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Abstract. A key aspect of foraging in robot swarms is optimizing
the search efficiency when both the environment and target density
are unknown. Hence, designing optimal exploration strategies is de-
sirable. This paper proposes a novel approach that extends the in-
dividual Lévy walk to a collective one. To achieve this, we adjust
the individual motion through applying an artificial potential field
method originating from local communication. We demonstrate the
effectiveness of the enhanced foraging by confirming that the collec-
tive trajectory follows a heavy-tailed distribution over a wide range
of swarm sizes. Additionally, we study target search efficiency of the
proposed algorithm in comparison with the individual Lévy walk for
two different types of target distributions: homogeneous and hetero-
geneous. Our results highlight the advantages of the proposed ap-
proach for both target distributions, while increasing the scalability
to large swarm sizes. Finally, we further extend the individual explo-
ration algorithm by adapting the Lévy walk parameter α, altering the
motion pattern based on a local estimation of the target density. This
adaptive behavior is particularly useful when targets are distributed
in patches.

1 Introduction

Coordination and self-organization in swarm robotics are key fea-
tures that are inspired from natural social systems such as ant
colonies [27], and enable a large group of robots to achieve collec-
tive efficiency that is not achieved by individual robots [29, 6, 12].
In robot swarms, each robot builds its knowledge of the world lo-
cally through its limited perception. Nevertheless, robots exploit di-
rect and indirect communication to increase their effectiveness as a
group by sharing information and make decisions conjointly. One
of the well-studied examples in robot swarms is foraging, which is
behavior commonly observed in social animals [4]. This task is in-
tensively studied in robot swarms due to its importance as a metaphor
for a large spectrum of robotic applications, including search and res-
cue, and resource exploitation (e.g., harvesting).

In foraging, the collective system searches for targets in an un-
known environment. Such exploration attempts are bound to con-
straints, such as energy expenditure, and thus need to be optimized in
order to ensure the survival of the swarm. Several studies have shown
that when foraging considers individuals, random searches can be
optimized depending on the distribution over targets [31, 23, 25, 38].
In these studies, random searches which follow Lévy walk patterns
have been found to be more efficient than alternatives, such as the
correlated random walk [3] and Brownian motion. In random walks,
the trajectory of an individual is described by a sequence of flights,
whose length and direction are chosen randomly. In the specific case
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of Lévy walks, the flight lengths � are sampled from a power-law
distribution

p(�) ∼ �−(α+1), (1)

where 0 < α < 2 is the Lévy parameter. In contrast to many
exponentially decaying distributions, such as the normal distribu-
tion, power-law distributions have tails which are fat. This results
in statistically relevant large values being sampled from the distri-
bution, corresponding to execution of long flights in the case of a
Lévy walk (for an extensive review, we refer the interested reader to
[37]). Hence, Lévy walks alternate long bouts of straight line motion
with Brownian-like motion, furthermore displaying scale-free behav-
ior typical of power-laws. Exactly these long flights are responsible
for the increase in the search efficiency needed for foraging animals
to survive.

In more detail, random searches with Lévy parameter α ≈ 1 opti-
mize the random search for an individual over a wide range of target
distributions, such as homogeneous, sparse distributions [31, 3], het-
erogeneous, patchy distributions [34, 36, 35] and scale-free, fractal-
like distributions [11]. Furthermore, Lévy walks are of interest due to
the wide range of motion behavior that they encompass. For α → 0,
we enter the ballistic regime where each individual only displays
straight line motion. For α ≥ 2, the resulting motion is Brownian
due to the power-law distribution converging to the normal distribu-
tion due to the central limit theorem. Intermediate values 0 < α < 2
show motion patterns in between both extremes, including an opti-
mal value at αopt ≈ 1 that interchanges long flight lengths with more
Brownian-like behavior.

While individual foraging can be optimized by having the forager
follow a Lévy walk, collective foraging is not optimized by simply
having each individual follow a Lévy walk, due to physical limita-
tions and finite size effects. In cases where the density of the swarm
is high, collisions between individuals become increasingly likely,
resulting in truncation of the current flight due to collision avoidance.
Hence, the collective system as a whole might not display the char-
acteristics typical for a Lévy flight, i.e. a power-law distribution over
flight lengths. To the best of our knowledge, it is currently unclear
if the resulting collective motion actually resembles a Lévy walk for
an increasing swarm density. The purpose of this study is therefore
twofold; (i) we first aim to understand the influence of the swarm
density on the collective behavior of the random search, and (ii) pro-
vide an engineered approach to increase the search efficiency of the
collective system. Specifically, we (i) analyze the distribution of the
collective flight lengths, for which we show that this does not fol-
low a Lévy characteristic power-law anymore above a certain (criti-
cal) swarm size. Afterwards, we (ii) develop a random walk strategy
for each individual which ensures power-law distributions for larger
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swarm sizes. We furthermore show that this strategy is able to in-
crease the search efficiency, in two specific target distributions, which
are common to observe in nature. This in turn benefits the collective
foraging task in robot swarms.

