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New Computational Models for the Choquet Integral

Hugo Martin and Patrice Perny'

Abstract. Multiobjective optimization is a central problem in a
wide range of contexts, such as multi-agent optimization and mul-
ticriteria decision support or decision under risk and uncertainty. The
presence of several objectives leads to multiple non-dominated solu-
tions and requires the use of a sophisticated decision model allowing
various attitudes towards preference aggregation. The Choquet Inte-
gral is one of the most expressive parameterized models introduced
in decision theory to scalarize performance vectors and support deci-
sion making. However, its use in optimization contexts raises compu-
tational issues. This paper proposes new computational models based
on mathematical programming to optimize the Choquet integral on
implicit sets. A new linearization of the Choquet integral exploit-
ing the vertices of the core of the convex capacity is proposed, com-
bined with a constraint generation algorithm. Then the computational
model is extended to the bipolar Choquet Integral to allow asymmet-
ric aggregation with respect to a specific reference point.

1 INTRODUCTION

Preference aggregation is one of the key subjects in decision theory
and one of the critical problems to deal with in the design of intelli-
gent systems for decision support. In particular, the aggregation prob-
lem appears in various decision situations involving multiple agents,
for example to define the social welfare from individual values in
a collective decision-making problem, or to derive a recommenda-
tion to a user from others’ preferences in collaborative recommender
systems. Preference aggregation is also a central problem in multicri-
teria analysis, to obtain decision models that are more decisive than
simple Pareto dominance. Aggregation operators are also used to re-
move uncertainty when the outcomes attached to possible decisions
are imperfectly known and depend on various possible scenarios.

One standard preference aggregation method widely used in mul-
tiobjective optimization is based on the use of a scalarizing function
transforming a vector of criterion values (reflecting the quality of
the alternatives with respect to various point of views) into an overall
utility or disutility [22, 19]. This allows the reformulation of any mul-
ticriteria choice problem as a single-objective optimization problem.
In particular, when the objective are expressed as linear functions
of decision variables, using a weighted sum in the aggregation step
leads to a linear optimization problem that is generally much eas-
ier to solve than a non-linear one. Moreover, the use of a weighted
combination provide some control on the profile of the solution by
playing with the weighting coefficients.

However linear scalarizing functions suffer from some descriptive
weaknesses, well-known in Decision Theory, that considerably re-
duce their interest for decision support. First, when optimizing on
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non-convex sets (e.g., in discrete optimization), none of the Pareto-
optimal solutions that are located in the interior of the convex hull
of the feasible area can be obtained by optimizing a weighted sum of
the objectives. Hence the simple fact of using a linear aggregator may
eliminate arbitrarily a significant part of the Pareto set from the set of
possible winners even before the weights were chosen. Moreover, the
use of a linear weighted means amounts to assuming that the notion
of weight attached to the objectives under consideration (represent-
ing agents, criteria or scenarios) is additive (i.e., the weight attached
to a subset of objectives is the sum of the weights of these objec-
tives). This assumption is not always relevant. In cooperative game
theory, it is well known that the strength of coalitions of agents is not
always representable by an additive measure. Similarly, in multicri-
teria problems, non-additive importance measures are widely used
to model positive or negative interactions among the criteria (e.g.,
Choquet capacities [8]). Finally, in decision under uncertainty, be-
liefs about possible events impacting the outcomes of the possible
acts are not always additive.

The above considerations have contributed to the development of
decision models based on non-linear aggregation functions allow-
ing positive and negative synergies among components, and are at
the origin of the introduction of Choquet integral in Decision The-
ory [20, 7]. The precise definition of the discrete Choquet integral
will be recalled later in the paper but roughly speaking, this is a
kind of sophisticated weighted averaging operation involving a non-
necessarily additive set function named capacity to define the weight
of any group of components to be aggregated [8]. The Choquet inte-
gral explicitly enables interactions among components (agents, crite-
ria, scenarios) and allows to model positive and negative synergies in
the aggregation process [12]. It includes various simpler models as
special cases such as weighted averages, ordered weighted averages
(OWA) [34], weigthed OWA [28] and Yaari’s model [33].

This ability to encompass a wide range of attitudes in the aggre-
gation of criteria has motivated the use of the Choquet integral for
decision aid in various application contexts involving multiple crite-
ria [11]. The Choquet integral has also been used in various domains
of artificial intelligence such as machine learning [23, 24], recom-
mender systems [1], multiagent decision making [4], information fu-
sion [29], multiobjective state-space search [5], preference elicitation
[2] and multiattribute evaluation [13]. However the high expressivity
of the model comes at a computational cost for optimization tasks.
The Choquet integral is a piecewise linear scalarizing functions in-
cluding a number of pieces that is exponential in the number argu-
ments. Substituting a linear aggregation by a Choquet aggregation
in multiobjective combinatorial optimization can easily transform an
easy problem to a NP-hard problem (see e.g., [6] for examples on
shortest paths and spanning tree problems).

