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Abstract. Security Games have been widely adopted to model sce-
narios in which one player, the Defender, has to decide how to deploy
her resources to minimize the loss that can be caused by an attack per-
formed by another player, the Attacker, aiming at maximizing such
loss. In the present paper, we focus on scenarios in which the De-
fender has lexicographic-like preferences on the targets, being pri-
marily interested in defending the integrity of a subset of the targets
and, only secondarily, to reduce the amount of the other damaged
targets. Our central motivation for studying this problem comes from
the need to reduce the impact of malicious flows in networks, that
can be either physical, like cities, or virtual, e.g., social networks.

In this work, we introduce a new class of security games to model
these scenarios, characterizing it and proving the NP-hardness of
computing a leader-follower equilibrium, which is the most appro-
priate solution concept for this setting. To compute such an equilib-
rium, we then provide an exact exponential-time algorithm, capable
of exploiting the topological properties of the network. Finally, we
show that, with opportune optimizations, this algorithm can work ef-
ficiently even on network of 10000 nodes.

1 INTRODUCTION

Due to the terrible waves of attacks that invested both US and Eu-
rope in the last decades, guaranteeing protection to people and criti-
cal infrastructures is nowadays a priority for every country. This need
raised the attention of the Artificial Intelligence scientific community
to Security Games (SGs). They are mathematical models customar-
ily used to represent strategic interactions between opposing agents.
SGs are 2-player games set in an environment that contains valuable
targets: one player, the Attacker, aims at compromising such targets
while the Defender must decide how to schedule her scarce resources
to maximize the protection over these critical areas. Generally, it
is assumed that players choose their policies asynchronously: the
Defender announces her choice and then the Attacker, after having
observed the Defender commitment, undertakes her action. This re-
flects natural scenarios in which, for examples, thiefs can observe the
patrolling routes of guards before committing a crime. In this con-
text, the most suitable game-theoretic solution concept is the leader-
follower Stackelberg equilibrium [33], with the Defender acting as
the leader and the Attacker as the follower. Since computing such
an equilibrium in normal-form games requires time that is polyno-
mial in the size of the problem [6], many security games have been
proposed to solve real-world problems. Their development led to ac-
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tual deployments in use today by major security agencies in several
domains. For example, they are employed by LAX airport for check-
point placement [24], the Federal Air Marshal Service for schedul-
ing undercover air marshals [29] and the US Coast Guard for port
patrolling [27]. More recently, they have also been tested for airport
passenger screening [4], wildlife protection [10] and in the cyberse-
curity domain [25], where the goal is to find optimal assignments of
the incoming cyber alerts to analysts in the presence of a strategic
adversary.

Our Problem. In the present paper, we focus on scenarios in which
the Defender has lexicographic-like preferences on the targets, be-
ing primarily to defend the integrity of a subset of the targets—said
critical—and, only secondarily, to reduce the amount of the other—
non-critical—damaged targets. Our central motivation for studying
this problem comes from the need to reduce the impact of malicious
flows in networks. Such networks can be either physical, like cities,
or virtual, considering connections in social networks.

The enormous popularity of social networks and their lack of an
effective control system made them the favorite channel for diffus-
ing either inaccurate and not verified information or even fake news
spread by malicious users for their illicit profit. Limiting this mis-
information diffusion in social networks is nowadays recognized of
paramount importance [28, 32]. Indeed, it can lead to undesirable and
severe consequences, such as widespread panic, libelous campaigns
against competitors, conspiracies, frauds. For example, a large dis-
cussion has been run in U.S. on the manipulating power of the social
media related to the 2017 presidential campaign [22]. In a different
context, many governments are actively working to contrast online
campaigns against vaccinations, which are based on the diffusion of
non-scientifically confirmed news about relations between vaccines
and autism [9]. However, we are often interested in a control sys-
tem that is also able to guarantee the safety of critical target nodes
while limiting the spread of misinformation. For example, one may
want to protect teenagers from killer games on social networks, as
Blue Whale [26]. A widespread technique to contrast misinformation
consists in placing monitors on the network, able to analyze all the
information flowing through them, recognize dangerous information
and eliminate it [38, 2].

The same approach can be adopted to limit the diffusion of violent
actions in the cities: for example, a pacific gathering of people have
become targets of criminal groups willing to generate terror or to
provoke damages. In these cases, monitors could be physical check-
points people must get through to access some areas. Moreover, in
many of these scenarios, there is a red-zone, i.e., a forbidden area that
must not be accessed, and whose damage would provoke irreparable
consequences, thus characterizing it as a critical target.

Due to the large extent of the environment to control and the lim-
ited number of resources the Defender can use, she has to cope with
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an allocation problem. Specifically, the question we want to answer
is the following: how should the Defender place a set of monitors, in
such a way that they can guarantee the safety of one or more critical
target nodes and, at the same time, limit the number of nodes exposed
to the attack?
Our Contribution. In this paper, we define a new class of security
games with additional feasibility constraints over the leader’s strat-
egy space, and we apply it to settings in which an agent wants to stop
the infection started by an adversary. We characterize such games,
proving them not to be unilaterally competitive. Then, we study them
from a computational perspective, proving that computing the leader-
follower Stackelberg equilibrium is NP-hard. Actually, we prove an
even stronger result: computing the best-response of both the At-
tacker and the Defender is an NP-hard problem, even if the Defender
does not have any critical target to protect and the source the At-
tacker uses to begin the infection is known. While a greedy approach
allows the Attacker to still compute a good approximation for her
best response, we show that this is not the case for the Defender’s
best response function, proving that such function is not submodu-
lar so that many known approximation approaches fail to work for
computing it.

