
Parameterized Complexity of Manipulating Sequential
Allocation

Michele Flammini and Hugo Gilbert 1

Abstract. The sequential allocation protocol is a simple and popu-
lar mechanism to allocate indivisible goods, in which the agents take
turns to pick the items according to a predefined sequence. While
this protocol is not strategy-proof, it has been recently shown that
finding a successful manipulation for an agent is an NP-hard prob-
lem [1]. Conversely, it is also known that finding an optimal manip-
ulation can be solved in polynomial time in a few cases: if there are
only two agents or if the manipulator has a binary or a lexicographic
utility function. In this work, we take a parameterized approach to
provide several new complexity results on this manipulation prob-
lem. More precisely, we give a complete picture of its parameterized
complexity w.r.t. the following three parameters: the number n of
agents, the number μ(a1) of times the manipulator a1 picks in the
picking sequence, and the maximum range rgmax of an item. This
third parameter is a correlation measure on the preference rankings
of the agents. In particular, we provide XP algorithms for parame-
ters n and μ(a1), and we show that the problem is fixed-parameter
tractable w.r.t. rgmax and n+μ(a1). Interestingly enough, we show
that w.r.t. the single parameters n and μ(a1) it is W[1]-hard.

1 INTRODUCTION

Allocating resources to a set of agents in an efficient and fair man-
ner is one of the most fundamental problems in computational so-
cial choice. One challenging case is the allocation of indivisible
items [5, 8, 17], e.g., allocating players to teams. To address this
problem, the sequential allocation mechanism has lately received in-
creasing attention in the AI literature [3, 4, 6, 14, 15, 16, 20]. This
mechanism works as follows: at each time step, an agent, selected ac-
cording to a predefined sequence, is allowed to pick one item among
the remaining ones. Such a protocol has many desirable qualities: it is
simple, it can be run both in a centralized and in a decentralized way,
and agents do not have to submit cardinal utilities. For these reasons,
sequential allocation is used in several real life applications, as for
instance by several professional sports associations [9] to organize
their draft systems (e.g., the annual draft of the National Basketball
Association in the US), and by the Harvard Business School to allo-
cate courses to students [10].

Unfortunately, it is well known that the sequential allocation pro-
tocol is not strategy-proof. Stated otherwise, an agent can obtain a
better allocation by not obeying her preferences [6]. Knowing that
this protocol is manipulable can make its outcome less legitimate: an
agent which is unhappy with the result could have the feeling that
this is because someone has cheated by manipulating the allocation
process. Put in another way, the agents confidence or appreciation of
the allocation system decreases if they know that someone can cheat.

1 Gran Sasso Science Institute, Italy, email: firstname.lastname@gssi.it

Such a drawback has motivated the algorithmic study of several is-
sues related to strategic behaviors in the sequential allocation setting,
the most important one being the computation of a “successful” ma-
nipulation. Notably, Aziz et al. [1] have shown that the problem of
manipulating sequential allocation is NP-hard. This hardness result
could be seen as an answer to the concern that the sequential allo-
cation protocol is not strategy-proof. Indeed, if finding a successful
manipulation is computationally too difficult, then agents may be in-
clined to behave truthfully [19]. However, this is only a worst-case
result which says little about which instances are easy to manipulate
and which are not. To provide more information on this question, we
take a parameterized complexity approach.

Our contribution. We tackle the parameterized complexity of ma-
nipulating sequential allocations, and provide a complete picture of
the problem w.r.t. the following three parameters: the number n of
agents, the number μ(a1) of items the manipulator gets to pick in the
allocation process, and the maximum range rgmax of an item, a pa-
rameter measuring how close the preference rankings of the agents
are. In particular, we provide a novel dynamic programming algo-
rithm, which we show is XP w.r.t. n, and Fixed-Parameter Tractable
(FPT) w.r.t. rgmax and the sum n+ μ(a1). Moreover, we show that
the problem is in XP w.r.t. μ(a1). Interestingly enough, we finally
prove that the problem is W[1]-hard w.r.t. to the single parameters n
and μ(a1). As a consequence, our XP results are both tight. Table 1
summarizes our results.

Table 1. Our parameterized complexity results on the problem of
manipulating sequential allocations.

Parameter n μ(a1) n+ μ(a1) rgmax

Results In XP but W[1]-hard In XP but W[1]-hard In FPT In FPT
Theorems 1 and 6 Theorem 5 Theorem 2 Theorem 4

Related work on strategic behaviors in the sequential allocation

setting. Aziz et al. [2] studied the sequential allocation setting by
treating it as a one shot game. They notably designed a linear-time al-
gorithm to compute a pure Nash equilibrium and a polynomial-time
algorithm to compute an optimal Stackelberg strategy when there are
two agents, a leader and a follower, and the follower has a constant
number of distinct values for the items. If the sequential allocation
setting is seen as a finite repeated game with perfect information,
Kalinowski et al. [15] showed that the unique subgame perfect Nash
equilibrium can be computed in linear time when there are two play-
ers. However, with more agents, the authors showed that computing
one of the possibly exponentially many equilibria is PSPACE-hard.

ECAI 2020
G.D. Giacomo et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200081

99

Several papers focused on the complexity of finding a success-
ful manipulation for a given agent, also called manipulator. Bouveret
and Lang [6] showed that determining if there exists a strategy for the
manipulator to get a specific set of items can be done in polynomial
time. Moreover, Aziz et al. [1] showed that finding if there exists a
successful manipulation, whatever the utility function of the manip-
ulator, is a polynomial-time problem. Conversely, the same authors
showed that determining an optimal manipulation (for a specific util-
ity function) is an NP-hard problem. Bouveret and Lang [7] provided
further hardness results for the cases of non-additive preferences and
coalitions of manipulators. On the other hand, finding an optimal ma-
nipulation can be performed in polynomial time if the manipulator
has lexicographic or binary utilities [1, 7] or if there are only two
agents [7]. Tominaga et al. [18] further showed that finding an opti-
mal manipulation is a polynomial-time problem when there are two
agents and the picking sequence is composed of a sequence of ran-
domly generated rounds. More precisely, in each round, both agents
get to pick one item and a coin flip determines who picks first. Lastly,
an XP algorithm for the number of agents has been recently and in-
dependently designed by Xiao and Ling [20], showing that manip-
ulating sequential allocations can be performed in polynomial time
when the number of agents is bounded. Interestingly, we provide a
simpler algorithm with the same property and which we analyse to
obtain further positive parameterized complexity results.

2 SETTINGS AND NOTATIONS

We consider a set A = {a1, . . . , an} of n agents and a set I =
{i1, . . . , im} of m items. A preference profile P ={�a1 , . . . ,�an}
describes the preferences of the agents. More precisely, P is a col-
lection of rankings such that ranking �a specifies the preferences of
agent a over the items in I. The items are allocated to the agents
according to the following sequential allocation procedure: at each
time step, a picking sequence π ∈ Am specifies an agent who gets to
pick an item within the remaining ones. Put another way, π(1) picks
first, then π(2) picks second, and so forth. We assume that agents
behave greedily by choosing at each time step their preferred item
within the remaining ones. If we view sequential allocation as a cen-
tralized protocol, then all agents report their preference rankings to
a central authority which mimics this picking process. In the follow-
ing, w.l.o.g. we use this centralized viewpoint where agents have to
report their preference rankings. This sequential process leads to an
allocation that we denote by φ. More formally, φ is a function such
that φ(a) is the set of items that agent a has obtained at the end of
the sequential allocation process.