Optimizing a Choquet integral is a challenging problem that was
the topic of several contributions in the last decade. A first lineariza-
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tion of the Choquet integral was proposed for convex capacities in
[15] with an application to fair optimization. Another approach ex-
ploiting a decomposition of the Choquet integral as the maximum of
integrals w.r.t. belief functions was proposed in [25]. Another decom-
position method for optimizing the Choquet integral over a convex
set with an application to resource allocation problems is proposed
in [26]. The problem of optimizing a Choquet integral with an impre-
cisely defined capacity is studied in [27]. Finally some compact mod-
els (i.e., featuring a polynomial number of variables and constraints)
for specific class of convex capacities have been proposed, e.g., k-
additive belief functions [15] or £ + 1-additive and k-monotone ca-
pacities with applications to transportation and knapsack problems
[14]. Now, we need to consider wider classes of capacities in Cho-
quet optimization.

Furthermore, bipolar extensions of various scalarizing functions
have been proposed in the literature to model asymmetric aggre-
gation with respect to a specific reference point e.g., for decision
making under risk [30], or for multicriteria decision making [9, 18].
However, none of these contributions addresses the computational
aspects. More recently, the problem of optimizing the bipolar Cho-
quet integral has been considered in [16, 17] but only for very specific
classes of capacities. We will address this problem for more general
capacities in the second part of the paper.

Although mutlicriteria optimization rarely considers problems in-
volving more than ten criteria, multiagent-optimization may involve
significantly larger sets of agents. Hence, we need scalable solutions
methods for the optimization of the Choquet integral. The aim of this
paper is to go one step further in this direction and to propose a new
approach for general convex capacities that is more scalable to large
sets of objectives. We will then extend the approach to the bipolar
Choquet Integral.

2 BACKGROUND ON THE CHOQUET
INTEGRAL, CAPACITIES AND THE CORE

Let N = {1,...,n} denotes the set of points of view under con-
sideration to assess the value of a solution in the decision problem.
Depending on the context, the elements of N may represent a set
of agents (collective decision-making), a set of criteria (multicriteria
decision making), or a set of scenarios (decision under uncertainty).
In the context of multiobjective optimization, the set /N may also be
seen as the set of objective functions to be optimized. In all cases, we
assume that any feasible solution is characterized by a performance
vector x = (xl, . ,:Cn) where z; represent the value of x w.r.t. the
ith point of view.

We recall now some formal definitions related to Choquet capaci-
ties and Choquet integrals.

Definition 1. A capacity on N is a set functionv : 2~ — [0, 1] such
that v(0) = 0 and for all A,B C N,AC B = v(A) <v(B). Itis
a normalized capacity if v(N) = 1.

Throughout the paper we will always assume that the capacities
under consideration are normalized. A capacity v is said to be con-
cave if v(AUB)+v(ANB) < v(A)+v(B) VA, B C N and convex
ifv(AUB)+v(ANB) > v(A)+v(B) VA, B C N. A capacity is
additive if v(AUB)4+v(ANB) = v(A)+v(B) VA, B C N. There-
fore, an additive capacity is completely characterized by a vector A
such as A; = v({i}), i = 1,...,nsince v(A) = >, ., Ai. Then
the Choquet integral can be defined from any capacity as follows:

Definition 2. For any vector ¢ = (z1,...,2n) € R", the Choquet
integral w.r.t. capacity v is a scalarizing function C,, : R" — R

defined by :
n

Co(z) =) [v(X@) — v(Xis1)] 20 M

i=1
=D [zo) — z6-n]v(Xa) @)

=1
where (.) is any permutation such that 1) < -0 < X, and
Xy = {x@y, .-+, @)} is the set of objectives where the perfor-
mance is at least as good as x;), for i = 1,...,n. Furthermore we

assume that @y =0 and X(n+1) =0

When the capacity is additive, the Choquet integral boils down
to the weighted sum. The Choquet integral allows to model a wide
range of behaviors as illustrated in the following example.

Example 1. Let us consider a bi-objective optimization problem
(N = {1,2}) with 5 different feasible solutions the performance
of which are given in the following table.

a b ¢ d e
r 9 7 4 2 1
xw I 2 3 7 9

Note that all solutions are Pareto-optimal (no solution is beaten on
both objectives by another solution). Let us assume that objective
1 is more important than objective 2 for the decision maker. Let us
consider a first capacity v1 defined by vi(1) = 0.7 and v1(2) = 0.3.
The optimal solution according to Cy, is a, with an overall value
given by Cy,(a) = [1 — 0.7 x 14+ 0.7 X 9 = 6.6. Since v1 is
additive C, returns exaclty the weighted sum of the performance
vector. Now it can easily be checked that the optimal solution would
not change if we set v1(1) = tand v1(2) = 1 —t forany t > 1/2.
Indeed, as long as we use an additive capacity, the Choquet integral
is actually a linear weighted mean and the only possible optima are
the extreme points of the convex hull of the feasible set, namely a and
e in the present case (and only a under the constraint that t > 1/2).