2 State of the art

Within swarm robotics, random walks are inherently fundamental to
a large number of applications. In tasks such as aggregation [26],
where individuals cluster to form coherent groups or to detect partic-
ular environmental cues [15], initial search for other members of the
swarm occurs using random walks. In collective exploration [32], for
example for mapping unknown environments [14], individual motion
determines the exploration efficiency. Furthermore, when communi-
cation is restricted within a small radius, such as in many collective
decision making scenarios [30, 18] and collective foraging [4, 10],
the local networks wherein information is transferred are highly de-
pendent on the individual motion [16]. Remarkably, while the ran-
dom walk constitutes a critical component of swarm robotics, re-
search into the random walk characteristics of the individuals and
the collective system is limited.

Moreover, while Lévy walks do appear as the optimal search strat-
egy in collective foraging in sparse environments [28, 5, 9], these
works do not consider large swarm sizes or high swarm densities.
However, in dense swarms, the aforementioned collisions between
individuals appear more frequent, resulting in truncation of the cur-
rent flight due to the inherent collision avoidance of the individuals.
Hence, this study aims to investigate the effect of the density on the
characteristics of the swarm’s collective random walk. We believe
that our work can benefit collective foraging in swarm robotics, es-
pecially when large swarms are considered.

3 Model description

In the following, we discuss three building blocks of the swarm be-
havior model; (i) the environment in which the individuals and tar-
gets are embedded, (ii) the individual exploration model that de-
scribes the searching behavior applied by each robot, and finally
(iii) the collective performance measures that we use to examine the
efficiency of the proposed exploration approaches, in addition to the
distribution of the emergent collective pattern.

3.1 Environment description

We study the flight length distribution by having a swarm of N robots
move around in a two-dimensional L × L environment, where the
boundaries are periodic. The periodic boundaries reflect an environ-
ment which is much larger than each individual robot and hence alle-
viates potential boundary effects, allowing us to study the influence
of swarm density in isolation.

For measuring the search efficiency of the different random walk
implementations, we distribute targets across the environment. In this
work, we assume that targets are revisitable, which is analogous to
non-destructive foraging in the literature (see e.g. [31]). Targets are
defined by circles, each with radius rt, and are detected by the robot
upon entering the circle. This is equivalent to the robots searching
for point-like targets with a detection radius of rt, similar to previ-
ous implementations in related works [3, 36]. However, in contrast
these works, we do not truncate the current flight whenever a tar-
get is detected. This difference is introduced because we empirically
found truncation at target detection to result in the cluttering of robots

close to the targets, which does not correspond to random searches
for targets. Studying behavioral differences at target detection is con-
sidered valid future research. In this study, we focus on two distinct
target distributions:

Homogeneous: To study sparse, but homogeneous, densities, we
uniformly distribute M targets over the environment. The number of
targets needs to be controlled, since we aim to discuss sparse target
distributions, for which we know the optimal Lévy parameter from
the literature.

Heterogeneous: Many real-world environments are actually not
homogeneous. Targets are often distributed in patches [19, 13, 33],
where it is often assumed that the target distribution is only ho-
mogeneous within the patches. There are no targets outside of the
patches. Whereas such environments vastly differ from the homoge-
neous case, it has been found that the optimality of the Lévy flight is
robust to the different environments [34]. To study patchy environ-
ments, we distribute Kp non-overlapping, circular patches of radius
R < L over the environment and uniformly distribute Mp targets
within each single patch.

3.2 Individual behavior

Next, we discuss the individual behavior of each robot within the
swarm. As a baseline model, we combine Lévy walk exploration be-
havior with collision avoidance, and define this as the individual Lévy
walk (ILW). This model is extended by enabling each robot to com-
municate relative positional information with its neighboring robots,
while executing its own Lévy walk. The latest model is referred to
as the collective Lévy walk (CLW). An additional extension, which
specifically targets the maximization of the collective search effi-
ciency is provided by adapting the Lévy parameter α, based on the
predicted density of targets—in cases where targets are distributed
heterogeneously. This model is referred to as the adaptive collective
Lévy walk (ACLW). We present the three different individual models
in the following sections. An overview of the (adaptive) collective
Lévy walk is given in algorithm 1.

3.2.1 Individual Lévy walk strategy

Similar to [28], the individual Lévy walk, which includes collision
avoidance, is executed by each individual. It is given as follows:

(a) each robot samples a flight length according to the power-law
distribution of equation 1, where α = αopt = 1. The power-law is
truncated to ensure at least a minimum step size of �min = db is
taken, in addition to an upper truncation of �max. Here, db is the
physical diameter of the robot. The lower truncation ensures that
steps smaller than the target detection radius rt = db are not taken
into account since those are meaningless in a search context. The
upper truncation is present to omit large flight lengths, which are un-
realistic in real-world settings (e.g., larger than the dimensions of the
environment). After sampling the flight length, the robot walks in a
straight line with fixed velocity v.