Example 1 (Adapted from Example 1 in [1]). For the sake of il-
lustration, we consider an instance with 3 agents and 4 items, i.e.,
A = {a1, a2, a3} and I = {i1, i2, i3, i4}. The preferences of the
agents are described by the following profile:

a1 : i1 � i2 � i3 � i4 a2 : i3 � i4 � i1 � i2

a3 : i1 � i2 � i3 � i4

and the picking sequence is π = (a1, a2, a3, a1). Then, a1 will first
pick i1, then a2 will pick i3, a3 will pick i2, and lastly a1 will pick
i4. Hence, the resulting allocation is given by φ(a1) = {i1, i4},
φ(a2) = {i3} and φ(a3) = {i2}.

The allocation φ is completely determined by the picking se-
quence π and the preference profile P . Notably, if one of the agents
reports a different preference ranking, she may obtain a different set

of items. Such a set may even be more desirable to her. Consequently,
agents may have an incentive to misreport their preferences.

Example 2 (Example 1 continued). Assume now that agent a1 re-
ports the preference ranking i3 � i2 � i1 � i4. Then she obtains
the set φ(a1) = {i2, i3}. This set may be more desirable to a1 than
{i1, i4} if for instance items i1, i2 and i3 are almost as desirable as
one another, but all the three are much more desirable than i4.

In this work, we study this type of manipulation. We will assume
that agent a1 is the manipulator and that all other agents behave truth-
fully. Although the agents are asked to report ordinal preferences,
we will assume a standard assumption in the literature that a1 has
underlying additive utilities for the items. More formally, the pref-
erences of a1 over items in I are described by a set of positive val-
ues U = {u(i)|i ∈ I} such that i �a1 j implies u(i) > u(j).
The utility of a set of items S is then obtained by summation, i.e.,
u(S) =

∑
i∈S u(i). We will denote by �T the truthful preference

ranking of a1, and by φ� the allocation obtained if agent a1 re-
ports the preference ranking �. Moreover, we will denote by uT the
value u(φ�T (a1)), which is the utility value of a1’s allocation when
she behaves truthfully. We will say that a preference ranking � is
a successful manipulation if a1 prefers φ�(a1) to φ�T (a1), i.e., if
u(φ�(a1)) > uT . Hence, the objective for the manipulator is to find
a successful manipulation � maximizing u(φ�(a1)). We are now
ready to define formally the problem of Manipulating a Sequential
Allocation process, called ManipSA.

ManipSA

Input: A set A = {a1, a2, . . . , an} of n agents where a1 is the ma-
nipulator, a set I = {i1, . . . , im} of m items, a picking sequence
π, a preference profile P and a set U of utility values for a1.

Find: A preference ranking � maximizing u(φ�(a1)).

The ManipSA problem is known to be NP -hard [1]. In this work,
we address this optimization problem from a parameterized com-
plexity point of view. We will be mostly interested in three types of
parameters: the number of agents, the number of items that an agent
gets to pick, and the range of the items. While the number n of agents
is already clear, let us define the other parameters more formally. We
denote by μ(a) the number of items that agent a gets to choose in π
and by μmax = max{μ(a)|a ∈ A} the maximum of these values. Let
rka(i) denote the rank of item i in the preference ranking of agent
a. Then, we define the range rg(i) of an item i as:

rg(i) = max
a∈A\{a1}

rka(i)− min
a∈A\{a1}

rka(i) + 1.

Note that rg(i) is defined using only non-manipulators. The maxi-
mum range of an item rgmax is then defined as maxi∈I rg(i).

Let us give some intuitions on parameters μ(a1) and rgmax. In the
ManipSA problem, μ(a1) can be seen as a budget parameter for the
manipulator. Intuitively, the larger the value of μ(a1), the more she
can manipulate. It is also the size of the bundle a1 will get. Interest-
ingly, in real-life applications, μ(a1) can be much smaller than |I|
and even much smaller than |A|. For these reasons, μ(a1) is an in-
teresting parameter to study in the ManipSA problem. On the other
hand, parameter rgmax measures the correlation between the prefer-
ences of the non-manipulators. If rgmax = 1 (its minimal possible
value), then all non-manipulators have the same preference ranking.
In this case, the manipulation problem becomes easy to solve, as all
non-manipulators can be treated as a single agent and the case of two

M. Flammini and H. Gilbert / Parameterized Complexity of Manipulating Sequential Allocation100

agents is known to be polynomial-time solvable. This simple insight
can let us hope that the manipulation problem remains tractable if
this parameter is small. An important motivation behind parameter
rgmax is that, in practice, the preferences of different agents are often
correlated.

3 POSITIVE PARAMETERIZED COMPLEXITY
RESULTS

To solve the ManipSA problem, one can simply try the m! possible
preference rankings and see which ones yield the maximum utility
value. However, a more clever approach uses the following result.

Fact 1 (From Propositions 7 and 8 in [6]). Given a specific set of
items S, it is possible to determine in polynomial time whether there
exists a preference ranking � such that S ⊆ φ�(a1). In such case,
computing such a ranking can also be done in polynomial time.

Hence, one can try all the
(

m
μ(a1)

)
possible sets of μ(a1) items to

determine which is the best one that a1 can get. This approach shows
that ManipSA is in XP w.r.t. parameter μ(a1).

Example 3 (Example 1 continued). As in this example μ(a1) = 2,
a1 just has to determine which one of the

(
4
2

)
following sets she must

obtain: {i1, i2}, {i1, i3}, {i1, i4}, {i2, i3}, {i2, i4}, {i3, i4}.

To obtain further positive results, we first design a dynamic pro-
gramming method. We will then explain how it entails several posi-
tive parameterized complexity results.

3.1 A dynamic programming algorithm

Our dynamic programming approach considers pairs (k, S) where
S ⊆ I and k ∈ {0, 1, . . . , μ(a1)}. In a state characterized by the
pair (k, S), we know that the items in S have been picked by some
agents in A as well as k other items that have been picked by agent
a1. However, while the items in S are clearly identified, the identities
of these k other items are unspecified.

Given a pair (k, S), the number of items that have already been
picked is |S| + k. Hence, the next picker is π(|S| + k + 1). Let us
denote this agent by a. If a = a1, i.e., she is the manipulator, then
she will pick one more item within the set I \S and we move to state
(k + 1, S). Otherwise, let b(a, S) denote the preferred item of agent
a within the set I \ S. Then, two cases are possible:

• In the first case, b(a, S) has already been picked by agent a1.
Then, we move to state (k − 1, S ∪ {b(a, S)}). Note that this
is only possible if k was greater than or equal to one.

• Otherwise b(a, S) is picked by agent a and we move to state
(k, S ∪ {b(a, S)}).