To overcome the limitation of linear aggregation criteria and to
obtain more balanced compromise solutions, the Choquet integral
must be used with a convex capacity. For example, let us consider
capacity vo defined by v2(1) = 0.3 and v2(2) = 0.2 which is not
additive but convex. The optimal solution according to the Choquet
integral is then b, with Cy,(b) = [1 — 0.3] x 2+ 0.3 x 7 = 3.5.
We observe that this solution proposes a better compromise between
both objectives. Now if we move a little further from additivity by
considering vs defined by vs(1) = 0.2 and vs(2) = 0.1 which is
also convex, the optimal solution according to the Choquet Integral
is then ¢, with Cy,(c) = [1 —0.3] x 24+ 0.3 x 9 = 3.2.

We see on the above example that the Choquet integral provides
a much better control on the profile of the solution than a linear cri-
terion due to the use of convex capacities. A similar statement could
be made with concave capacities in minimization problems. We also
observe that, in the previous example, convex capacities seem to fa-
vor solutions having a balanced profile. This is strongly related to the
notion of preference for interior points introduced below:

Definition 3. A scalarizing function f : R" — R satisfies prefer-
ence for interior points if and only if, for all vectors z*, . .., ™ such
that f(z*) = f(z?) = ... = f(z™), for all X\ € R such that
> Ai = 1 we have:

f(Z Niz') > f(2®), Yk e {1,...,m}
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Example 2. Let us consider two solutions a = (10,0) and b =
(0,10). If we use a scalarizing function satisfying the preference for
interior points, then, the point ¢ = “7” = (5,5) is preferred to a
and b since f(c) > f(a) and f(c) > f(b).

Preference for interior points favors solutions having a balanced
profile which is natural in a number of different contexts such as
multi-agent decision making (fairness), uncertainty (robustness), and
multicriteria analysis (compromise solutions). Interestingly, the con-
dition for a Choquet integral to satisfy the preference for interior
points is known due to a result established in the context of porto-
folio optimization [3] (where preference for interior points is named
preference for diversification). The result can be reformulated in our
context as follows:

Property 1. The Choquet Integral C,, satisfies preference for inte-
rior points if and only if v is convex.

In several optimization contexts, it is useful to consider the set of
additive measures dominating a given capacity. This set is named the
core and is defined as follows:

Definition 4. The core of a capacity v is the set of all additive ca-
pacities dominating v, more formally we have:

core(v) = {\: 2~ — [0,1] additive | A(S) > v(S) VS C N}

It is well known that a convex capacity has a non empty core [21].
Moreover we have the following useful property [20]:

Property 2. Ifv is convex we have C,(x) = min X-z

AEcore(v)

This property has led to a first mathematical program proposed in
[15] for Choquet optimization. Let us recall it briefly hereafter. Using
Property 2 we know that for any fixed z € R", C\,(z) is the optimal
value of the following mathematical program:

min Y Axz;
i=1

(P1) icA
rzeX
Ni>0,Vi=1,..,n

Hence, in order to maximize a Choquet Integral on a set of vectors
X, one can consider the dual of PP; and define x as a variable of the
problem subject to x € X. This leads to the following mathematical
program [15]:

max Y, v(A) X da
ACN

(’PQ) { Ag]%::ieA
reX

da>0,YACN

Problem P has 2" + n continuous variables and n constraints.
It can be specialized to solve any combinatorial optimization pro-
gram, by replacing the constraint x € X by the ones specifying the
multi-objective problem. For example, to solve a multiagent knap-
sack problem with m items, we consider the binary variables y;, for
all j = 1,...,m; y; takes value 1 if item j is chosen and O oth-
erwise. Then variables x; are linked to y; by linear constraints of
type x; = Z;’;l Y;jUsj, with u the n X m matrix giving the util-
ities of the items for all agents. We also add the budget constraint
Z;’;l w;y; < K, w; denoting the weight of item j and K being
the maximal admissible weight for the knapsack. We will come back
to this problem in Section 4 dedicated to numerical tests.

da<zi Vi=1,.,n

3 A NEWLP FORMULATION OF CHOQUET
OPTIMIZATION

In this section we are going to introduce an alternative approach for
Choquet optimization, also based on Property 2. Let us first recall
the polyhedral properties of the core of convex capacities (for more
details see [8]). On the lattice (2%, C), a maximal chain is defined
as a sequence of subsets ) = Ag C A; C .. C A, = N, (therefore
we have |A;41\A;| = 1foralli = 1,...,n — 1). Let II be the
set of permutation on NV, these permutations correspond bijectively
to maximal chains in the lattice (2%, C). Indeed, we associate to
a permutation 7 a maximal chain defined by A = () and A] =
{m(1),...,m(d)} fori = 1,...,n. We can now associate to every
m € II and any given capacity v the marginal vector A™" € R",
defined by

Aty = v(A7) —v(Ai), i=1,...,n 3)
Let us illustrate these properties on a short example.