Next, we present algorithms to compute the leader-follower Stack-
elberg equilibrium of our game. Although the well-known double or-
acle approach [12] can be applied to the case without critical targets,
the same technique does not work for the case with critical targets
and we need to propose a different approach to compute the equi-
librium that exploits the structure of the problem. We design an al-
gorithm that returns an exact equilibrium, but requires access to an
oracle able to compute the equilibrium of a subgame with no critical
targets. Our algorithm works by looking for the Defender’s equilib-
rium strategy: this corresponds to a specific small cut in a directed
network, and our algorithm proceeds by enumerating cuts of this net-
work to find the one corresponding to the equilibrium. Even though
it is possible to enumerate cuts with only polynomial delay between
two successive outputs [36], it may be the case that the number of
small cuts in a directed graph is exponential in the number of ver-
tices, and thus our algorithm requires exponential time and exponen-
tially many queries to the oracle.

Nevertheless, we show that, by adopting opportune optimizations,
our approach allows to compute a solution to the problem for net-
works of medium size, at the cost of only a small loss in the utility of
the Defender.
Related Works. Threats related to misinformation in online social
networks recently attracted the attention of the scientific commu-
nity [7]. Research on how to contrast misinformation concentrated
on the problems of recognizing it [35] (and references therein), iden-
tifying its sources [19, 21, 13], and limiting its diffusion [5, 38, 2].

Our work focuses on preventing the diffusion of an infection in
a network. As described above, both the infection and the network
can be either physical or virtual. To limit the infection, two main ap-
proaches have been proposed in the literature. The first one, proposed
by [5], relies on the idea of contrasting the spread of misinformation
by injecting true information in the network. Specifically, a true in-
formation campaign is initiated from a subset of highly influential
nodes, so that the diffusion of misinformation and true information
proceeds in parallel, except for nodes that have received the true in-
formation, which will be immune to the misinformation and will not
transmit it. The second approach considers a more difficult case in
which there is no possibility of positively infecting nodes, but only
to place monitors that are able of detecting and blocking misinfor-
mation over the network. Most of the literature focuses on scenarios

in which the Defender has the only goal of minimizing the number
of infected nodes [3, 11, 18, 39]. Recently, [38, 2] studied a novel
scenario for monitor placement by requiring not only that the num-
ber of nodes exposed to misinformation should be limited, but also
that critical targets are not reached. These works study the complex-
ity of the problem and propose algorithms that could be suitable to
compute Defender’s strategies efficiently. However, such algorithms
cannot be exploited in our setting since they assume that the misinfor-
mation sources, i.e., nodes from which the attack starts, are known.
Nevertheless, it is often the case that the Defender has to set up the
monitors before an attack occurs. In this case, an observer may ana-
lyze the network traffic, make an estimate on the position of the mon-
itors, and then plan her attack as her best response to the Defender
strategy. This peculiarity motivates our study and distinguishes our
contribution from that one in the aforementioned works.

A couple of works already analyzed the problem of limiting flow
diffusion within the context of Security Games [30, 34]. We will dis-
cuss similarities and differences of these works with ours when pre-
senting our problem in details (see Section 2).

2 PROBLEM FORMULATION

Our problem can be modeled as a 2-player normal-form game,
played by an Attacker, aiming at maximizing the number of infected
vertices by deploying malicious sources, and a Defender, willing to
block the infection by placing monitors on such network. Hereafter,
we will use the term infected to denote vertices that are reached by
the infection. More formally, a vertex u can be infected if there is a
path in the network connecting a malicious source to vertex u.

Let G = (V,E) be a (connected) graph modeling a network, with
|V | = n and |E| = m. We assign a weight pe ∈ [0, 1] to each
edge e = (u, v) ∈ E, representing the probability that u and v can
spread the infection to each other. For each vertex u ∈ V , we de-
note as N(u) the set of neighbors of u in G and with w(u) ∈ R

the value associated to each vertex.Vertices are also characterized by
two quantities cd(u) ∈ R and ca(u) ∈ R, representing the costs the
Defender and the Attacker, respectively, are forced to pay to put a
monitor or a source on vertex u. Furthermore, in the network there is
a set T ⊆ V of special vertices, called critical targets, that the De-
fender cannot allow being infected. If the network is physical, i.e., a
set of streets, critical targets could correspond to nodes where people
are located, while in a virtual network, e.g., a social network, such
vertices could correspond to profiles of important people that must
not be influenced with wrong information, e.g., about fake terrorist
attacks.

The infection diffuses according to the Independent Cascade
Model with Monitors [15]. Specifically, given a set S ⊆ V of
sources, and a set M ⊆ V of monitors, let S0 = ∅, S1 = S \ M .
At each time step t ≥ 1, St+1 = St and, for each vertex u ∈
St\(St−1∪M) and for each v ∈ N(u)\(St∪M), v is added in St+1

with probability p(u,v).6 In other words, each newly infected vertex
that is not a monitor tries to infect her neighbors, and the probability
of a successful infection depends on the weight on the correspond-
ing edge. Conversely, once a monitor is put on a vertex, it filters the
communication towards its neighbors, thus preventing the contagion
of other vertices. For each v ∈ V , we denote with Prv(S,M) the
probability that vertex v is infected given that sources are in S and

6 Note that this is the probability that v is infected by the single neighbor u
at time step t. If v has another neighbor u′ that have been infected at time
step t − 1, then the probability that v will be infected at time t would be
p(u,v) + p(u′,v).
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monitors are in M . We also define μ(S,M) as the expected value of
vertices infected in G given that sources are in S and monitors are in
M , i.e., μ(S,M) =

∑
u∈V \M w(u) · Pru(S,M).

