2, . . . , 10} for Dec-Discrete and Counter-Dec.

6.1 Varying number of targets

In our first set of experiments, we examine the players’ expected util-
ity when varying the number of targets. The results are shown in Fig-
ure 1 when the ratio of the number of security resources to the num-
ber of targets (i.e., K

N
) is 0.2 and 0.4 respectively. The x-axis is the

number of targets and the y-axis represented the average expected
utility of the players. Each data point in Figure 1 is averaged over
100 different games; 20 games for each covariance value of r. Fig-
ure 1 shows that the attacker obtains a significantly higher average
utility for playing deceptively compared with when the attacker is
non-deceptive (Non-Dec). Comparing between our two approximate
attacker-deception algorithms, Dec-Discrete results in a substan-
tially higher utility for the attacker than Dec-KKT. This result shows
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Figure 1: Evaluation on solution quality, varying number of targets
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Figure 2: Evaluation on solution quality, varying # of resources

that Dec-Discrete with a fine discretization of values for λ obtains
a better approximation compared to Dec-KKT which only guarantees
a lower bound for the attacker’s optimal utility. The defender, on the
other hand, suffers a significantly lower utility for not addressing the
attacker’s deception (Non-Dec versus Dec-Discrete and Dec-KKT).
By taking the attacker’s deception into account, Counter-Dec helps
in drastically increasing the defender’s utility. Finally, Figure 1 shows
that the impact of deception and counter-deception does not qualita-
tively depend on the number of targets.

6.2 Varying number of defender resources

In our second set of experiments, we evaluate the solution quality
of the examined algorithms when varying the number of security
resources in the case of 20-target games and 80-target games. The
results are shown in Figure 2. The x-axis represents the number of
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Figure 3: Evaluation on solution quality, varying covariance value

security resources in the game. Each data point is averaged over 100
games. In Figure 2, the decrease in attacker’s average utility (regard-
ing all four algorithms) when the number of defender resources in-
creases is roughly linear. Similarly, the increase in the defender’s av-
erage utility also exhibits a linearity property. This make senses as
the defender’s expected utility at each target is a linearly increasing
function and the attacker’s is a linearly decreasing function of the
defender’s coverage probability at that target. On the other hand, the
relative loss in the defender’s utility or the relative gain in utility of
the attacker as a result of the attacker deception appears to be roughly
constant when varying the number of defender resources.

6.3 Varying the covariance value

In our third set of experiments, we vary the covariance value. As
noted, in zero-sum games, the attacker has no incentive to be de-
ceptive. Therefore, we only plot the results of r ∈ [−0.8, 0] with a
step size of 0.2. The result is shown in Figure 3. Each data point is
averaged over 100 games. Figure 3 shows that when the covariance
value r gets closer to −1.0 (which implies to zero-sum games), the
attacker’s average utility (as result of its deception (Dec-Discrete
and Dec-KKT) also gradually decreases, reflecting that the attacker
has less incentive to play deceptively.

Furthermore, the defender’s average utility in all cases (Non-Dec,
Dec-Discrete, Dec-KKT and Counter-Dec) gradually decreases
when r gets closer to −1.0. This results show that in SSGs, the de-
fender’s utility is always governed by the adversarial level (i.e., the
payoff correlations) between the defender and the attacker, regardless
of whether the attacker is deceptive or not.

Finally, we examine the deceptive value of λ for the attacker in
two cases: (i) Dec-Discrete and (ii) Counter-Dec. The results are
shown in Figure 4. Note that λ represents the attacker’s rationality.
The higher λ is, the more rational the attacker is. Figure 4 shows that
when the defender does not take into account the attacker’s decep-
tion, the deceptive attacker aims at mimicking a QR model with small
value of λ. The deceptive value of λ increases when r decreases,
implying the attacker is less deceptive when the game is closer to
zero-sum. On the other hand, our counter-deception mechanism sub-
stantially diminishes the attacker’s deception. The deceptive λ of the
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Figure 4: Analysis on QR’s parameter λ

attacker in this counter-deception case is close to 10 which is the
upper bound we set for λ to avoid overflow.

6.4 Runtime performance
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Figure 5: Runtime performance

Our evaluation on runtime performance is shown in Figure 5 in
which the x-axis is the number of targets and the y-axis is the run-
time on average. The runtime of our proposed algorithms gradu-
ally increases when the number of targets increases. For example,
Counter-Dec reaches approximately 25 minutes when N = 100.
This result shows that our proposed algorithms can scale up for large
games.

7 Summary

This paper studies the attacker imitative deception in SSGs in the se-
curity scenario that the defender attempts to learn the attacker behav-
ior based on historical attack data and the attacker is aware of the
defender’s learning. We introduce two new algorithms to compute an
optimal deceptive strategy of the attacker: Discretization-based
and KKT-based algorithms. Our empirical results shows that the at-
tacker deception has a great impact in terms of providing a signifi-
cant benefit for the attacker and loss for the defender. To handle the
attacker’s deception, we propose a novel counter deception algorithm
which generate effective defense strategies with respect to learning
outcomes of the attacker deceptive behavior. Through extensive ex-
periments, we show that our proposed counter-deception algorithm
helps in reducing drastically the impact the attacker’s deception on
both players’ utility.
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