Example 3. Let us consider the lattice (2%} C) and the convex
capacity v defined as follows:

(1 {2y {3p {12} {13} {23} {1,2,3}
v 02 03 04 06 07 08 ]

Let 7 be the permutation defined by m(1) = 2, m(2) = land n(3) =
3. The maximal chain associated to 7 corresponds to the sequence
0,{2},{1,2},{1,2, 3}. Therefore, the marginal vector associated to
7 and v is defined by:

Ay = A =v({2}) —v(®) =03

Ay = A1 =v({1,2}) —v({2}) = 0.3

AT = AT =0({1,2,3}) —v({1,2}) = 0.4.

We define the convex hull of the marginal vectors, often known as
the Weber set, such as:

Web(v) = conv(A\™", 7 € TI) “)

The following theorem [31, 8] asserts that, for any capacity v, the
convex hull of marginal vectors always contains the core:

Theorem 1. For any capacity v, core(v) C Web(v)

The next theorem (see [8] Chapter 3) asserts that the converse
holds for convex capacities and details the structure of the extreme
points of such capacities.

Theorem 2. The following statements are equivalent:

1. v is a convex capacity

2. forallm € II, \™? € core(v)
3. core(v) = Web(v)

4. ext(core(v)) = {\™",Vr € II}

with ext the set of extreme points for a given polyhedron.

Using Theorem 2 and Property 2, we can propose a new formula-
tion of the Choquet Integral.

Proposition 1. Let v be a convex capacity and x € R™ a solution
vector, the Choquet Integral of x is defined as follows:

Cy(z) =min \™" -
mell
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Proof. According to Theorem 2, the core of v is a non empty convex

polyhedron, whose extreme points are the vectors A™" associated to

permutations w € II and the capacity v. Thus, it always exists an

extreme point such that \™" -z = min Az = Cy(x). O
A€core(v)

This proposition shows that, when v is convex, function C,, (z) is
the minimum of a finite set of linear functions of the form \™" - z,
m € II. This suggest a new linearization of the Choquet integral for
convex capacities:

max Yy

y<A.z Vrell
(Pa) {xEX

This linear problem has n + 1 continuous variables and n! con-
straints, beside the constraints necessary to define the feasible space
(z € X). It can be specialized to solve any combinatorial optimiza-
tion program, by replacing x € X by the relevant constraints. The
number of variables remains polynomial contrary to problem P2 but
there is still a problem of scalability since the number of constraints
grows exponentially with n. This formulation can be used in com-
binatorial multicriteria optimization where the number of criteria is
usually limited but would not be sufficient for multiagent optimiza-
tion where the number of agents can be more important. In order to
overcome the problem we introduced below a constraint generation
method for this problem.

The principle of constraint generation is as follows: instead of con-
sidering from the begining the entire set of constraint y < A™" .
x for all w € II, we only insert one of these constraints, chosen ran-
domly and we launch the optimization. Once an optimal solution to
the restricted problem is found, we have to check whether the omit-
ted constraints are satisfied by the current solutions. If it happens to
be the case, we have found the optimal solution. Otherwise we must
identify one of the violated constraints and insert it in the current
optimization problem. In order to implement this principle we first
establish the following proposition:

Proposition 2. For any fixed vector x € R", and any capacity v,
the marginal vector A associated 1o a permutation [.] sorting the
elements of x in decreasing order (x[y) > ... > T[y]) is such that
Co(z) = A . g,

Proof. We remind that X ;) is the set of objectives whose perfor-
mance level is greater than or equal to z(;y and that AT is the 4-th set
in the maximal chains corresponding to a given permutation m € II.
We have:

n

Co(x) =Y (0(X@m) = v(Xii41) 2 ®)

i=1

= Z(U(X(n+1—i)) - U(X(n—i+))) T(n41—1i) (6)
i=1

Now, the chain associated to permutation [.] is such that A7 =
Xn+1—i. Hence we have )\HU = v(X(nt1-i)) — V(X(n—s)) from
Equation (3). Moreover x[;; = Z(n4+1—4). Hence, from Equation (6)
we have Cy(z) = Y-, /\H’”

a1 T = )\[']’v - Z.