The game is structured as follows. The Attacker may spend some
budget ba ∈ R+ to deploy sources, a.k.a. seeds, of infection on the
vertices, paying a cost of ca(u) to select u as a source. On the other
side, the Defender, able to put monitors to contain the contagion, may
choose vertex u to be a monitor, paying a cost equal to cd(u), without
exceeding her budget bd ∈ R+. Thus, pure strategies of the Defender
and the Attacker are all possible sets of vertices. Specifically, we
denote with S ⊆ V a pure strategy of the Attacker while we employ
M ⊆ V to indicate a set of vertices on which the Defender has
put monitors. We adopt a leader-follower paradigm, meaning that the
Defender commits to a (mixed) strategy and the Attacker undertakes
her action after having observed the Defender’s commitment.

The goal of the Attacker is to maximize the expected value
μ(S,M) of infected vertices, while the Defender must protect all
critical targets while minimizing the number of infected vertices.
Thus, utilities are defined as follows: for the Attacker, we have
Ua(S,M) = μ(S,M), while the utility of the Defender is Ud =
−Z, for some very large Z, if there is non-zero probability that some
t ∈ T becomes infected, and Ud = −Ua(S,M) otherwise. Hence,
the utility is lexicographic-like, i.e., with a primary objective, namely
to protect target, and a secondary one, i.e., to reduce infected ver-
tices.7

We notice that critical targets are valuable vertices only for the De-
fender and not for the Attacker, whose goal is to spread the infection
as much as possible. We call our game Strategic Monitor Placement
against Infection (SMPI).

Our goal is to find a leader-follower Stackelberg equilibrium
(henceforth, simply called equilibrium) of SMPI. In other words, we
aim at answering the following question: which is the best placement
for the monitors to protect the critical targets while minimizing the
spread of the infection generated by malicious sources?

Game Characterization. Before tackling our problem, we briefly
discuss some connections with [30, 34], where models with features
similar to ours are presented. Nevertheless, we show that such models
cannot capture and solve the problem we propose.

In [34], the authors consider an attack spreading according to the
Independent Cascade Model and they allow Attacker and Defender
to have different evaluations on the infected nodes. Still, there are
many differences with our model: first, they assume that for every
node multiple security strategies are available, and different strate-
gies may be selected for different nodes, independently from each
other; instead, we can only choose monitors, and thus the way differ-
ent nodes are protected are intrinsically interdependent. Second, they
assume that the Defender does not have a budget, even if each secu-
rity strategy has a cost: hence, the set of security strategies available
to their Defender is not limited as in our setting. Moreover, the re-
sults of [34] focus on a model that is even simpler: they assume that
the Attacker may infect a single node and that the probability that
a node is compromised does not depend on the security strategies
of other nodes except the one infected by the Attacker. Conversely,
in our model, the Attacker may place more than one source and the
probability that a node is infected heavily depends on a monitor be-

7 Our utility functions must not be confused with lexicographic preferences
on lottery outcomes. For the latter it is known that they cannot be translated
in utility functions, and hence a (mixed strategy) Nash equilibrium may
not exist. In our definition, we explicitly state the utility function modeling
preferences of the Defender, and hence an equilibrium always exists by
Nash theorem.

v0

v1v2 v3

v4

v5v6v7

Figure 1. Network employed in Example 1.

ing between the seeds and the node itself.
In [30], the authors propose the following game: an Attacker

chooses a set of sources from which misinformation is spread over a
social network, and the Defender chooses a set of nodes from which
true information is diffused. The Attacker’ goal is to maximize the
number of infected nodes, while the Defender’s one is to minimize it.
There are three main differences between our model and [30]: first,
the diffusion model we use is the Independent Cascade Model, while
the authors use a Linear Threshold Model. Then, they do not consider
the presence of critical targets. Finally, and most importantly, while
in [30] the Defender can directly conquer nodes of the network in-
jecting true information, in our model we can only adopt surveillance
measures, i.e., place monitors on the network to detect and block the
infection. The following example shows that this difference distin-
guishes the two models even if we consider the same diffusion model
and no critical targets.

Example 1. Consider network in Figure 1.
Let us assume that pe = 1 for every edge e ∈ E, w(u) = 1 for

every vertex u and budgets are ba = bd = 1. Costs are as follows:
ca(v0) = cd(v0) = 1, cd(v3) = cd(v5) = 0.5, ca(v4) = 1, with
other costs, for both Attacker and Defender, being greater than 1.

We consider that (mis)information spreads on the network accord-
ing to the Independent Cascade Model, and we do not make any as-
sumption on the tie-breaking rule used whenever a node is activated
at the same time both by the Defender and by the Attacker. Specifi-
cally, our result holds for every tie-breaking rule.

Given these costs and budgets, the Defender has two possible
choice for monitors, M ′ = {v0} or M ′′ = {v3, v5} while the At-
tacker can put her source either in S′ = v0 or in S′′ = v4. It is
easy to check that (M ′, S′′), is an equilibrium in the model of [30].
Indeed, if the Defender put the seed in v0, the Attacker may put hers
either in v0, with a utility of 0, or in v4, getting a utility equal to 2, by
infecting nodes v3, v5. Conversely, if the Defender places the seeds
in M ′′, the Attacker may put her seed in v4, getting 0, or in v0, get-
ting a utility of 4, infecting nodes v1, v2, v6, v7. Thus, the Defender
will commit to v0 and the Attacker will best respond playing v4.