Let us denote by V (k, S) the maximal utility that the manipulator
can get from items in I \S starting from state (k, S). Then the value
of an optimal manipulation is given by V (k = 0, S = ∅). From the
previous analysis, function V verifies the following dynamic pro-
gramming equations:

V (k, S)=V (k + 1, S) if π(|S|+ k + 1) = a1 (1)

V (k = 0, S)=V (k, S∪{b(a, S)})ifπ(|S|+ k + 1)=a �=a1 (2)

V (k > 0, S)=max
(
V (k − 1, S ∪ {b(a, S)}) + u(b(a, S)),

V (k, S ∪ {b(a, S)})
)

if π(|S|+ k + 1) = a �= a1 (3)

where the termination is guaranteed by the fact that V (k, S) =∑
i∈I\S u(i) when |S|+ k = m.
Let us detail, once again, Equation 3. In this case, the current

picker a is not the manipulator. As we know that items in S have
previously been picked, the best possibly available item for her is
b(a, S). However, b(a, S) can only be picked by a if it is not one
of the unknown k > 0 items previously picked by a1. Hence,
V (k, S) is the maximum of two values corresponding to two pos-
sible cases. Either a1 has previously picked b(a, S), in which case
we should count the utility u(b(a, S)) of this item as well as the
value V (k − 1, S ∪ {b(a, S)}) of the corresponding next state;
or b(a, S) can be picked by agent a and we consider the value
V (k, S ∪ {b(a, S)}) of the corresponding next state.

Equations 1-3 induce a directed acyclic state graph Gdp =
(Vdp, Adp), where Vdp is the set of states generated from state (k =
0, S = ∅) when using these equations and the arcs in Adp con-
nect each state to its successor states. We will also denote by Sdp =
{S|(k, S) ∈ Vdp} the set of item-sets S that are involved in Vdp.

Notably, solving Equations 1-3 can be performed by building
graph Gdp and running backward induction on it (from the lastly gen-
erated states to the initial state (k = 0, S = ∅)). By standard book-
keeping techniques one can also identify the items that are taken in an
optimal manipulation and the order in which they are taken and then
recover an optimal ranking to report (where these items are ranked
first and in the same order).

Example 4 (Example 1 continued). Let us illustrate our approach
on our running example. We let u(i1) = 5, u(i2) = 4, u(i3) = 3
and u(i4) = 1. Figure 1 displays the resulting state graph Gdp.
The values of the states are given next to them and the optimal
branches are displayed with thick solid arrows. In this example,
Sdp = {∅, {i3}, {i1, i3}, {i3, i4}, {i1, i2, i3}, {i1, i3, i4}}. As we
can see, the optimal choices for a1 is to first pick i3 so that i2 is still
available the second time she becomes the picker. Hence, an optimal
manipulation is given by �= i3 � i2 � i1 � i4 which results in an
allocation φ�(a1) = {i2, i3} with a utility of 7 whereas uT = 6.

3.2 Complexity analysis

We now provide positive parameterized complexity results by prov-
ing several upper bounds on |Vdp|. In fact, we will prove bounds on
|Sdp| and use the observation that |Vdp| ≤ (μ(a1)+1)|Sdp| ≤ m|Sdp|
as there are only μ(a1) + 1 possible values for k in a state (k, S).

The algorithm is XP w.r.t. parameter n. Let D(a, i) denote the
set of items that agent a prefers to item i, i.e., D(a, i) = {j ∈
I|j �a i}. Then, for any set S ⊆ I, the definition of b(a, S),
which we recall is the preferred element of agent a in set I \ S
implies that

⋃
a∈A\{a1} D(a, b(a, S)) ⊆ S. Let us denote by Δ

the set of item-sets for which the equality holds, i.e., Δ = {S ⊆
I|

⋃
a∈A\{a1} D(a, b(a, S)) = S}. Note that a set S ∈ Δ is com-

pletely determined by the vector (b(a2, S), . . . , b(an, S)) and thus
|Δ| ≤ mn−1. Our first key insight is that Sdp is a subset of Δ.

Lemma 1. The set Sdp is a subset of Δ.

Proof. The result follows simply by induction. The result is true for
the initial state in which S = ∅. Assume that the result is true for a
state characterized by a pair (k, S). We show that the result also holds
for the successor states. If π(|S| + k + 1) = a1, then the successor
state is (k + 1, S) so the result is also true for this new state as S is

M. Flammini and H. Gilbert / Parameterized Complexity of Manipulating Sequential Allocation 101

(0, ∅) 7π(1) = a1

(1, ∅) 7π(2) = a2

(1, {i3}) 6π(3) = a3

π(4) = a1

(0, {i3}) 4

(1, {i1, i3}) 5

(0, {i1, i3}) 1

(0, {i3, i4}) 4

(2, {i1, i3}) 5

(0, {i1, i2, i3}) 1

(1, {i1, i2, i3}) 1

(0, {i1, i3, i4}) 4

(1, {i1, i3, i4}) 4

a1 has picked i2, i4,
u(i2) + u(i4) = 5

a1 has picked i4,
u(i4) = 1

a1 has picked i2,
u(i2) = 4

a2 picks i3

a1 has picked i3,
u(i3) = 3

a3 picks i1

a1 has picked i1,
u(i1) = 5

a2 picks i4

a3 picks i2

a3 picks i1

Figure 1. Directed acyclic state graph Gdp in Example 1

unchanged. Otherwise, let π(|S| + k + 1) = a∗, then the successor
states are (k, S ∪{b(a∗, S)}) and (k− 1, S ∪{b(a∗, S)}). Then we
have the following two inclusion relationships:

D(a∗, b(a∗, S)) ∪ {b(a∗, S)} ⊆ D(a∗, b(a∗, S ∪ {b(a∗, S)})),
∀a ∈ A \ {a1}, D(a, b(a, S)) ⊆ D(a, b(a, S ∪ {b(a∗, S)})).

These relationships imply that S ∪ {b(a∗, S)} is equal to:
⋃

a∈A\{a1}
D(a, b(a, S))∪{b(a∗, S)}⊆

⋃
a∈A\{a1}

D(a, b(a, S∪{b(a∗, S)})),

by the induction hypothesis. As already stated, the reverse inclusion
relationship is always true and hence S ∪ {b(a∗, S)} ∈ Δ.

Consequently from Lemma 1, each state in Vdp admits two pos-
sible representations that we call agent representation and item rep-
resentation. In the item representation, a state (k, S) is represented
by a vector of size m + 1, i.e., S is represented by a binary vec-
tor of size m. In the agent representation, a state (k, S) is repre-
sented by a vector of size n. In this case, S is replaced by the vector
(b(a2, S), . . . , b(an, S)).2 Note that processing a state (computing
the successor states and the optimal value of the state according to
the ones of the successor states) in the agent (resp. item) representa-
tion can be done in O(nm) (resp. O(m)) operations. We now show
that the ManipSA problem can be solved in polynomial time for any
bounded number of agents.

Theorem 1. Problem ManipSA is solvable in O(n · mn+1). As a
result, ManipSA is in XP w.r.t. parameter n.