O

This result is used as follows. At any step of the constraint gener-
ation process, when an optimal solution x of the current linear pro-
gramm is found, with objective value y, we consider a permutation

[.] reordering the components of x by decreasing order and the corre-
sponding marginal vector ALY Then we check whether y < A g
(this is the more demanding constraint due to Proposition 2). If this
constraint is violated, we add it to the current model for the next step
and we relaunch the optimization process. If the constraint is satis-
fied, the optimization process is over and the following proposition
ensures that solution z is feasible, and therefore optimal.

Proposition 3. The constraint generation algorithm described above
yields an optimal solution of Ps.

Proof. Let x be the optimal solution of the linear programm solved
at the final iteration, with objective value y. Since the algorithm ter-
minates at this step we have y < A1 .z = C,(z) <A™ . 2
for all = € II due to Proposition 1. Hence all constraints of P3 are
satisfied. This establishes the feasibility of = for P3 and therefore its
optimality. O

Note that the determination of a violated constraint (if any) is per-
formed in O(nlogn) at every step. It is indeed sufficient to sort cur-
rent vector z to determine [.].

4 COMPUTATIONAL TESTS FOR THE
CHOQUET INTEGRAL

We implemented the presented models using the Gurobi 8.1.1 solver
on a computer with 12GB of RAM and an Intel(R) Core(TM) i7 CPU
950 @ 3.07GHz processor. These models were tested on randomly
generated instances of the Choquet-knapsack problem that is defined
by the following mathematical program:

max Cy(T1,...,Tn)

st {m:z;-n:luz'jyj,izl,...,n
.t. n
Y wiy; S K

xT; € R, Y; € {0, 1}

where u;; € [1,10] denotes the utility of item j w.r.t. criterion ¢
(or agent 7) and w; € [1,100] denotes the weight of item j, and
K =" w;/2. We generated instances of different sizes, with m
the number of items varying from 100 to 1000 and n the number of
criteria (or agents) varying from 5 to for 500. The convex capacities
v used in the tests are randomly drawn. For every size, we solved
20 instances of the Choquet optimal knapsack problem of the same
size and the average computation times are given in the tables given
below (a time limit set to 7200 seconds for each instance was used
and the average time is computed only when all the 20 instances are
solved within the time constraint).

Table 1. Times (s) obtained by model P2 for the Choquet-knapsack

m n=5 n=7 n=10 n=15 n=17
100 0.03 0.04 0.13 4.11 14.72
250 0.1 0.09 0.23 4.55 22.4

500 0.1 0.2 0.64 26.33 106.57
750 058 092 091 2595  362.55
1000 132 226 14.14 263.28  395.3

We observe that P is able to solve instances with a large number
of items. Nonetheless, the exponential number of variables limits the
model to a restrained number of objectives, which can be problematic
in several contexts, such as multi-agent optimization for example.
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Table 2. Times (s) obtained by model P3, with the constraint generation
algorithm, for the Choquet-knapsack

m n=25 1n=50 n=100 n=250 n=500
100 0.14 0.24 0.17 342 26.76
250 0.44 1.01 1.58 4.11 47.96
500 2.34 2.56 9.73 11.3 12.90
750 3.85 5.3 22.82 36.83 41.65
1000  6.19 9.74 50.45 111.24  57.11

We did not report the results beyond n = 17 because some instances
were not solved within the time constraint.

The model P3 used with the constraint generation algorithm is
much faster and can solve instances with large number of items and
objectives within the time constraint, as we can see in the above ta-
ble. Another measure that can be useful to assess the potential of
the proposed approach is the average number of constraints inserted
during the constraint generation process to reach the optimum. The
results observed in our experiments are given in the following table:

Table 3. Number of constraints added by the constraint generation
algorithm in model P3 for the Choquet-knapsack

m n=25 n=50 n=100 n=250 n=500
100 9.3 9.25 15.35 91.15 165.1
250 19.3 17.6 21.15 82.7 236.8
500 37.15 3445 35.1 51.35 75.05
750 4285 2935 2485 32.35 19.9

1000  55.65  51.1 48.5 23.5 24.0

In our tests, the number of added constraints remains small what-
ever the size of the instance. For example, when n = 500, the total
number of constraints is of order 3'*° and our tests show that we only
have to insert a few hundreds of constraints to find the optimal solu-
tion. Hence the implementation of a constraint generation algorithm
on formulation Ps appears to be particularly efficient. It significantly
improves the performance obtained from model Ps.