(b) after traversing the sampled distance, each robot rotates for a
number of steps, resulting in an angle θ sampled uniformly between
0 and 2π, that defines the direction of the next flight. Note that due
to physical limitations, robots need a finite time to rotate the sampled
angle. The number of steps needed to rotate such that the angle of
the next flight is equal to the uniformly sampled angle, is computed
using the differential steering model [20].

(c) if a robot collides with an object (e.g. another robot), it trun-
cates its motion in both (a) and (b) and instead resorts to the colli-
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Algorithm 1: (color online) Overview of the collective Lévy
walk. Purple pseudo-code implements the adaptive collective
Lévy walk, which is not executed when not considered (e.g.
in no patchy environments).

Initialize: Initialize robot swarm (see section 4)
while searching do

Lévy walk (see section 3.2.1) with α = 1 → sample �t
if adaptive collective Lévy walk then

if target detected then

Set α = 2 � (Brownian motion)
else

Decrease α according to eq. 5
end

end

if �t ≥ L0 then � long flight
Broadcast to local neighborhood

else � short flight
Gather information in local neighborhood n ∈ St

if ∃n ∈ St ∧ n /∈ St−1 then � potential field
Rotate with repulsive angle θrep � Eq. (4)

end

end

end

sion avoidance procedure. In that procedure, the robot avoids obsta-
cles based on its sensory information, resulting in either a soft turn
(slowly moving while turning) or a hard turn (rotate to the opposite
directions). The decision between soft and hard turns is based on the
free space available in the robot’s surroundings. Collision avoidance
ensures that each robot is at least a distance db from each other robot
within the swarm. Once the collision has been avoided, the robot re-
samples a flight length and an angle and follows the standard Lévy
walk as in (a) and (b).

3.2.2 Collective Lévy walk

As we shall see in Section 4, the ILW does not result in the de-
sired characteristics of the swarm exploration pattern. Specifically,
the swarm does not display flight length distributions described by
a power-law. In particular, the truncation of long flights suppresses
the heavy-tailedness of the collective distribution, while the trunca-
tion of short flights does not. Therefore, building upon previous work
[17], the purpose of the CLW is to steer robots that are currently not
in a long flight away from others which are, so that the truncation
probability of long flights due to physical collision decreases. We
can ensure this by enabling local communication between individual
robots. Local communication is defined through a communication
radius rc, which is larger than the detection radius rt of each robot.

For each individual, Lévy walks are executed as described above.
We define long flights as flight lengths larger than a threshold
� ≥ L0. Then, individuals which are currently following a long
flight trajectory broadcast their state, i.e. signaling they are perform-
ing a long flight, while additionally ignoring all incoming messages
from potential others. Their signal is exploited by other robots within
their communication range rc to derive the relative position of the
signal broadcasting robot �x = (x1, x2). Note that this is a relative
position, i.e. robots do not have access to any global system for local-
ization, hence preserving the definition of robot swarms. In contrast,
individuals which do not follow a long flight gather all incoming
messages at time t and compute a repulsive force �Frep originating

from an artificial potential field [28] as

�Frep =
1

n

n∑
j=1

�F (j) (2)

where F
(j)
i =

−x
(j)
i

d3j

(
1

dj
− 1

rc

)
, (3)

with n the number of neighbors, x
(j)
i the ith component of jth

neighboring robot, i = 1, 2 the dimensions of the system, and
dj = ||�x − �x(j)|| the distance between the robot and the jth neigh-
boring robot which is executing a long flight, i.e. �j ≥ L0. However,
since the motion of the robots is defined by moving fixed step sizes
(i.e. constant velocity) at each time increment, they cannot be steered
by exerting this repulsive force onto them. A full continuous descrip-
tion, that evolves robots according to a Langevin equation is consid-
ered future work. However, in cases of discretized time, we simply
rotate the robot with the angle of the repulsive force

θrep =
n∑

j=1

atan2

(
x
(j)
2

x
(j)
1

)
, (4)

where atan2(y/x) denotes the 2-argument arc tangent, which prop-
erly returns the angle of a vector in all four polar quadrants. The angle
of rotation will only be recomputed at t + 1 if the set of neighbors
contains a new neighbor not present at t. Formally, this means that
for a set St−1 that contains all neighbors at time t− 1, we have that
the repulsive angle will only be recomputed if there exists a neighbor
n ∈ St ∧ n /∈ St−1. As soon as the robot with the long flight moves
out of the communication range of these robots, they resort again to
their own Lévy walk procedure described above.