Proof. The result follows from the fact that our dynamic program-
ming method runs in O(n ·mn+1). To obtain this complexity bound,

2 When proving bounds on |Sdp|, we will consider that values b(ai, S) be-
long to I, not considering the one state where all items are already picked.

one should use the agent representation. In this case, processing
a state requires O(nm) operations, and one can use a dynamic
programming table of size mn with one cell per possible vector
(k, b(a2, S), . . . , b(an, S)).

We now argue that our dynamic programming approach yields an
FPT algorithm w.r.t. parameters n + μ(a1), n + rgmax and rgmax

by providing tighter upper bounds on |Sdp|. To use these bounds, we
will need the two following lemmata:

Lemma 2. Under the item representation, the graph Gdp can be
build in O(m|Vdp|2).
Proof. First note that Gdp is indeed acyclic. Indeed, given a state that
can occur at time step t of the allocation process (i.e., k + |S| = t),
its successors will either correspond to time step t + 1 or will still
correspond to time step t but with a strictly lower value for param-
eter k. We now show how to incrementally build Gdp from state
(k = 0, S = ∅). For each new state generated at the previous itera-
tion, compute its successor states, add edges towards them, and label
them with the corresponding utility values. Moreover, each time a
state is generated, compare it to the states already generated to avoid
the creation of duplicates. If it is indeed a new state, its successors
will be computed in the next iteration. This process is repeated until
all states are generated. Note that because each state is only processed
once, we will generate at most 2|Vdp| states. However, because of the
duplicate removal operation performed each time a state is gener-
ated, the method runs in O(m|Vdp|2). Indeed, this step will trigger
O(|Vdp|2) comparisons, each requiring m+ 1 operations.

Lemma 3. Under the item representation, problem ManipSA can
be solved in O(m|Vdp|2).
Proof. By Lemma 2, we can build Gdp in O(m|Vdp|2) and compute
an optimal manipulation by backward induction in O(m|Vdp|).

The algorithm is FPT w.r.t. parameter n + μ(a1). We further
argue that |Sdp| can be upper bounded by m(μ(a1) + 1)n−1. This
is a consequence of the following lemma, where μ(a, t) denotes the
number of items that agent a gets to pick within the t first time steps.

Lemma 4. For each time step t, there is a set St of t − μ(a1, t)
items that are always picked within the t first time steps, whatever
the actions of the manipulator.

Sketch of the proof. Given an instance J of the ManipSA problem,
consider the instance J−a1 obtained from J by removing a1. More-
over, let us denote by S−a1

t the set of items picked at the end of the
tth time step in J−a1 . This set of size t is clearly defined as all
agents behave truthfully in J−a1 . We argue that after t time steps
in J , all items in S−a1

t−μ(a1,t)
have been picked whatever the actions

of a1. This can be showed by induction because at each time step
where the picker is a non-manipulator, she will pick the same item as
in J−a1 unless this item has already been picked.

As a consequence of Lemma 4, for each possible set S that can
appear at time step t and agent a ∈ A \ {a1}, b(a, S) can only be
μ(a1, t−1)+1 different items. More precisely, b(a, S) has to be one
of the μ(a1, t−1)+1 preferred items of a in I\St−1. As a result, the
number of possible vectors (b(a2, S), . . . , b(an, S)) associated to all
the possible sets S that can appear at time step t is upper bounded
by (μ(a1, t − 1) + 1)n−1. Lastly, by using the facts that each set
S ∈ Sdp is characterized by the vector (b(a2, S), . . . , b(an, S)), that
μ(a1, t) ≤ μ(a1) for all t, and by considering all possible time steps,
we obtain that |Sdp| ≤ m(μ(a1) + 1)n−1.

M. Flammini and H. Gilbert / Parameterized Complexity of Manipulating Sequential Allocation102

Theorem 2. Problem ManipSA is solvable in O(m3(μ(a1)+1)2n).
As a result, ManipSA is FPT w.r.t. parameter n+ μ(a1).

Proof. This result is a consequence of Lemma 3 and the fact that
|Vdp| ≤ (μ(a1) + 1)|Sdp| ≤ m(μ(a1) + 1)n.

The algorithm is FPT w.r.t. parameter n + rgmax. We show
that |Sdp| is also upper bounded by m(2rgmax)n−2. This is a conse-
quence of the following lemma.

Lemma 5. For any set S ⊆ I, and any two agents as, at ∈ A\{a1},

|rkas(b(as, S))− rkat(b(at, S))| ≤ rg
max − 1.

Proof. If we assume for the sake of contradiction that
rkas(b(as, S)) ≥ rkat(b(at, S)) + rgmax and use the fact
that |rkas(b(at, S)) − rkat(b(at, S))| < rgmax (by definition of
rgmax), then we can conclude that b(at, S) �as b(as, S), which
contradicts the definition of b(as, S).

Lemma 5 implies that for each of the m possible items for
b(a2, S), there are only 2rgmax − 1 possible items for other pa-
rameters b(aj , S) with j > 2. Then, by using the facts that a set
S ∈ Sdp is characterized by the vector (b(a2, S), . . . , b(an, S)), we
obtain that |Sdp| ≤ m(2rgmax)n−2.

Theorem 3. Problem ManipSA is solvable in
O(m5(2rgmax)2(n−2)). As a result, ManipSA is FPT w.r.t.
parameter n+ rgmax.

Proof. This result is a consequence of Lemma 3 and the fact that
|Vdp| ≤ m|Sdp| ≤ m2(2rgmax)n−2.

The algorithm is FPT w.r.t. parameter rgmax. Lastly, |Sdp| can
also be upper bounded by m22rg

max

. This claim is due to the fact
that the set S \ D(a2, b(a2, S)) cannot contain an item whose rank
w.r.t. a2 is “too high”, which is proved in the following lemma.

Lemma 6. Given S ∈ Sdp, all i in S \D(a2, b(a2, S)) verify

rka2(b(a2, S)) + 1 ≤ rka2(i) ≤ rka2(b(a2, S)) + 2rgmax.

Proof. First note that by definition b(a2, S) �∈S (because b(a2, S)∈
I \ S) and D(a2, b(a2, S))={i ∈ I|rka2(i) < rka2(b(a2, S))}.
Hence, the first inequality of the lemma holds.

Let us assume for the sake of contradiction that there exists i ∈
S \D(a2, b(a2, S)) such that rka2(i)>rka2(b(a2, S)) + 2rgmax.
Because S belongs to Δ, we have that S \ D(a2, b(a2, S)) =⋃

a∈A\{a1} D(a, b(a, S)) \D(a2, b(a2, S)). Hence, there exists aj

with j ≥ 3 such that i ∈ D(aj , b(aj , S)). By definition of rgmax,
we have that rgmax > rka2(i) − rkaj (i), or equivalently that
rkaj (i) > rka2(i) − rgmax, which yields that rkaj (b(aj , S)) >
rkaj (i) > rka2(i)− rgmax > rka2(b(a2, S)) + rgmax. This con-
tradicts Lemma 5.