It is worth noting that model P> could be solved more efficiently
by using column generation techniques as suggested in [14]. How-
ever, the authors of this suggestion remark that the column genera-
tion approach for P> tends to become impracticable beyond n = 80.
They also remark that possible integrality requirements are difficult
to handle within such an approach. Hence, it is unlikely that this
approach could provide better results than those obtained with our
approach for multiobjective combinatorial optimization problems.
More compact models are proposed in the same paper but they con-
cern restricted classes of convex capacities. The advantage of our
approach is that it applies to any convex capacity. This class is of
special interest because, as recalled earlier, this is by using convex
capacity that we can promote balanced solutions when optimizing a
Choquet integral (preference of interior points).

S THE CASE OF THE BIPOLAR CHOQUET
INTEGRAL

In this Section, we extend our computational model to bipolar Cho-
quet integrals motivated by the following statement. In several con-
texts, decision makers may refer to a specific point in the valuation
scale to assess the performance under a specific objective. These
scales are known as bipolar scales, with O defined as the reference
point. This behavior cannot be represented by the standard Choquet
Integral with preferences modeled by a capacity, as shown in the fol-
lowing example:

Example 4. A decision maker ranks the alternatives of X =
{a,b,c,d} in the order a = b > ¢ = d. Knowing that the per-
formance of the alternative on two criteria are given in the table
given below let us check if this preference order is representable by
a discrete Choquet integral.

a b c d
rx 3 5 -5 -7
X2 9 5 -5 -1

Note that such preferences have their internal consistency that can be
explicited as follows: when performances are positive, the decision
maker prefers the solution maximizing the sum of objectives. How-
ever, when performances are negative, he adopts a more cautious
behavior towards inequalities and favors a solution having a more
balanced profile. A suitable representation of the preference order by
the Choquet integral should satisfy: © > y < Cy(z) > Cy(y) for
allz,y € X.

We have a > b, therefore: We have ¢ > d, therefore:

3+6v({2})>5
< 6v({2}) > 2
< v({2}) > 2/6

—7+6v({2}) < -5
< 6v({2}) < 2
< v({2}) <2/6

We obtain a contradiction showing that no capacity exists to rep-
resent the prescribed ranking. Therefore, function C,, cannot model
these preferences.

To overcome this limitation, a bipolar extension of Choquet Inte-
gral has been proposed in [10].

Definition 5. Let v € R" and u and v two capacities. The bipolar
extension of the Choquet (biChoquet integral for short) is defined as
follows:
Cuv(z) = Cu(zh) — Cu(z) @)
+

where x = max(z,0) and v~ = max(—z,0).

We present below a set of necessary conditions for a biChoquet in-
tegral to satisfy this property. Let us first recall a well known property
of Choquet integrals [8] :

Property 3. For v a given capacity, let ¥ be its dual capacity defined
by 9(A) = 1 — v(N\A) for all A C N. We have the following
equality: Cy,(z) = —Cy(—x)

Proposition 4. If the biChoquet Integral satisfies preference for in-
terior points, then u is convex and v is concave.

Proof. When z € RY} then Cy,»(z) = Cu(x) — Cy(0) = Cu(x).
Thus, v must be convex to model preference for interior points on
positive vectors. When z € R” then Cy,»(z) = Cy(0)—Cy(—z) =
—Cy(—2z) = Cs(z), with 7 is the dual capacity of v. Thus, & must
be convex to model preference for interior points on negative vectors.
It is well known that the dual of a convex capacity is concave. Thus,
v must be concave to model preference for interior points. O

As discussed earlier, preference for interior points is a desirable
property in many decision contexts because it favors balanced so-
lution vectors. In the sequel, we will therefore use a convex v and
a concave v which are necessary to satisfy this property. As con-
cave capacities appear in the previous result, we now make explicit a
counterpart of Property 2 for concave capacities.
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Proposition 5. Ifv is concave, then C,(x) = max M-z

AEcore(v)
Proof. According to Property 3 we have: Cy(z) = —Cy(—x) =
— min A(—z)= max \-z. O
A€Ecore(v) A€Ecore(v)

Hence we obtain the following formulation of a biChoquet integral :

Proposition 6. Let x € R". If u is convex and v is concave then we
have:

AzT— max Az~

A€Ecore(v)

Cu v - i

V@ =
Proof. The result directly derives from Propositions 2 and 5 and Def-
inition 5. O

Proposition 6 allows to extend linear program Pz to optimize the
bipolar Choquet Integral. From Proposition 5 the value of C, () can
indeed be obtained, for any fixed outcome vector z € R", as the
optimal value of the following linear program, when v is concave:

max i i
i=1
> Ax<v(A) ACN
®y { X
ANi>0i=1,..,n

Program P4 derives from Proposition 5 after observing that the
constraints for all B C N,> ..z \; > ©(B) are equivalent to
VA C N,> cadi < v(A) (by setting A = N\ B). Now, if we
consider x as a variable vector and we pass to the dual, then we
obtain the following mathematical program to linearize the bipolar
Choquet Integral, provided that u is convex and v is concave:

max Y. u(A) xdi— 3 v(A) xd,

ACN ACN
>oodh <zt i=1,...,n
ACNu€eA
dy > x; i=1,...,n
ACN:i€A
(Ps) a:z':xj—mi_ t=1,...,n
0<zf <pixM i=1,...,n
0<z;, <(1—-p)xM i=1,...,n
reX