3.2.3 Adaptive collective Lévy walk

As mentioned above, the patchy target distribution agrees with a
large number of realistic environments. In such environments, the
patches are usually much sparser than the targets within a specific
patch. Therefore, in most works, the targets of a particular patch
are modeled with a high density and are distributed uniformly. For
such patchy target distributions, we propose an adaptive exploration
mechanism that extends the collective Lévy walk and improves the
swarm search efficiency. This is achieved by adapting the Lévy pa-
rameter α based on a local density estimation that is performed by
the individual robot. Namely, whenever a target is detected (hence
a patch is discovered), each robot can assume that another target is
nearby, i.e. the density of targets within the patch is relatively high.
Since Brownian motion is optimal in environments with dense tar-
get distributions [2, 35], we propose to change the parameter such
that α = 2 if targets are detected, and decreases to α = 1 if no tar-
gets have been detected for a specific time period. To ensure this, the
Lévy parameter α depends on a discrete time counter τ that incre-
ments by 1 each simulation tick wherein a robot has not detected a
target. Whenever a target is detected, the counter is reset (τ = 0).
We define the Lévy parameter of each robot as

α = max (1, erfc [β(τ − C)]) , (5)

where erfc(x) is the complementary error function and C = 50
an empirically chosen constant that determines slope (see figure
1a), that represents the time threshold within which the robot’s mo-
tion transfers from Brownian back to Lévy. Furthermore, we set
β = 0.04. When τ = 0, we have α = erfc(−2) = 2, and thus
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we execute Brownian motion. As τ increases, the walk parameter
decreases to α = 1 at τ = C. For cases where τ > C, the comple-
mentary error function is smaller that 1, hence we ensure 1 ≤ α ≤ 2
by the max function. Note that adapting α according to equation 5
can still be applied to environments wherein targets are not heteroge-
neously distributed, since each individual will return to execute Lévy
walks when far from any target.

3.3 Collective measures

After discussing the individual behavior of each robot, let us now dis-
cuss the global metrics emerging from the individual behaviors. Our
aim is to analyze both the collective trajectory in order to examine
whether the individual exploration behavior translates towards simi-
lar collective behavior, as well as the actual search efficiency of the
robot swarm.

3.3.1 Collective trajectory

We measure the distribution over flight lengths of the swarm as a
whole, in order to verify if it still obeys a power-law distribution.
Hence, we gather instances of flight lengths, which include both the
ones that were executed without truncation and those which were
truncated due to collisions. Since we gather flight lengths for each
individual and pool them to compute a single distribution, we call
this the collective distribution. The analysis of this distribution is ex-
ecuted according to Clauset et al. [8], which is implemented in the
Python package powerlaw [1].

The procedure is summarized as follows. First, we fit a power-
law to the collective distribution and measure the goodness of fit, i.e.
how well a power-law fits the data in comparison to a different dis-
tribution. Since distributions are by definition heavy-tailed if the tail
is not exponentially bounded, we conclude the distribution is not a
power-law if the exponential distribution is a better fit. To identify the
power-law as a better fit, we compute the log-likelihood ratio (LLR)
between a power-law and an exponential distribution. Hence, if the
sign of the LLR is positive, a power-law better fits the collective dis-
tribution and vice versa if the LLR is zero or negative. Additionally,
we compute a confidence p-value with a significance level of 0.05
[1], ascribing a confidence to the LLR. We compare the individual
Lévy walk with the collective Lévy walk for various swarm sizes N .

3.3.2 Collective search efficiency

The distribution over flight lengths and the target distribution both
affect the efficiency of searching for targets. Congruent with previ-
ous works on individual foragers, we define the search efficiency as
the total number of targets k found by the swarm within a certain
traveled distance. However, while previous works considered only a
single forager [31, 3], here we adopt a search efficiency more appro-
priate for swarms. Let us define the swarm search efficiency η as the
average search efficiency of each individual:

η =
1

N

N∑
i=1

mi

Li
, (6)

where Li is the total distance traveled, and mi the number of targets
detected, by each individual i within a swarm of size N . This def-
inition of the search efficiency indicates the frequency of target de-
tection by the swarm, i.e. how much distance needs to be traveled in
order to find a target. Since rotation generally takes less energy than

0 50 100

τ
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2

α

(a) (b)

Figure 1: (color online) (a) The adaptive Lévy parameter α in the
ACLW, as a function of the number of steps wherein no target is de-
tected τ . Specific parameters are C = 50 and β = 0.04. (b) Screen-
shot of the ARGoS setup used in the experiments. The blue robots
are the footbots, and the green circles represent the targets that can
be detected by the ground sensors of each robot.

walking, the traversed distance is the main indicator of efficiency for
the random search [31, 21]. The traveled distance of the swarm dif-
fers depending on the individual behavior, therefore all three distinct
methods carry different search efficiencies.

Additionally, we measure the fraction of targets detected by the
swarm, i.e. the number of distinct (unique) targets u found by the
swarm divided by the total number of targets distributed over the
environment,

ε =
u

M
. (7)

This allows us to study the dispersivity of the robot swarm, indicating
how well the swarm distributes its individuals over the environment
to detect as many unique targets as possible.