However, (M ′, S′′) is not an equilibrium in our model. Indeed, if
the Defender puts a monitor in v0, the Attacker would choose v4 and
would infect all nodes of the network, thus getting a utility equal to 6.
Conversely, if the Defender places her monitors in M ′′, the Attacker
can put her source either in v0 or in v4. In the former case, she would
get a utility of 4, infecting nodes v1, v2, v6, v7, while selecting v4
she would get 0. Therefore, the best strategy for the Defender is to
place monitors in M ′′, with the Attacker best responding by putting
a source in v0.

An interesting property about SMPIs is that they are not unilater-
ally competitive [17], as stated in the following proposition.
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Figure 2. Network employed to prove Proposition 1.

Proposition 1. SMPIs are not unilaterally competitive games, i.e.,
it is not true that whenever the utility of the Defender increases, the
utility of the Attacker do not increase, too. The claim holds even if
all vertices have unitary cost, both for the Attacker and the Defender,
and unitary value.

Proof. Consider the network in Figure 2, where p < 1.
Let T = {v∗}, ba = bd = 1. Having the Defender a unitary

budget, she can place only one monitor in the network. If the monitor
is in v2, the Attacker responds by placing the source in v0. Then, the
Defender’s utility is −Z, being the target infected with probability
1, whereas the Attacker utility is 1 + p, since she infects v1 and v∗

with probability p and 1, respectively. Conversely, if the monitor is
in v0, then the target cannot be infected, and the cost of the Defender
is the same as the Attacker’s utility, i.e., 2, since v2, v3 are infected
with probability 1 if the source is in v1. Thus, both players increase
the utility when the monitor is moved from v2 to v0.

3 COMPUTATIONAL ANALYSIS

We now study our problem from a computational perspective, show-
ing its hardness.

Theorem 1. No polynomial-time algorithm computes an equilibrium
for SMPI, unless P = NP, even if there are no critical targets.

Actually, we prove a stronger result, namely that even computing
the best-response of the Attacker is hard, even if the Defender has
a dominant strategy. The hardness of computing an equilibrium for
SMPI then follows directly: indeed, since we adopt a leader-follower
paradigm, the Attacker undertakes her action after the Defender’s
commitment to her dominant strategy, best responding to it, and so
an equilibrium for SMPI cannot be computed in polynomial time if
we cannot efficiently compute the Attacker’s best response in this
scenario. We now formally state this result.

Lemma 1. Finding the best response for the Attacker in SMPI is
NP-hard, even if the Defender has a dominant strategy, can place a
single monitor and there are no critical targets.

Proof Sketch. We are given an SMPI game on a graph G = (V,E),
a set M ⊆ V of monitors already placed by the Defender, and an
integer K, and we ask whether there is a set S ⊆ V of size at most
ba such that, placing the seeds on S, the Attacker infects an expected
number of vertices greater than or equal to K.

Our proof extends the one in [16] and reduces this problem from
the problem of finding a vertex cover in a cubic graph (VC3), i.e.,
a graph in which every vertex has degree exactly equal to 3. In this
problem, we are given a graph G′ = (V ′, E′), with |V ′| = n′ and
|E′| = m′, s.t. for every vertex u ∈ G′ there are exactly 3 edges
incident on it, and an integer K′ = m′(1+α)

3
for some α ∈ [0, 1], and

we ask whether there is a set T ⊆ V ′ of at most K′ vertices, s.t. for
every u ∈ V ′ \T there is at least one neighbor of u in T . It is known
that for VC3 there is ε > 0 s.t. it is NP-hard even distinguishing if a
vertex cover of size at most K′ exists or every set T ⊆ V ′ of at most
K′ vertices covers a fraction at most (1− ε) of the edges [1].

y1

d

y�

v1 vn′

t1 tm′

Figure 3. Network employed to prove Lemma 1.

For every instance of VC3, we build an instance of our problem
as follows. Graph G consists of the following 2�+ 1 vertices, where
� = n′ +m′; a vertex vu is added for each vertex u ∈ V ′; a vertex
te is added for each element e ∈ E′; vertices y1, . . . , y�; vertex d.
Edges among these vertices are as follows: there is an edge (vu, te),
with u ∈ V ′ and e ∈ E′ only if e is incident on u; and there is an
edge between d and each other vertex in the network. The resulting
graph is depicted in Fig. 3. Moreover, we assume that pe = p ∈[
1
2
, 1
)

for every edge e = (vu, te), and pe = 1 for every remaining
edge. We set ba = K′, ca(vu) = 1 and w(vu) = 0 for every u ∈ V ,
ca(te) = K′ + 1 and w(te) = 1 for every e ∈ E, ca(d) = 1 and
w(d) = 1, ca(yi) = K′ + 1 and w(yi) = 1 for i = 1, . . . , �, and
M = {d}. Let us also set Φ0 = p(2p2 − p4)(2 − p(2p2 − p4)),
Φ1 = p + (1 − p)p(2p2 − p4), and Φ2 = p + (1 − p)p. Observe
that Φ2 is exactly the probability that a vertex te is infected if both
neighbors are infected, Φ1 is exactly the probability that a vertex te
is infected if only one neighbor is infected and there is at least one
neighbor infected for each vertex te′ with e′ ∈ E; finally, Φ0 is the
probability that a vertex te is infected if no neighbor is infected and
there is at least one neighbor infected for each vertex te′ , with e′ �= e.
Moreover, observe that, by our choice of p, it holds Φ2 − Φ1 <
Φ1 − Φ0. Finally, we set K = (1− α)m′Φ1 + αm′Φ2.