;x5 ,d,d; >0i=1,.,n, VACN
pi €{0,1}i=1,...,n

Program Ps has 27*1 4 3p constraints, 3n + 1 continuous vari-
ables and n binary variables. Variables p;, ¢« = 1,...,n are used
to decide whether z; is positive or not. The M is used as usual to
model disjunctive constraints. Here also, Ps can be specialized to
solve any combinatorial optimization program, by replacing the con-
straint z € X by the ones defining the set of feasible solutions.

Thus, we obtained a first linear formulation for biChoquet opti-
mization under the assumption that u is convex and v is concave.
This formulation generalizes the linearization proposed for Cumula-
tive Prospect Theory in [17]. Of course, the formulation is not com-
pact due to the number of variables involved and this formulation is
only convenient for small values of n (as already observed for P2).
For this reason, the remaining part of this section is devoted to the
extension of the approach based on P3 to the bipolar case.

Let us first remark that using Property 3 we obtain the following
reformulation of the biChoquet integral:

Cup(z) = Cu(z™) + Cy(—27) (®)

where both capacities v and ¥ are convex to satisfy preference for
interior points. Hence we get the following proposition:

Proposition 7. Let x € R™ and let u and v be two capacities re-
spectively convex and concave. We have:

Cu,»(z) = min ()\W’“ R LI CE_) )

mwell

Proof. Due to Proposition 1 we have:

Cuw(z) = mierl ATt g mierl AP (—27)
S TE
< . U -+ O (T
< min (A "+ A (—z7))
= min (/\”’u A UL x_)
well

Now we establish the reverse inequality. Let m. a permutation
such that Cy(z7) = A™* . 2" and 7 a permutation such that
Cy(—z7) = AT (—=z7). Now, let us consider any permutation
7. of (1,...,n) suchthat 7. (i) = 7. (i) if z; > 0and 7. (i) = 7. (4)
if z; < 0, 7. (%) being chosen arbitrarily for all ¢ such that z; = 0 to
complete the permutation. By construction, we have:

Cupw(z) Cu(z™) 4+ Cy(—z7) dueto (8)
= AUt AT (<)
AT gt o AT T
> min (A" cat = AT )
which completes the proof. O

We propose then the following mixed integer program for biCho-
quet optimization under the assumption that v and v are respectively
convex and concave.

max y
y <A™ ogt ATV ogT Vrell
i =z —a] Vie N
(Ps) 0<zf<pixM VieN
0<z;, <(1-pi))xM VYieN
reX

pi €{0,1}, Vie N

Problem Pgs has n! + 3n constraints, 3n + 1 continuous variables
and n binary variables. Here also, variables p;, ¢ = 1, ..., n are used
to decide whether x; is positive or not and M is used to model dis-
junctive constraints. Formulation Pg can also be specialized to solve
any combinatorial optimization program, by replacing the constraint
z € X by the relevant feasibility constraints. Similarly to P2, prob-
lem Ps is not compact due to the exponential number of constraints.
Thus, we propose a constraint generation method for this problem.
To this end, we first establish the following proposition:

Proposition 8. For any fixed vector x € R", and any capacity v,
the marginal vector N associated to a permutation [.]sorting the
elements of x in decreasing order (x[y) > ... > T[y]) is such that
Cuw(x) = NI gt LT g

Proof. We have C o (z) = Cyu(zt) + Co(—z~) = AUzt 4
A (—27) by Proposition 2. Hence Cl, o () = Alb gt —AH7g—
O

This proposition allows to extend the constraint generation ap-
proach introduced in Section 3 to the case of biChoquet integrals.
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We start with a relaxed version of problem Pg including a single
constraint limitating y using a permutation 7 arbitrary chosen. Then,
at any step of the constraint generation process, when an optimal so-
lution z of the current linear program is found, with objective value
y, we determine a permutation [.] reordering the components of z by
decreasing order and the corresponding marginal vectors AL and
ALL7 Then we check whether y < Alb% .zt — \[12. 2= If this con-
straint is violated, we add it to the current model for the next step and
we relaunch the optimization process. If the constraint is satisfied,
is feasible, then we can stop as proved in the following proposition.

Proposition 9. The constraint generation algorithm described above
yields an optimal solution of Pe.