As a consequence of Lemma 6, |Sdp| is upper bounded by
m22rg

max

because there are at most m possible items for b(a2, S),
and for each of them, there are at most 22rg

max

possible sets for
S \D(a2, b(a2, S)).

Theorem 4. Problem ManipSA is solvable in O(m524rg
max

). As a
result, ManipSA is FPT w.r.t. parameter rgmax.

Proof. This result is a consequence of Lemma 3 and the fact that
|Vdp| ≤ m|Sdp| ≤ m222rg

max

.

Remark. Note that it is easy to prove that, in contrast, the prob-
lem is NP-hard even if the average range of the items is less than or
equal to 2.3 Furthermore, Theorem 3 might seem less appealing as
the ManipSA problem is FPT w.r.t. parameter rgmax alone. How-
ever, we would like to stress that the time complexity of Theorem
3 might be more interesting than the one of Theorem 4 for a small
number of agents.

4 PARAMETERIZED HARDNESS RESULTS

We have seen in the last section that the ManipSA problem is in XP
w.r.t. parameters n and μ(a1) and that it is in FPT for parameters
rgmax and n + μ(a1). One could hope for more positive results for
parameters n and μ(a1), as an FPT algorithm. However, we show in
this section that the ManipSA problem is W[1]-hard w.r.t. each of
these two parameters.

We start with the W[1]-hardness result on parameter μ(a1). In
fact, we obtain a stronger result by proving that even determining
if there exists a successful manipulation is W[1]-hard w.r.t. μmax.

Theorem 5. Determining if there exists a successful manipulation
for a1 is W[1]-hard w.r.t. parameter μmax.

Proof. We sketch here the main ideas of the proof. We make a
parameterized reduction from the CLIQUE problem where given
a graph G = (V,E) and an integer k, we wish to determine if
there exists a clique of size k. This problem is W[1]-hard w.r.t.
parameter k. W.l.o.g., we make the assumptions that |V | > k and
that |E| > k(k − 1)/2 (because otherwise it is trivial to determine
if there is a clique of size k).

From an instance of CLIQUE (G = (V,E), k) , we create the
following ManipSA instance.

Set of items. We create two items, g{i,j} (a good item) and
w{i,j} (one of the worst items), for each edge {i, j} ∈ E
and two items, bi (one of the best items) and mi (a
medium item), for each vertex i ∈ V . Put another way,
I = {g{i,j}, w{i,j}|{i, j} ∈ E} ∪ {bi,mi|i ∈ V } and the
number of items is thus |I| = 2|V |+ 2|E|.

Set of agents. We create one agent e{i,j} for each edge {i, j} ∈ E
and one agent vi for each vertex i ∈ V . The top of e{i,j}’s ranking is
g{i,j} � mi � mj � w{i,j} (which one of mi or mj is ranked first
can be chosen arbitrarily). The top of vi’s ranking is bi � mi . We
also create |V |−k−1 agents ct for t ∈ {1, . . . , |V |−k−1} (whose
role is to collect medium items) such that the top of the ranking of
each ct is m1 � m2 . . . � m|V |. Last, the manipulator, that we
denote by a1 to be consistent with the rest of the paper, has the
following preferences: he first ranks items bi, then items g{i,j}, then
items mi and last items w{i,j}. To summarize, A = {e{i,j}|{i, j} ∈
E}∪ {vi|i ∈ V }∪ {ct|t ∈ {1, . . . , |V | − k− 1}}∪ {a1} and there
are |A| = 2|V |+ |E| − k agents.

Picking sequence. The picking sequence π is composed of the fol-
lowing rounds:

• Manipulator round 1: a1 gets to pick k items.
• Vertex round: each agent vi gets to pick one item.

3 One can use a reduction with a sufficiently large number of dummy items
ranked last and in the same positions by all agents.

M. Flammini and H. Gilbert / Parameterized Complexity of Manipulating Sequential Allocation 103

• Manipulator round 2: a1 gets to pick k(k − 1)/2 items.
• Edge round: each agent e{i,j} gets to pick one item.
• Medium item collectors round: each agent ct gets to pick one item.
• Manipulator round 3: a1 gets to pick one item.
• End round: the remaining items are shared arbitrarily within the

non-manipulators such that each agent gets at most one new item.

Note that μmax = μ(a1) =
k(k+1)

2
+ 1.

Utility values of a1. For ease of presentation, we will act as if
there were only four different utility values, even if a1 is asked
to report a complete preference order. This simplification can be
removed by using a similar utility function with sufficiently small
epsilon values to make preferences strict. In this sketch of proof,
each item bi has utility 4. Each item g{i,j} has utility 3. Each item
mi has utility 2. Lastly, items w{i,j} have utility 1. In this simplified
setting, we set �T as being one specific ranking consistent with the
utility values of a1 and we wish to determine if there exists another
ranking yielding a strictly higher utility.

Sketch of the proof. At the end of the vertex round, all the best
items are gone, as they have already been picked by a1 or by the
vertex agents vi. Similarly, at the end of the edge round, none of the
good items are left. Hence, at the third manipulator round, when a1

picks her last item, the best she can hope for is a medium item. Con-
sequently, the maximum utility she might achieve is accomplished by
picking k best items in her first round, k(k− 1)/2 good items in her
second round, and finally a medium item in her third round, for an
overall utility of 4k+3k(k−1)/2+2. Note that she can always pick
any set of k best items in her first round and then (whatever the previ-
ous k best items) pick any set of k(k−1)/2 good items in her second
round. Hence obtaining an overall utility of 4k+3k(k− 1)/2+1 is
always possible. Note also that, if {bi1 , . . . , bik} are the k best items
selected by a1 at the first round, then in the vertex round the vertex
agents {vi1 , . . . , vik} will pick the medium items {mi1 , . . . ,mik}.
Moreover, before the third manipulator round, agents ct will pick ad-
ditional |V | − k − 1 medium items. So, a medium item is left at
the third manipulator round only if none of the edge agents picks a
medium item in the edge round. According to her preference rank-
ing, any such agent e{i,j} will not pick a medium item iff g{i,j} is
still available, or if g{i,j}, mi and mj have all already been picked.
If g{i,j} is one of the k(k − 1)/2 good items that have been al-
ready picked at the manipulator second round, then mi and mj have
already been picked before by vi and vj in the vertex round, if bi
and bj were already taken in the first manipulator round. In conclu-
sion, none of the medium items are picked by the edge agents iff the
k(k − 1)/2 edges e{i,j} for which g{i,j} has already been picked
at the second manipulator round have as endpoints only nodes in
{vi1 , . . . , vik}, and this is possible iff {vi1 , . . . , vik} forms a clique
in the initial graph G. Summarizing, there exists a strategy for a1

achieving an overall utility of 4k+3k(k−1)/2+2 iff G has a clique
of k nodes. It remains to show that we could solve the CLIQUE
problem if we could determine if there exists a successful manip-
ulation. This fact results from the following disjunction of two cases:
If uT = 4k+3k(k−1)/2+2, then we can conclude that there exists
a clique of size k; Otherwise, uT = 4k+3k(k− 1)/2+1 and there
exists a clique of size k iff there exists a successful manipulation.