It is not hard then to check that if there is a vertex cover of size
K′, then there are sources from which the infection reach K vertices
in expectation. On the other side, if for every set T ⊆ V ′ of at most
K′ vertices there is a fraction 1− εT , with εT ≥ ε, of edges e such
that no vertex incident on e is in T , then there is no choice of sources
such that the number of expected infected vertices is at least K.

We finally observe that M is the Defender’s dominant strategy.

The above proof can be adapted to show that there is ε > 0 s.t.
computing a (1 − ε)-approximation to the Attacker’s best-response
is NP-hard. However, a good approximation for this problem still
exists. To this aim, recall that a function f defined on sets–as the
Attacker’s best-response—is monotone if, for every A and every x /∈
A, it holds that f(A ∪ {x}) ≥ f(A). f is submodular if, for every
A ⊂ B and every x /∈ B, it holds that f(A∪{x})−f(A) ≥ f(B∪
{x})−f(B). Conversely, it is supermodular if f(A∪{x})−f(A) ≤
f(B ∪ {x}) − f(B). If f is both monotone and submodular, then
there is a greedy algorithm that, for every b, returns a set B s.t. |B| ≤
b and f(B) ≥ αmaxA : |A|≤b f(A), with α = 1 − 1

e
[20]. It is not

hard then to see that the problem of finding the best-response of the
Attacker is monotone and submodular with respect to the number of
sources. Hence, despite the hardness result, one can easily compute
an α-approximation.

We now turn to the Defender, proving that computing her best re-
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Figure 4. Network employed to prove Lemma 2. Here p = 1 for all edges.

v0 va

v3 v2

v1

Figure 5. Network employed to prove Lemma 2. Here p = 1 for all edges.

sponse is hard, even if there is no critical target. Indeed, (the decision
version of) this problem is equivalent to the Vaccination Problem,
which has been proved to be NP-hard [8]: here we are given a graph
G′ = (V ′, E′), a set of infected vertices I ⊆ V ′, a cost c(v) for each
v ∈ V ′, a budget B, and an integer K′, and we ask whether there is
a set of vertices P ⊆ V ′ \ I such that

∑

v∈P
c(p) ≤ B, and if vertices

in P are removed from the graph, then the number of vertices that
have a path from some w ∈ I in G′ is smaller than or equal to K′.

However, the Defender’s best-response problem turns out to be
even more difficult than the Attacker’s one. In fact, we next show that
the former is neither submodular nor supermodular with respect to
the number of monitors, so that none of the approximation techniques
known for these classes of functions can be exploited. Interestingly,
the result holds even if the Defender has no critical targets to protect
and, for all the vertices u, ca(u) = cd(u) = w(u) = 1.

Lemma 2. The Defender’s utility function is neither submodular nor
supermodular, even if there are no critical targets, and all the vertices
have unitary cost, for both players, and unitary value.

Proof. Consider the network given in Figure 4.
Let va be the Attacker’s seed. Let A = {v3} and B = {v2, v3}.

The Attacker’s utility when the monitor is in A is 3, since she can in-
fect v0, v1, and v2. If monitors are in A∪ {v1} or in B = A∪ {v2},
the Attacker’s utility is 2, since she can infect v0 and the non-
monitored vertex between v1 and v2. Finally, the Attacker’s utility
when monitor are in B ∪ {v1} is 0, since she cannot infect any ver-
tex. Recalling that, without critical targets, the game is zero sum, we
observe that: f(A ∪ {v1}) − f(A) = −2 − (−3) = 1 < 2 =
f(B ∪ {v1})− f(B).

Unfortunately, the Defender’s utility function turns out to be also
non supermodular. Consider the network given in Fig. 5.

As above, let va be the Attacker’s seed and let A = {v1} and
B = {v0, v1}. The Attacker’s utility when the monitor is in A is
3, since she can infect v0, v2, and v3. The Attacker’s utility when
the monitors are in A ∪ {v3} is 1, since she can infect only v0. The
Attacker’s utility when the monitors are in B or in B ∪ {v3} is 0,
since she cannot infect any vertex. Since the game is zero sum in this
case, we observe that f(A ∪ {v3}) − f(A) = −1 − (−3) = 2 >
0 = f(B ∪ {v3})− f(B).

Whereas these negative results imply that even designing a good
approximation algorithm may be an hard task, still recent literature

introduced several heuristics with experimentally acceptable perfor-
mances [11, 37, 39, 2]. Moreover, almost all of these works show that
centrality measures, e.g., variants of the well-known PageRank algo-
rithm [23], also are experimentally a good, and often more-efficient,
alternative to more complex algorithms.

We note that both the Defender’s best-response hardness result and
the proof of Lemma 2 assume that the source of infection (i.e., the
choice of the Attacker) is known. However, it is not hard to see that
these instances may be modified in order to make the Attacker’s strat-
egy dominant: e.g., in Figure 4 one may connect va to a large number
of expensive (for both the Attacker and the Defender) nodes. Hence,
our results imply hardness (and absence of submodularity) even if
the Defender commits to a strategy before than the Attacker decides
the sources of infection.