Lastly, in heterogeneous environments, we define the patch search
efficiency, which indicates how many targets have been detected
within each patch. We extend the definition given by Wosniack et
al. [36] to accommodate for multiple foragers. Hence, we define the
patch search efficiency ν as

ν =
1

L
kp
Kp

kp∑
k=1

mk

1 + |m̄−mk|
mk

, (8)

where L =
∑N

i=1 Li the total distance traveled by the swarm, kp the
total number of distinct patches visited by the swarm, Kp the total
number of patches, mk the number of targets detected in patch k and
m̄ the average number of targets detected per patch. Note that the
homogeneous environment can be recovered by having Mi = 1, ef-
fectively placing only a single target within each patch. In that case,
the patch search efficiency equals the search efficiency η. The de-
nominator of ν is minimized if all patches are equally explored, i.e.
if mk = m̄. While we do not directly study different patch qualities,
the patch search efficiency ν effectively measures the balancedness
of the target detection, where optimization of ν directly relates to
visiting a diverse set of patches.

4 Results and discussion

We simulate the individual behaviors described in the previous sec-
tion in an environment with periodic boundary conditions. Sim-
ulations are executed in the multi-robot, physics-based simulator
ARGoS [22] (see figure 1b). We increment simulations with steps
Δt = 0.1 s, and run experiments for T = 5 · 104 simulation
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Figure 2: Analysis of the distribution over flight lengths, for various swarm sizes N . Error bars represent one standard deviation. (a) The log-
likelihood ratio (LLR) between a heavy-tailed and an exponential distribution. (b) Corresponding p-value of the LLR, dotted line corresponds
to p = 0.05. (c) The estimated Lévy parameter α that best describes the fitted power-law.

ticks (1 s = 10 simulation ticks). All experiments are executed
using simulated footbot robots that have a target detection radius
rt = db = 17 cm. Each footbot robot is equipped with 24 prox-
imity sensors for obstacle avoidance, range-and-bearing actuators to
send messages of at most 10 bytes, range-and-bearing sensors to re-
ceive messages and ground sensors for target detection. Specifically,
the ground sensor detects the floor color, where targets are designed
such that the robot receives a 1 input when it is positioned over the
target. Note that communication using the range-and-bearing sensors
is only possible when the footbots are in each others line-of-sight.
The size of the robot’s communication range, within which informa-
tion is broadcast and received is set to rc = 135 cm. For the random
walk, we define a long flight threshold L0 by the number of simula-
tion ticks TL = 80, where flights that take more than TL simulation
ticks are considered long flights. Each robot moves with a fixed ve-
locity v = 0.17 m/s, equal to a single search radius per second. All
experiments are averaged over 30 seeds, unless mentioned otherwise.

Similar to real-life search tasks, robots are initially placed at a
deployment location (i.e. a nest), i.e. initializing the swarm by tightly
packing the robots in the center of the arena. As mentioned in Section
3.3, the findings of our experiments capture two collective measures.
The first measure investigates the diffusion pattern of the emergent
collective trajectory, whereas the second measure characterizes the
collective performance of the swarm in terms of its search efficiency.

4.1 Collective flight length distribution

First, we discuss the distribution over flight lengths in the two dis-
tinct walks, the ILW and the CLW. Since the main difference in the
underlying individual behavior between the CLW and the ACLW
is the Lévy parameter (i.e. fixed vs. adaptive), we only discuss the
ACLW in the context of a random search. For various swarm sizes
N , we measure the LLR and its corresponding p-value (see section
3.3.1) to indicate how well the distribution of the flight length is de-
scribed by a power-law. We select a significance level of the p-value
at p = 0.05. Random walks are analyzed in an L × L environment,
where L = 20 m. This is chosen to accommodate relatively dense
swarms, since low densities can result in heavy-tailed distributions
for flight lengths even without applying a specific collective Lévy
walk due to absence of collisions. Nevertheless, note that our results
do generalize towards large environments, however in such cases one
needs to study huge swarm sizes (N → 104), which requires much
longer computation times. Hence, we have chosen to demonstrate the

effectiveness of the CLW in smaller environments in order to move
computation times within feasible domains.

Results are shown in figure 2, and indicate that the CLW indeed
results in heavy-tailed distributions up to larger swarm sizes in com-
parison to the ILW. This is based on the ratio test that assesses the
goodness of fit of the two competing models: a power-law (see eq.
1) and an exponential distribution. When the LLR carries a positive
sign, and the coinciding p-value falls below the chosen significance
level (p < 0.05, as indicated by the dotted line in figure 2b), it im-
plies that a heavy-tailed distribution is more likely to describe the
data than the exponential distribution. Indeed, our results indicate
that larger swarm sizes, i.e. higher swarm densities, can still result in
heavy-tailed distributions for the flight lengths when using the CLW
instead of the ILW.