Proof. Let x be the optimal solution of the linear program solved at
the final iteration, with objective value y. Since the algorithm termi-
nates at this step we have y < AL .zt — AP 2= =0, () <
AT% .zt 4 AP . (—z7) for all = € II due to Proposition 7. Hence
all constraints of Pg are satisfied. This establishes the feasibility of
for Ps and therefore its optimality. O

6 COMPUTATIONAL TESTS FOR THE
BICHOQUET INTEGRAL

We implemented program Ps and Ps (the latter using the proposed
constraint generation method) on the biChoquet optimal Knapsack
problem. This is a variant of the problem introduced in Section 4
where the objective function is replaced by max Cy (21, ..., Tn).
The experimental environment is the same as the one presented in
Section 4. Here are the computation times obtained with Ps:

Table 4. Times (s) obtained by MIP P for the BiChoquet-knapsack

m n=3 n=5 n="7
100 0.03 0.21 0.67
500 0.05 1.31 45.60
750 0.08 0.87 125.72

1000 0.13 328 150.48

We observe that the model Ps is able to solve instances with
a large number of items. Nonetheless, the number of objectives
has to remain small, due to the exponential number of variables
and the adds of binary variables to manage the sign of variables
xi,© = 1,...,n. The optimization of the BiChoquet integral seems
more challenging than the optimization of a simple Choquet integral.
We now give the times obtained with Ps and constraint generation.

Table 5. Times (s) obtained by Pg, with a constraint generation algorithm,
for the BiChoquet-knapsack

m n=3 n=5 n=7 n=10 n=15

100 0.02 0.06 0.13 0.17 1.19

250 0.04 0.12 047 1.88 19.09
500 0.06 037 1.87 29.01 785.46
750 0.06 0.51 270 114.08 -
1000 0.1 0.57 4.52 344 -

Model Ps with the constraint generation algorithm solves in-
stances with larger number of objects and objectives compared to
‘Ps. Moreover, instances of the same size are solved up to 35 times
faster. Let us have a look at the average number of constraints in-
serted during the optimization process.

Table 6. Number of constraints inserted by the constraint generation
algorithm in Pg for the BiChoquet-knapsack
m n=3 n=5 n=7 n=10 n=15

100 33 935 16.1 30 84.05

250  3.05 775 19.5 47.8 112.95

500 32 875 1675 5091 154.2

750 3.5 835 19.15 52.05 -

1000 3.15 835 16.15 50.45 -

The number of added constraints remains small independently of
the size of the instance. For example, for n = 10 we only add about
4% of constraints to find the optimal solution.

7 CONCLUSION

We have proposed new computational models combining decision
theory and linear programming to find compromise solutions in com-
binatorial multiobjective problems. We first used the Choquet Inte-
gral, well-known for its expressivity, with a convex capacity to pro-
mote solutions having a balanced performance profile (preference for
interior points). The first model we proposed for the Choquet in-
tegral (Section 3) has an exponential number of constraints but we
have shown that this weakness can be partly overcomed using a con-
straint generation algorithm taylored to the Choquet integral. We have
implemented this model on various instances of the multi-objective
knapsack problem. This leads to solve a mixed-integer linear pro-
gram that appears to be efficient in terms of computation time (and
number of added constraints) on instances of large size.

Then, we considered the bipolar extension of the Choquet Integral
with respect to a convex capacity u and a concave capacity v. These
conditions are proved to be necessary to satisfy the so-called prefer-
ence for interior points. We proposed a first mixed integer program
to optimize a bipolar Choquet integral in combinatorial multiobjec-
tive problems. As in the previous case, we used a constraint genera-
tion algorithm taylored to the optimization of a biChoquet integral.
We also tested this model on various instances of the multiobjective
knapsack problem. The computation times are still good but signifi-
cantly higher than for a standard Choquet integral. It is worth noting
that all computational models proposed in the paper are also directly
applicable to mutliobjective optimization on continuous domains.

Let us finally mention some possible directions for further re-
search. A dual approach and a useful complement to the material
proposed here would be to design an efficient column generation al-
gorithm for solving P for convex capacities. However the first steps
made in this direction (see e.g., [14]) have shown some difficulties
that have been discussed at the end of Section 4. Besides, a natural
extension of our results would be to propose computational models
for Choquet maximization with respect to a non-convex capacity. Al-
though preference for interior points would not be longer guaranteed,
such instances of the Choquet model are worth considering because
they may correspond to sophisticated decision behaviors that could
be observed in practice. Finally, another natural extension of our
work concerns the bipolar case. It is worth extending the proposed
computational model to general biChoquet integrals with respect to
a bicapacity w(X,Y") not necessarily decomposable under the form
u(X) —v(Y"). This would certainly be the opportunity to exploit the
notion of core of a bicapacity [32].
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