4 AN EXACT ALGORITHM

In this section we present some approaches able to compute an equi-
librium for SMPI that scale well in practice, even if in the worst case
they require exponential time.

Let us first consider the case where no critical target exists. Ob-
serve that in this case, the game is zero-sum. Several approaches
have been introduced in literature for computing the leader-follower
Stackelberg equilibrium of a zero-sum game. The most successful is
the double oracle approach [12], that is based on the iterative com-
putation of the best response of one player w.r.t. a known strategy
of the other. Unfortunately, results given in previous section, prove
that even computing these best-response oracles is NP-hard. Never-
theless, it would still possible to adopt approximation algorithms or
heuristic as oracles, just as the ones introduced in the previous sec-
tion. Experimental evidence exists that an outcome close to an equi-
librium can be quickly returned even in this case (see, e.g., [30]).

Unfortunately, heuristic oracles do not work when we introduce
critical targets. Indeed, it is not hard to design instances in which
heuristics lead the double oracle approach to outcomes in which there
is a chance for the Attacker to infect the targets, even if there is an
equilibrium in which this never occurs: for example, if PageRank
is adopted as Defender’s oracle, then one can think of a ring and a
center node connected to every ring node, infection probabilities 1 on
every edge, w(u) = cd(u) = ca(u) = 1 for every u, budget equal
to 1 for both the Attacker and the Defender, and the target being a
ring node. It is easy to see that the oracle chooses the center node,
allowing the Attacker to reach the target, regardless of the selected
source, whereas it would be possible for the Defender to protect the
target by placing the monitor directly on it. Similar (more complex)
constructions can be given for different heuristics.

For this reason we propose a different approach that exploits the
structure of the problem. We assume that Z = ∞, and present an
approach that computes an exact equilibrium whenever an oracle re-
turning an equilibrium for a SMPI with no critical targets is pro-
vided. It will be immediate to see that our approach still works even
if one considers finite large Z, by returning an approximate equilib-
rium, with the approximation factor that depends on how large Z is
with respect to the infection probabilities and the number of nodes
in the network. We stress that very large values of Z are required by
the nature of the problems considered in this work, namely to have
lexicographic-like preferences.

Consider an SMPI with network G = (V,E), critical targets T ,
Defender’s and Attacker’s costs cd(u) and ca(u), and budgets bd and
ba. Consider the network G′ = (V ′, E′) where critical targets v ∈ T
are substituted by a unique super-vertex t such that the edge (u, t),
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for u ∈ V ′ = V \ T , exists if and only if (u, v) ∈ E for some
v ∈ T . We also write |G′| to denote the size of G′. A vertex cut
of G′ is a separator, that is set C ⊆ V s.t. the removal of vertices
of C from G′ disconnects the graph in two components (LC , RC),
where we always identify RC with the component containing t. The
size |C| of a vertex cut is the sum of the costs of vertices in C, i.e.,
|C| = ∑

u∈C cd(u).
Given a vertex cut C, the game induced by C is a SMPI game with

network H = (LC ∪ RC , E), where, for every u, v ∈ LC ∪ RC ,
(u, v) ∈ E if and only if (u, v) ∈ E′, no critical target, Defender’s
and Attacker’s costs cd(u) and ca(u), and budgets b′d = bd − |C|
and ba. In what follows, we assume that we are provided a subgame
equilibrium oracle that, for every vertex cut C, computes the equi-
librium of the game induced by C. Actually, since in these games
there is no critical target for the Defender, then, as suggested above,
an outcome close to the equilibrium can be easily computed through
a double oracle approach. Now we can state the following theorem.

Theorem 2. There exists an algorithm that, having access to a
subgame equilibrium oracle, computes an equilibrium of the SMPI
game. Moreover, if N is the number of vertex cuts in G′ of size at
most bd, the algorithm runs in time O(N · poly(|G′|)), and requires
at most O(N) accesses to the oracle.

We say that an equilibrium protects the Defender’s critical tar-
gets if there is zero probability that these targets are infected when-
ever both the Defender and the Attacker follow the equilibrium. In
Lemma 3, we give a characterization of these equilibria.

Lemma 3. An equilibrium that protects the Defender’s critical tar-
gets exists if and only if there is vertex cut C in G′, of size at most
bd, such that the equilibrium (M,S) of the game induced by C has
S ⊆ LC .

Proof. As for the If direction, let C be the set of vertex cuts C of
G′ of size at most bd such that the equilibrium (M,S) of the game
induced by C has S ⊆ LC . By hypothesis, C contains at least one
element. For every C ∈ C, consider the profile (C ∪ M,S), where
(M,S) is the equilibrium of the game induced by C8. Then, among
these profiles, there must be at least one profile (C� ∪M�, S�) that
maximizes the utility of the Defender. We claim that (C� ∪M�, S�)
is an equilibrium. Clearly, given the cut C�, neither the Defender nor
the Attacker may improve her utility, since (M�, S�) is an equilib-
rium of the game induced by C� and S� ⊆ LC� . Moreover, accord-
ing our choice of C�, the Defender cannot improve her utility by
choosing another vertex cut in C. Finally, every C /∈ C either is not
a vertex cut of G′, or it is a vertex cut but S is not a subset of LC ,
and thus it is a subset of RC . Observe that in both cases, either M is
a vertex cut that, as observed above, cannot generate an equilibrium
preferred by the Defender to (C� ∪M�, S�), or the Attacker infects
t with non-zero probability from every vertex in S, meaning that the
Defender does not protect her critical targets, and thus her utility is
lower than the one provided by (C�, SC�).