Specifically, for the ILW the p-value starts to exceed the chosen
significance level from about N = 500 individuals. Whereas, the
CLW preserves the heavy-tailed distribution of the flight lengths up
to the swarm size of approximately N = 700 individuals (see figures
2a and 2b). Consequently, we can state that the CLW better main-
tains a heavy-tailed collective trajectory for larger swarm sizes. This
reflects the desired increase in scalibility to execute Lévy walks in
environments that contain a higher number of individuals. Such scal-
ibility enhances the swarm exploration in large and unknown envi-
ronments through enabling more diffusive behavior and thus aid the
collective foraging process (see section 4.2).

Additionally, we have investigated the Lévy parameter α that best
fits the collective distribution over flight lengths in figure 2c. This
figure shows that collisions, which occur due to high swarm densi-
ties, result in more Brownian-like motion, contrasting with the more
optimal Lévy walks. This happens even though the underlying step
length sampling procedure used α = 1. As an effect, the disper-
sion characteristics of the swarm change to less diffusive behavior,
hindering potential Lévy walks by each individual. Furthermore, our
results show that Brownian motion (α ≥ 2) is achieved for much
smaller swarm sizes when the individual behavior is defined by the
ILW. Thus, the individual communication captured in the CLW en-
ables larger swarm sizes to display Lévy walks (α < 2). Hence, the
CLW expands the range of swarm sizes, over which a heavy-tailed
distribution fits the distribution over actual (truncated) step lengths.

It is worth noting that the fitted Lévy parameter α does not neces-
sarily reflect the actual value of the sampling procedure. Indeed, fol-
lowing the generalized central limit theorem, the actual flight lengths
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Figure 3: (color online) Search efficiency η for different swarm sizes
N , in homogeneous and heterogeneous environments. Error bars rep-
resent one standard deviation.

do not follow a power-law with α > 2, but rather appear to be
sampled from a normal distribution. Hence, values above the criti-
cal value α∗ = 2 indicate that flight lengths will not be sampled
from a power-law, as reflected in the LLR (see figure 2a). It can be
seen that the transition from positive ratios to zero or negative ratios
indeed coincides with swarm sizes for which holds that the best fit-
ted approximation of the Lévy parameter α > 2. Moreover, since the
p-value increases over the swarm size (see figure 2b), the ratio test
performed in this study is not enough to draw definite conclusions of
the distribution nature. In other words, whether the distribution of the
flight lengths is heavy-tailed, exponential or a different distribution
for which tests have not been computed remains unconfirmed.

4.2 Collective search efficiency

Next, we study all three distinct individual behaviors, the ILW, CLW
and ACLW, in both homo- and heterogeneous environments (see sec-
tion 3.1). Here, to ensure target sparsity, we set the environment size
to L = 1000rt. However, as previously noted in section 3.3.1, when
the environment size increases, the effectiveness of the proposed
methods CLW and ACLW decreases. Henceforth, we initialize the
swarm in a more realistic setting, which tightly packs the individuals
in the center of the environment, e.g. a nest. This implies that the ini-
tial swarm density is high around the environment center, and hence
the CLW (and thus the ACLW) methods are in place to increase the
dispersive behavior of the swarm.

In the homogeneous environments, M = 100 point-like targets
are uniformly distributed over the environment. Hence, the total tar-
get density

ρ =
Mπr2t
L2

= π · 10−4 ∼ 10−4 m−2,

is low such that the target distribution can be considered sparse. In the
heterogeneous case, we follow the argument of Nurzaman et al. [21],
and deploy Kp = 10 patches with radius R = 0.01L = 10rt to en-
sure target sparsity. However, within the patches, the density should
be high, thus within each single patch we distribute Mp = 100 tar-
gets, resulting in M = Kp ·Mp = 1000 targets to be found within
the patchy environment.

4.2.1 Target search efficiency

Let us discuss both the homo- and the heterogeneous environments
and the target search efficiency of the swarm (see section 4.2). We
measure the search efficiency η (see Eq. (6)) for varying swarm sizes,
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Figure 4: (color online) Fraction of targets detected ε for different
swarm sizes N , in homogeneous and heterogeneous environments.
Error bars represent one standard deviation.

which results in the trends shown in figure 3. The search efficiency
increases as the swarm size increases, with both the ACLW and the
CLW outperforming the ILW.

First, we discuss homogeneous environments. In these cases, the
CLW displays higher search efficiency than the ILW. This is the di-
rect result of the increase in diffusivity, due to the long flights be-
ing less rare since other robots move out of the way of the robot
currently in a long flight. Note that for small swarm sizes, the per-
formance difference between the three methods is almost negligible.
This is unsurprising, since long flight truncation due to collisions are
less likely when the swarm is relatively small. Hence, the search effi-
ciency η is comparable in those cases. We further note that ε, the frac-
tion of unique targets found, displays a very similar dependency on
the swarm size, regardless of which individual behavior is selected.
This means that even though the search efficiency is increased, the
total number of different targets detected is approximately the same,
with the CLW and the ACLW slightly outperforming the ILW (see
figure 4a). Thus, the highest contribution to the increase in search
efficiency stems from revisiting targets.