Remark: Aziz et al. [1] considered a sequential allocation setting
in which the manipulator has a binary utility function, but is asked to
provide a complete preference order. In this setting, the manipulation
problem consists in finding a ranking maximizing the utility of the

bundle she gets. While the authors showed that this problem (with
binary utilities) can be solved in polynomial time, the reduction used
in the proof of Theorem 5 shows that it is NP-hard if the manipulator
has a utility function involving four different values (instead of two).

Similarly, we obtain that the ManipSA problem is W[1]-hard
w.r.t. the number of agents.

Theorem 6. ManipSA is W[1]-hard w.r.t. the number of agents.

Proof. We design a parameterized reduction from MULTICOL-
ORED CLIQUE. In this problem, given a graph G = (V,E) with
vertex set V = {v1, . . . , vn}, an integer k, and a vertex coloring
ϕ : V → {1, . . . , k}, we wish to determine if there exists a clique
of size k in G containing exactly one vertex per color. MULTICOL-
ORED CLIQUE is known to be W[1]-hard w.r.t. parameter k [13].

Idea of the proof : We resort on the nice mathematical tool of
Sidon sequences. These sequences associate to each number i
in {1, . . . , n} a value id(i) such that, for every pair (i, l) with
i ≤ l, the sum id(i) + id(l) is different from the one of any other
different pair of elements in {1, . . . , n}. We use the construction of
Erdös and Turàn [12], by setting id(i) = 2 · p · i + (i2 mod p)
for every i ∈ {1, . . . , n}, where p is the smallest prime number
greater than n. Notice that, by the Bertrand-Chebyshev theorem
[11], p < 2n, and thus id(i) = O(n2). This sequence will be
used in the following way. We create a large set of items Bj for
each color j. In the first picking round, the manipulator will be
able to pick a large number of items within these sets. To recover a
solution of the MULTICOLORED CLIQUE problem, we will show
that, if a multicolored clique {vi1 , . . . , vik} exists in which each
vertex vij has color ϕ(vij) = j, then in an optimal manipulation
the manipulator should pick exactly (k + 1) · id(ij) items in each
set Bj . The edges of the clique will then be identified by the sums
id(ij) + id(ir) for all pairs of vertices {vij , vir} ⊂ {vi1 , . . . , vik}.

From a MULTICOLORED CLIQUE instance (G =
(V,E), k, ϕ), we construct the following ManipSA instance.

Set of items:

• For each color j, we create a set Bj of (k + 1) · id(n) items, and
two sets Idj and Idj of id(n) + 2 items each. The purpose of
items in Idj ∪ Idj is to ensure that the number of items picked by
a1 in Bj is of the form (k + 1) · id(i) such that ϕ(vi) = j.

• For each pair of colors {j, r} with j �= r, we create a set Id{j,r}
of 2 · (id(n) + 1) items. The purpose of items in Id{j,r} is to
ensure that, whenever a1 picks (k + 1) · id(i) items in Bj and
(k + 1) · id(l) items in Br for two given vertices vi and vl of
colors ϕ(vi) = j and ϕ(vl) = r, then {vi, vl} is an edge of G.

• We create a set D of k(k + 1) · id(n) items. In a first picking
round, the manipulator will be able to pick items in

⋃k
j=1 Bj ∪D.

The purpose of items in D is to make it possible for a1 to adjust
the number of items she picks in

⋃k
j=1 Bj .

• Last, we add a set Z of 2k(k + 1)id(n) items. Set Z will be used
as a buffer of items where each non-manipulator will pick when no
items in Idj , Idj , or Idj,r are left, so as to avoid mutual conflicts.

Set of agents: We create two agents cj and cj per color j, and two
agents pj,r and pr,j for each pair of colors {j, r} such that j �= r.
Moreover, we create one agent denoted by d and one manipulator
a1. In total, there are k(k + 1) + 2 agents. We now detail the top
of the preference rankings of non-manipulators, where by abuse of

M. Flammini and H. Gilbert / Parameterized Complexity of Manipulating Sequential Allocation104

notations, we use S � S′ to denote the fact that items in S are ranked
before the ones in S′, while the order inside each set is indifferent.

• Agent cj , for 1 ≤ j ≤ k: Bj � Idj � Z �
• Agent cj , for 1 ≤ j ≤ k: Bj � Idj � Z �
• Agent pj,r , for 1 ≤ j �= r ≤ k: Bj � Id{j,r} � Z �
• Agent pr,j for 1 ≤ j �= r ≤ k: Br � Id{j,r} � Z �
• Agent d: D � Z �

As an important remark, note that agents pj,r and pr,j rank items in
Id{j,r} identically.

Picking sequence: π is composed of the following rounds:

• Manipulator round 1: a1 gets to pick k(k + 1) · id(n) items.
• Non-manipulators round:

– Agents in A \ {a1, d} pick in id(n) subrounds. In each sub-
round, each of them picks exactly one item in the following
order: agents cj , 1 ≤ j ≤ k, are the first pickers, then come
agents pj,r , and lastly agents cj .

– Finally, agent d picks k(k + 1) · id(n) items.

• Manipulator round 2: a1 gets all remaining items.

Utility values of a1: For ease of presentation, we use two simplify-
ing assumptions. First, we act as if different items can have the same
utility value for a1. This assumption can be removed making prefer-
ences strict by adding sufficiently small epsilon values. Second, we
use negative utilities. In fact, one can recover an equivalent instance
with only non-negative values by adding to all the utilities the abso-
lute value of the minimal one. Indeed, this would not change the set
of optimal solutions as the size of a1’s bundle is fixed by π.

• Items in Z have a utility value of 0.
• One specific item in each set Bj , that we denote by b∗j , has a util-

ity value of 4α where α = (id(n) + 2)k(k + 1). All items in
(
⋃k

j=1 Bj ∪D) \ {b∗1, . . . , b∗k} have a utility value equal to 2α.
• The utilities of the items in the sets Idj and Idj are defined as

follows. Index the items in Idj (resp. Idj) from 1 to id(n) + 2
according to the preference order of agent cj (resp. cj). Further-
more, let Tj = {id(i)|ϕ(vi) = j}, τj(t) denote the tth small-
est value in Tj , and Tj = |Tj |. We also set τj(0) = 0 and
τj(Tj + 1) = id(n) + 2. Then, all items receive a utility value of
1, except for the items of indices τj(t) for t ∈ {1, . . . , Tj + 1},
that get utility τj(t− 1)− τj(t) + 1. Notice that, for every t such
that 1 ≤ t ≤ Tj + 1, by definition the sum of the utilities of all
the items from τj(t− 1) + 1 to τj(t) is 0.

• Similarly, the utilities of the items in each Id{j,r} are set in the
following manner. Index these items from 1 to 2id(n)+2 accord-
ing to the preference order of agents pj,r and pr,j . Furthermore,
let Tj,r = {id(i) + id(l)|ϕ(vi) = j, ϕ(vl) = r, {vi, vl} ∈ E},
τj,r(t) denote the tth smallest value in Tj,r , and Tj,r = |Tj,r|.
We also set τj,r(0) = 0 and τj,r(Tj,r + 1) = 2id(n) + 2.
Then all items receive a utility value of 1, except items of in-
dex τj,r(t) for t ∈ {1, . . . , Tj,r + 1}, whose utility is set to
τj,r(t− 1)− τj,r(t) + 1.