The Only if direction follows by similar arguments.

The above characterization is useful to design an algorithm to ver-
ify if there exists an equilibrium (M,S) that protects the Defender’s
critical targets, and, if so, to compute it.

8 For readability, we assume that M is a pure strategy. However, our argument
can be immediately applied even if the oracle outcome consists of mixed
strategies.

Lemma 4. There exists an algorithm that, given access to a subgame
equilibrium oracle, verifies if there exists an equilibrium that protects
the Defender’s critical targets. Moreover, if N is the number of vertex
cuts in G′ of size at most bd, such algorithm runs in time O(N ·
poly(|G′|)), and requires at most O(N) accesses to the oracle.

Proof. According to Lemma 3, it is sufficient to show that there is a
vertex cut C in G′ of size at most bd s.t. the equilibrium (M,S) of
the game induced by C is such that S is a subset of LC .

Computing a vertex cut in G′ is equivalent to find a cut in a
directed weighted graph G′′ achieved from G′ by substituting ev-
ery vertex v in G′ with vertices vin and vout connected by a di-
rected edge e = (vin, vout) with weight cd(v), and every edge
e = (u, v) with directed edges (uout, vin) and (vout, uin) with weight
W > n maxv∈V cd(v). Observe that all the edge cuts of G′′ of total
weight less than W only involve edges (vin, vout) for some v ∈ G′,
and the removal of each of these edges in G′′ is equivalent to the
removal of v in G′. Moreover, we can also enumerate all the vertex
cuts of G′ of size at most bd. As described above, this is equivalent
to enumerate all the cuts of G′′ in a non-decreasing order of weights
until a cut of size larger than bd is found.

To verify if there exists an equilibrium that protects the Defender’s
critical targets, we can simply enumerate all the vertex cuts C of G′

of size at most bd, and check, for each of them, if the equilibrium
(M,S) of the game induced by C is such that S is a subset of LC .
As discussed above, this can be done if the access to a subgame equi-
librium oracle is given.

The second part of the claim holds since enumerating the cuts of
G′′ only requires O(n′m′ log(n′2/m′)) steps between two succes-
sive cuts [36], where n′ is the number of vertices in G′′ (that is, n′ =
2n) and m′ the number of edges in G′′ (that is, m′ = n+ 2m).

The above algorithm also provides a way to compute an equilib-
rium that protects the Defender’s critical targets if any.

Lemma 5. There exists an algorithm that, given access to a sub-
game equilibrium oracle, computes an equilibrium that protects the
Defender’s critical targets, if any. Moreover, if N is the number of
vertex cuts in G′ of size at most bd, such algorithm runs in time
O(N · poly(|G′|)), and requires at most O(N) accesses to the ora-
cle.

Proof. According to Lemma 3, if there is a vertex cut C in G′ of size
at most bd such that the equilibrium (M,S) of the game induced by
C is such that S is a subset of LC , then an equilibrium that allows
the Defender to protect the critical target exists. However, this does
not mean that (C ∪M,S) is necessarily an equilibrium.

In fact, there may be different cuts satisfying the above property,
leading to different profiles with different costs for Defender. Still,
the strategy that the Defender may announce in an equilibrium that
protects the Defender’s target must contain a vertex cut C′ of G′

of size at most bd such that the equilibrium (M ′, S′) of the game
induced by C′ is such that S′ is a subset of LC′ , otherwise, there is a
target that is infected with non-zero probability. Hence, it is possible
to find the equilibrium by enumerating all vertex-cuts C of G′, and
returning the pair (C ∪ M,S) that minimizes the Attacker’s utility,
when (M,S) is the equilibrium of the game induced by C.

The second part of the claim follows from the complexity of enu-
merating the vertex-cuts of G′, discussed above.

We can now prove Theorem 2.
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Proof of Theorem 2. According to Lemma 4, there is an algorithm
to verify if there exists an equilibrium that protects the defender’s
targets. If such an equilibrium exists, then, according to Lemma 5,
there is an algorithm to compute it.

Conversely, suppose that such an equilibrium does not exist. This
means that for every strategy the Defender can commit to, the best-
response of the Attacker allows infecting the targets with non-zero
probability. Hence, for every announced strategy of the Defender,
there is no alternative action that she can commit to that gives her
a lower cost. Thus, an equilibrium consists of choosing an arbitrary
strategy for the Defender, and computing the corresponding Attacker
best-response.

The complexity follows from Lemma 4 and 5.

By Theorem 1, the algorithm described in Theorem 2 is not poly-
nomial, unless P = NP, since it requires to compute subgame equi-
libria that is an NP-complete problem. Moreover, in the worst case,
the algorithm has to enumerate all the cuts in G′′ of size at most bd.
While this number is known to be small for undirected graphs if bd is
not too large [14], for directed graphs (as G′′ is) it may happen that
the number of minimum cuts is exponential in the size of the graph
[31].

However, we remark that on tree topologies, this algorithm turns
out to be polynomial since the best responses of both the Attacker and
the Defender can be computed in polynomial time, and the number
of vertex cuts is polynomial, too.

Moreover, in the next section we propose several optimizations to
the algorithm presented in this section and we will show that practical
performances allow it to be efficiently implemented in every network
of medium size.