Finally, even in homogeneous environments, the ACLW shows
higher search efficiencies than the CLW, however note that the frac-
tion of unique targets found is the same. This can be explained, since
the proposed adaptation of the Lévy parameter α does not aid the
search for targets which are homogeneously distributed, since the as-
sumption that targets are distributed in patches does not hold. How-
ever, since α is changed to exhibit Brownian motion, re-visitation of
the target is much more likely in the ACLW than in the CLW, result-
ing in the notable difference in search efficiency (see figure 3a).

In heterogeneous environments, we again notice that the ACLW
outperforms the CLW, which in turn outperforms the ILW, but the
difference between the ACLW and the CLW and ILW is much more
pronounced. Indeed, the efficiency of the swarm to search for targets
distributed within the patches is greatly increased when the behav-
ior of each individual becomes adaptive. The result of the change
to more Brownian-like motion when targets are detected, is of great
benefit to each individual, and hence the search efficiency of the en-
tire swarm increases. First, this is visible in the swarm search ef-
ficiency η, which clearly indicates that the ACLW outperforms the
CLW due to the fact that once individuals detect a patch, they are
much more likely to stay within the patch (i.e. by adapting the Lévy
parameter α). Since the patches have high target density, this nat-
urally increases the number of targets found per distance traveled.
Second, the fraction of unique targets ε increases (see figure 4b),
also due to the fact that patches are more thoroughly searched by the
individuals that detect a patch.
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Figure 5: (color online) Patch search efficiency ν for different swarm
sizes N , within the heterogeneous environment with Kp = 10
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standard deviation.
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Figure 6: Number of foragers that have detected a certain amount of
targets, for individuals following the adaptive collective Lévy walk
(ACLW). Note the breakline, which indicates a change in scale, aid-
ing the visibility of the lower bars. For large swarm sizes, there exist
individuals which find a very large fraction of the total amount of
targets, while many individuals find a very small amount of targets,
or no target at all.

4.2.2 Patch search efficiency

Next, we investigate the patch search efficiency of the proposed
methods. Note that the patch search efficiency is only investigated in
heterogeneous environments. Results are depicted in figure 5, which
indicates a clear increase in efficiency over the ILW by both the CLW
and the ACLW. Due to the ACLW being specifically tailored to ex-
ploit the fact that targets are distributed within patches, the swarm
improves the patch search efficiency by visiting a large number of
unique patches. This indicates that, even though in our case each
patch carries the same type of target, our adaptive approach provides
the swarm with a higher patch diversity. In turn, when a more var-
ied set of detected targets is preferred, the ACLW provides a way to
enhance patch search efficiency as well as patch visitation diversity.

We do wish to note that the large variance of both the search ef-
ficiency η and the patch search efficiency ν (see figures 3b and 5)
does not disappear with increases in the number of different seeds
over which the averages are computed. Namely, each realization of
the search experiment consists of a few walkers detecting a large
amount of targets, whereas most of the swarm detects nothing. Fig-
ure 6 shows the number of individuals that found a certain number of
targets for the ACLW executing search tasks in the heterogeneous en-
vironment. As can be seen in figure 6, the distribution of the number
of targets detected is heavily skewed towards the lower range (0-100
targets). Note the presence of a breakline in the figures, introduced
to aid the visibility of the smaller bars. As the analysis reveals, in
large swarms there exist few individuals which detect a large amount
of targets compared to the vast majority detecting very little. This

is a direct result of the collision avoidance and the adaptive motion.
Specifically, whenever an individual enters a patch, it is very likely
to stay there for a large period of time due to it executing Brownian
motion. As a result, the patch cannot be easily visited by other indi-
viduals of the swarm due to collision avoidance resulting in repulsion
of the particular patch. Hence, the lucky few individuals that happen
to locate a patch earlier contribute largely to the (patch) search effi-
ciency, resulting in high variances even when a larger number differ-
ent seeds are considered. Additionally, this highlights the importance
of the adaptation of the Lévy parameters, since individuals that do lo-
cate a patch should exploit it as much as possible.

5 Conclusion

To the best of our knowledge, we are the first to have designed an
algorithm that improves the search efficiency in foraging tasks by in-
creasing the diffusive capabilities of a robot swarm for higher num-
bers of individuals. Enabling the swarm to follow heavy-tailed dis-
tributions through applying an artificial potential field method origi-
nating from local communication, results in a more significant num-
ber of large flight lengths being executed by the swarm. The pro-
posed collective Lévy walk outperforms individual sampling of Lévy
flight steps which are unreliable in dense swarms due to collision
avoidance procedures. Such avoidance behaviors truncate the large
flight lengths, which hampers the diffusive capabilities of the collec-
tive, illustrated by the step length distribution not being fitted by a
heavy-tailed distribution in favour of exponential distributions. This
behavior results in more Brownian-like motion, which is undesired
in favour of the Lévy walk. For large swarm sizes, the collective walk
outperforms naive individual behavior, while carrying similar perfor-
mance in small swarms.