As we are going to show below, in an optimal manipulation, the
agents behave as follows. In the first manipulator round, a1 picks
k(k+1) · id(n) items in

⋃
j Bj ∪D. Then, in the non-manipulators

round, agents cj , pj,r and cj for the different values j and r �= j
pick the remaining items in the sets Bj , plus other items in Idj ,
Idj and Id{j,r}. Subsequently, d takes all the remaining items in D

and further ones to complete her picks in Z. Finally, in the second
manipulator round, a1 collects all remaining items.

Sketch of the proof. We first claim that, in the first manipulator
round, a1 should pick only items in

⋃
j Bj ∪ D. Indeed, after the

non-manipulators round, none of these items is left, whatever a1 has
previously picked. In particular, the items left by a1 in each set Bj

are collected by agents cj , pj,r and cj , while the ones in D are col-
lected by agent d. Moreover, because |

⋃
j(Idj ∪ Idj)∪

⋃
j �=r Idj,r|

is upper bounded by α and of the utility function we have set, any
subset of items in I \ (

⋃
j Bj ∪D) as a utility value which is strictly

less than α and strictly greater than −α. As a result, because each
item in

⋃
j Bj ∪D is worth 2α, any solution which would not pick

only items in
⋃

j Bj ∪D in the first manipulator round could be im-
proved by doing so. Using the same type of argument, we also claim
that a1 should pick all of the b∗j items in her first picking round.
We will hence restrict our attention to picking strategies that ver-
ify these two assumptions. Under such an hypothesis, the best util-
ity value a1 can hope to get from the set of items she collects in
her second picking round is 0. This is induced by the utility values
that we have set, as well as by the truthful picking strategies of non-
manipulators. Indeed, note that by construction the overall utility of
the set I \ (

⋃
j Bj ∪D) is 0. Moreover, as sets Idj , Idj and Id{j,r}

are indexed according to the preference orders of agents cj , cj , pj,r
and pr,j , at the end of the non-manipulators round only prefixes of
such sets have been picked. Hence, recalling that all the items in Z
have null utility for a1, the overall utility of items left to a1 at the
beginning of the second manipulator round is 0 if and only if the pre-
fixes of the already picked items in all the sets Idj , Idj and Id{j,r}
end up to items of negative value for a1. We now argue that this can
happen if and only if there exists a multicolored clique G.

Let us first show the only if direction, i.e., that if a1 gets an overall
utility equal to 0 from the set of items she collects in her second
picking round, then there is a multicolored clique of size k in G. Let
us denote by nbj the number of items that a1 has picked in Bj during
the first manipulator round. Since for each j ∈ {1, . . . , k} agent a1

has picked b∗j and |Bj | = (k + 1)id(n), we have that 1 ≤ nbj ≤
(k + 1)id(n). We first show that nbj should be a multiple of k + 1.

To this aim, let us first observe that, for each j ∈ {1, . . . , k}, af-
ter the first manipulator round, in every non-manipulators subround,
k + 1 items of Bj (if still available) are picked by the k + 1 agents
cj , pj,r with j �= r and cj (in this order). Therefore, at the end of
the non-manipulators rounds, cj has picked
nbj/(k + 1)� items in
Idj and cj has picked �nbj/(k + 1)� items in Idj . But then, if nbj
is not a multiple of k + 1, these two numbers are different and thus
the last items picked by cj in Idj and by cj in Idj cannot both have
negative utility for a1, because the difference between two consec-
utive id values is strictly greater than 1. Therefore, each nbj should
be of the form nbj = (k + 1) · id(ij) for some ij ∈ {1, . . . , n}
such that ϕ(vij) = j, so that both cj and cj pick id(ij) items in
Idj and Idj , respectively. In order to show that {vij |1 ≤ j ≤ k}
is a multicolored clique, it remains to prove that all the vertices of
this set are neighbors in G. Indeed, since in each subround of the
non-manipulators round every time cj picks in Id(j) each agent pj,r
picks in Id{j,r}, at the end of the non-manipulators round pj,r and
pr,j have picked id(ij) + id(ir) items in Id{j,r}. Since in order
for a1 to achieve an overall utility equal to 0 in the second manip-
ulator round the last item previously picked in Id{j,r} must have a
negative utility, {vij , vir} must be an edge of G. To summarize, the
correspondence between an edge {vi, vj} and the preferences of the
agents in the resulting ManipSA instance is illustrated in Figure 2,

M. Flammini and H. Gilbert / Parameterized Complexity of Manipulating Sequential Allocation 105

vi

ϕ(vi) = r

vj

ϕ(vj) = l

cr : b∗r � b2r � . . . b(k+1)id(n)
r︸ ︷︷ ︸

Br

� i1r � . . . iid(i)r � . . . iid(n)+2
r︸ ︷︷ ︸

Idr

� . . .

cr : b∗r � b2r � . . . b(k+1)id(n)
r︸ ︷︷ ︸

Br

� i1r � . . . i
id(i)
r � . . . i

id(n)+2
r︸ ︷︷ ︸

Idr

� . . .

cl : b∗l � b2l � . . . b
(k+1)id(n)
l︸ ︷︷ ︸

Bl

� i1l � . . . i
id(j)
l � . . . i

id(n)+2
l︸ ︷︷ ︸

Idl

� . . .

cl : b∗l � b2l � . . . b
(k+1)id(n)
l︸ ︷︷ ︸

Bl

� i1l � . . . i
id(j)

l
� . . . i

id(n)+2

l︸ ︷︷ ︸
Id

l

� . . .

prl : b∗r � b2r � . . . b(k+1)id(n)
r︸ ︷︷ ︸

Br

� i1{r,l} � . . . i
id(i)+id(j)

{r,l} � . . . i
2id(n)+2

{r,l}︸ ︷︷ ︸
Id{r,l}

� . . .

plr : b∗l � b2l � . . . b
(k+1)id(n)
l︸ ︷︷ ︸

Bl

� i1{r,l} � . . . i
id(i)+id(j)

{r,l} � . . . i
2id(n)+2

{r,l}︸ ︷︷ ︸
Id{r,l}

� . . .

Figure 2. Correspondence between an edge in MULTICOLORED
CLIQUE and agents’ preferences in the resulting ManipSA instance.

where we have circled the last items picked by the agents in a so-
lution of the ManipSA problem corresponding to a solution of the
MULTICOLORED CLIQUE instance containing both vi and vj .

It remains to show the if direction, i.e., that if there is a multicol-
ored clique {vi1 , . . . , vik} in G, then there exists a strategy leading
a1 to reach overall utility 0 in her second manipulation round. As-
suming without loss of generality that ϕ(vij) = j, this can be ac-
complished by letting a1 pick nbj = (k + 1) · id(ij) items in Bj ,
1 ≤ j ≤ k, and the remaining items in D. Then, each cj (resp. cj)
will pick id(ij) items in Id(j) (resp. Idj) and each pj,r will pick
id(ij) items in Id{j,r}, which causes a1 to achieve overall utility 0
in her second manipulator round, finally proving the claim.