5 OPTIMIZATION AND EXPERIMENTS

Previous section presented an algorithm, based on the double oracle
approach and using a cut enumeration procedure, to find an equi-
librium of the SMPI game. As highlighted above, the algorithm is
exponential in the worst case, and it may be unpractical due to the
large number of cuts to be enumerated. Still, we show that through
simple optimizations, the algorithm can be made practical for net-
works of medium size at the cost of a very small loss in the quality
of the solution, defined as the Defender’s utility.

First, observe that in order to compute the utility of both the At-
tacker and the Defender, it would be necessary to consider all paths
rooted in seeds. This operation may be quite expensive on large net-
works. For this reason, we optimize our algorithm by filtering out
paths that bring the infection with very low probability.

Whereas above optimization turns out to be very useful, it still
does not address the main bottleneck of our algorithm, namely the
large number of cuts that need to be enumerated. Moreover, cut enu-
meration algorithms do not care about the size of the generated par-
titions: they may for example return a cut C such that LC is very
small (e.g., contains less then ba) nodes, and hence cause that the
attacker best response would be to place at least one seed in RC ,
and thus potentially infecting the target. Thus, most of the enumer-
ated cut will be discarded. To address this issue, we apply a reverse
approach: we first compute a subgame equilibrium (S,M ′) oracle
on the full network, with Attacker’s budget ba and Defender’s bud-
get b′d ≤ bd; next we place the remaining δ = bd − b′d Defender’s
monitors on a vertex cut C of size δ, chosen only among the ones in
which S ⊆ LC . The cut enumerating algorithm in [31] allows to im-
plement this constraint efficiently, resulting in a very large reduction

Figure 6. Performances of the exact algorithm and its optimization.

of the number of enumerated cuts. The equilibrium is then computed
by repeating above procedure for multiple values of b′d, and to choose
the best one. Note that there may be exponentially many values of b′d,
that would be necessary to check, in order to consider all possible al-
ternatives. However, we run a further optimization, by only varying
b′d by discrete steps within the interval [0, bd].

In order to evaluate the performance of this algorithm, we run it
on synthetic Small World undirected graphs with increasing number
of nodes and the 1% of them, selected at random, marked as criti-
cal targets. Values and costs of nodes are assigned randomly from a
range [1, log |V |]. Edge probabilities also are assigned uniformly at
random. We set the Defender’s budget to be the 2% of the total value
of the network, and the Attacker’s budget to be the 6%. Moreover, in
order to choose the parameters suggested required by the optimiza-
tions described above, we run extensive experiments. It turns out that
better results9 are achieved when we filter out all paths whose infec-
tion probability is at most 0.07 and we will consider a step size for
the enumeration of b′d equivalent to the 0.1% of bd.

Figure 6 reports a comparison of the size of graphs for which a so-
lution to the problem is computable within a time limit of 25 hours10.
It turns out that our optimizations improve over the original exact al-
gorithm by a factor of at least 30, allowing to compute a solution to
the problem even for network of 10000 nodes. This solution differs
from the optimal solution of at most 10% (clearly, more precise re-
sults can be achieved by opportunely tuning parameters). Moreover,
it turns out that monitors placed by the optimized algorithm never
allows the attacker to infect the critical targets.

6 CONCLUSIONS

In this paper, we defined a new class of security games to study
network-flows attack settings, introducing additional feasibility con-
straints over the Defender’s strategy space. Our model could be ap-
plied in the general context of controlling flow of traffic through a
(physical or computer) network to guarantee that specific vertices
are not reached. For example, whenever security agencies have to

9 Here, we mean that these parameters are the largest ones that assure the
results to be close to the one achieved by the original exact algorithm.

10 Simulations have been run on a CPU Intel Core i7 860 2.8 GHz, 4 core
with 8MB cache and 4GB RAM. For each choice of the number of vertices
going from 30 to 10000, the figure shows an average of 10 different runs.
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primarily guarantee the safety of specific infrastructures (red zones)
and then limit the area exposed to the attacks of an enemy. In these
scenarios, monitors can represent squads placed in a checkpoint or
alarm systems. We demonstrated that our game model is not unilat-
erally competitive, and we proved that computing the leader-follower
equilibrium is a hard problem even if the Defender does not have any
critical target to protect and then showed that the Defender’s best
response is neither submodular nor supermodular. To compute the
leader-follower equilibrium, we designed an exact algorithm, and we
showed that, by applying opportune optimizations, it has good ex-
perimental performances. In our experiments, we decided to choose
critical targets at random to provide a robust test case to evaluate the
performance of the proposed algorithm. However, it would be very
interesting to evaluate how the behavior of the algorithm is affected
from how far critical targets are from each other.

In the future, we will enrich our model considering new real-
world features, e.g., a time constraint on the misinformation or a
non-constant health status to each vertex, such that a non-infected
vertex may change its status faster or slower than an infected one.
Finally, it would be interesting to give the Defender the possibility to
both inject true information in the network and place monitors on the
vertices, and to find the best trade-off among these actions in terms
of both protection and cost.
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M. Tambe, ‘A Double Oracle Algorithm for Zero-sum Security Games
on Graphs’, in AAMAS, pp. 327–334, (2011).

[13] J. Jiang, S. Wen, S. Yu, Y. Xiang, W. Zhou, and E. Hossain, ‘Identify-
ing Propagation Sources in Networks: State-of-the-art and Comparative
Studies’, IEEE COMMUN SURV TUT, 17(9), (2014).

[14] D. R Karger, ‘Minimum Cuts in Near-linear Time’, JACM, 47(1), 46–
76, (2000).
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