Furthermore, we have implemented an adaptive procedure specif-
ically tailored to patchy environments. In these environments, our
approach enables each individual to adapt its Lévy parameter α ac-
cording to the assumption that targets are distributed densely within
patches. By changing the sampling of flight lengths from Lévy distri-
butions, which are heavy-tailed, to the normal distribution, which is
exponentially bounded, each individual is able to remain within the
patch for longer. This results in higher search efficiencies in hetero-
geneous environments, wherein targets are patchily distributed. Nev-
ertheless, the distribution of the detected targets over the swarm indi-
viduals is skewed, since few lucky individuals withhold the detected
patches for themselves, due to their Brownian motion and obstacle
avoidance. Furthermore, the adaptive behavior does not degrade per-
formance in homogeneous environments, indicating that the adaptive
behavior is preferred.

In addition to the identified future perspectives within this study,
we highlight a few potential follow-up studies. First, we have only
studied random walks wherein pure ballistic motion (α → 0) is
omitted. Even though in most cases where sparse target distributions
are considered, αopt = 1 emerges as the optimal Lévy parameter
[31, 3, 34], some definitions of search efficiency are optimized for
more ballistic Lévy walks with 0 < αopt < 1 [36]. Possibly, a mix-
ture of individuals with different Lévy parameter, or a more adap-
tive structure wherein more ballistic motion is included, can improve
search efficiencies over a wider range of environments.

One can also consider heterogeneous environments wherein each
patch carries a different relevance, i.e. different qualities for different
patches. The quality of patches can furthermore depend on current
demand of the swarm, i.e. patches can represent food or potential
nesting sites. Optimization of the quality, instead of target detection
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efficiency studied in this work, is currently an often overlooked as-
pect of random searches which deserves more attention.

Additionally, further study of the transition from the collective
flights following a power-law to an exponential distribution is of
great interest. While recent work has shown that power-laws are rare
in general [24, 7], it is of great interest to study cases wherein the
swarms can be designed such that the flight lengths exhibit power-
law characteristics. In this study, we have provided elementary re-
search into the critical density at which the transition occurs, how-
ever further study wherein actual critical components are extracted is
necessary for understanding the behavior around the critical density.

The proposed collective Lévy walks are of great benefit for col-
lective systems to search for sparsely distributed targets, and open up
future studies into collective Lévy walks for large-scale systems.
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[13] Sonia Kéfi, Max Rietkerk, Concepción L Alados, Yolanda Pueyo, Vasil-

ios P Papanastasis, Ahmed ElAich, and Peter C De Ruiter, ‘Spatial
vegetation patterns and imminent desertification in mediterranean arid
ecosystems’, Nature, 449(7159), 213, (2007).

[14] Miquel Kegeleirs, David Garzón Ramos, and Mauro Birattari, ‘Random
walk exploration for swarm mapping’, in Annual Conference Towards
Autonomous Robotic Systems, pp. 211–222. Springer, (2019).

[15] Yara Khaluf, ‘Edge detection in static and dynamic environments us-
ing robot swarms’, in 2017 IEEE 11th International Conference on
Self-Adaptive and Self-Organizing Systems (SASO), pp. 81–90. IEEE,
(2017).

[16] Yara Khaluf and Heiko Hamann, ‘Modulating interaction times in an
artificial society of robots’, in The 2018 Conference on Artificial Life:
A Hybrid of the European Conference on Artificial Life (ECAL) and

the International Conference on the Synthesis and Simulation of Living
Systems (ALIFE), pp. 372–379. MIT Press, (2019).

[17] Yara Khaluf, Stef Van Havermaet, and Pieter Simoens, ‘Collective Lévy
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ing behavior between Lévy and Brownian random search in a mobile
robot based on biological fluctuation’, in 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 1927–1934. IEEE,
(2010).

[22] Carlo Pinciroli, Vito Trianni, Rehan OGrady, Giovanni Pini, Arne
Brutschy, Manuele Brambilla, Nithin Mathews, Eliseo Ferrante, Gi-
anni Di Caro, Frederick Ducatelle, et al., ‘ARGoS: a modular, parallel,
multi-engine simulator for multi-robot systems’, Swarm intelligence,
6(4), 271–295, (2012).

[23] E. P. Raposo, Sergey V. Buldyrev, M. G. E. da Luz, M. C. Santos, H. Eu-
gene Stanley, and G. M. Viswanathan, ‘Dynamical robustness of lévy
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