Consequently from Theorems 5 and 6, it is unlikely that the
ManipSA problem admits FPT algorithms w.r.t. parameters μ(a1)
and n. Hence, these results valorize the XP results on these parame-
ters obtained in Section 3, as well as Theorem 2, which interestingly
shows that the ManipSA problem is FPT w.r.t. parameter μ(a1)+n.

5 CONCLUSION AND FUTURE WORK

We have provided a complete characterization of the parameterized
complexity of finding an optimal manipulation in the sequential allo-
cation protocol w.r.t. some fundamental parameters and their combi-
nations. In particular, we have given FPT and XP results, showing the
tightness of the XP ones by means of corresponding W[1]-hardness
proofs. Some of our positive results are obtained through a novel
dynamic programming algorithm, which might be potentially useful
when considering other parameters.

Several directions for future work are conceivable, like investigat-
ing other parameters and estimating the price of manipulation, i.e., a
worst case ratio measuring the loss in social welfare caused by one
agent manipulating, all the others being truthful. Moreover, it would
be interesting to investigate the sequential allocation protocol under
different realistic assumptions concerning the utility functions and an
incomplete information by the manipulator.

ACKNOWLEDGEMENTS

This work has been partially supported by the Italian MIUR PRIN
2017 Project ALGADIMAR “Algorithms, Games, and Digital Mar-
kets”. We are grateful to Jérôme Lang and Paolo Serafino for helpful
comments and stimulating conversations on this work.

REFERENCES

[1] Haris Aziz, Sylvain Bouveret, Jérôme Lang, and Simon Mackenzie,
‘Complexity of manipulating sequential allocation’, in Proceedings of
the 31st AAAI Conference on Artificial Intelligence, AAAI 2017, Febru-
ary 4-9, 2017, San Francisco, California, USA., pp. 328–334, (2017).

[2] Haris Aziz, Paul Goldberg, and Toby Walsh, ‘Equilibria in sequential
allocation’, in Proceedings of the 5th International Conference on Al-
gorithmic Decision Theory, ADT 2017, October 25-27, 2017, Luxem-
bourg, Luxembourg, pp. 270–283, (2017).

[3] Haris Aziz, Thomas Kalinowski, Toby Walsh, and Lirong Xia, ‘Welfare
of sequential allocation mechanisms for indivisible goods’, in Proceed-
ings of the 22nd European Conference on Artificial Intelligence, ECAI
2016, 29 August-2 September, 2016, The Hague, The Netherlands, pp.
787–794, (2016).

[4] Haris Aziz, Toby Walsh, and Lirong Xia, ‘Possible and necessary allo-
cations via sequential mechanisms’, in Proceedings of the 24th Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2015, July
25-31, 2015, Buenos Aires, Argentina, pp. 468–474, (2015).

[5] Sylvain Bouveret, Yann Chevaleyre, and Nicolas Maudet, ‘Fair allo-
cation of indivisible goods’, in Handbook of Computational Social
Choice, 284–310, Cambridge University Press, (2016).

[6] Sylvain Bouveret and Jérôme Lang, ‘A general elicitation-free proto-
col for allocating indivisible goods’, in Proceedings of the 22nd Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2011, July
16-22, 2011, Barcelona, Catalonia, Spain, pp. 73–78, (2011).

[7] Sylvain Bouveret and Jérôme Lang, ‘Manipulating picking sequences’,
in Proceedings of the 21st European Conference on Artificial Intelli-
gence, ECAI 2014, 18-22 August, 2014, Prague, Czech Republic, pp.
141–146, (2014).

[8] Steven J Brams, Paul H Edelman, and Peter C Fishburn, ‘Fair division
of indivisible items’, Theory and Decision, 55(2), 147–180, (2003).

[9] Steven J Brams and Philip D Straffin Jr, ‘Prisoners’ dilemma and pro-
fessional sports drafts’, The American Mathematical Monthly, 86(2),
80–88, (1979).

[10] Eric Budish and Estelle Cantillon, ‘Strategic behavior in multi-unit as-
signment problems: Theory and evidence from course allocations’, in
Computational Social Systems and the Internet, 1.7. - 6.7, (2007).

[11] Pafnuty Lvovich Chebyshev, ‘Mémoire sur les nombres premiers’,
Journal de Mathématiques Pures et Appliquées, 17, 366–390, (1852).

[12] Paul Erdös and Pál Turán, ‘On a problem of sidon in additive number
theory, and on some related problems’, Journal of the London Mathe-
matical Society, 1(4), 212–215, (1941).

[13] Michael R Fellows, Danny Hermelin, Frances Rosamond, and Stéphane
Vialette, ‘On the parameterized complexity of multiple-interval graph
problems’, Theoretical Computer Science, 410(1), 53–61, (2009).

[14] Thomas Kalinowski, Nina Narodytska, and Toby Walsh, ‘A social wel-
fare optimal sequential allocation procedure’, in Proceedings of the
23rd International Joint Conference on Artificial Intelligence, IJCAI
2013, August 3-9, 2013, Beijing, China, pp. 227–233, (2013).

[15] Thomas Kalinowski, Nina Narodytska, Toby Walsh, and Lirong Xia,
‘Strategic behavior when allocating indivisible goods sequentially’, in
Proceedings of the 27th AAAI Conference on Artificial Intelligence,
AAAI 2013, July 14-18, 2013, Bellevue, Washington, USA., (2013).

[16] Lionel Levine and Katherine E. Stange, ‘How to make the most of
a shared meal: Plan the last bite first’, The American Mathematical
Monthly, 119(7), 550–565, (2012).

[17] Richard J. Lipton, Evangelos Markakis, Elchanan Mossel, and Amin
Saberi, ‘On approximately fair allocations of indivisible goods’, in Pro-
ceedings of the 5th ACM Conference on Electronic Commerce, EC
2004, May 17-20, 2004, New York, NY, USA, pp. 125–131, (2004).

[18] Yuto Tominaga, Taiki Todo, and Makoto Yokoo, ‘Manipulations in two-
agent sequential allocation with random sequences’, in Proceedings of
the 15th International Conference on Autonomous Agents & Multia-
gent Systems, AAMAS 2016, May 9-13, 2016, Singapore, pp. 141–149,
(2016).

[19] Toby Walsh, ‘Strategic behaviour when allocating indivisible goods’,
in Proceedings of the 30th AAAI Conference on Artificial Intelligence,
AAAI 2016, February 12-17, 2016, Phoenix, Arizona, USA., pp. 4177–
4183, (2016).

[20] Mingyu Xiao and Jiaxing Ling, ‘Algorithms for manipulating sequen-
tial allocation’, To appear in the proceedings of the 34th AAAI Con-
ference on Artificial Intelligence, AAAI 2020. Full version available at
CoRR, abs/1909.06747, (2019).

M. Flammini and H. Gilbert / Parameterized Complexity of Manipulating Sequential Allocation106

