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Abstract. Eigentrust is a simple and popular method for trust com-
putation, which uses both direct and indirect information about indi-
vidual performance to provide a global trust rating. This final trust
value is based on eigenvectors computed through the Power Method.
However, under certain network topologies, the Power Method can-
not be used to identify appropriate eigenvectors. After characteris-
ing these cases, we overcome Eigentrust’s limitations by extending
the algorithm’s core ideas into the Max-Plus Algebra. An empiri-
cal evaluation of our new approach demonstrates its superiority to
Eigentrust.

1 Introduction

Eigentrust is a popular approach to the calculation of trust with lo-
cal information [10]. The functioning of the algorithm presupposes
the free flow of interaction experiences across a network of agents
(i.e., the transfer of reputation information across the system), thus
improving or augmenting the information set (based on direct expe-
rience) of the querying agent. Eigentrust views trust as a normalised
score of reliability computed through the querying agent’s own (di-
rect) experience, and the indirect experience information gathered
from other agents in the system, i.e., reputation.

The query may be replicated by any other agent within the initial
vicinity, and their neighbours’ neighbours. This information is aggre-
gated into a single value where the credibility parameters specified
by the agent posing the query serve as weights. The resulting mea-
sure, computed using the Eigentrust algorithm, globally converges to
the level of trust placed in the agent about which the query was made,
and the updated trust values of all other agents in the system.

At the technical level, whenever a query is issued, Eigentrust
stores local trust scores in a matrix which is then multiplied by an
initial vector of trust values. The resultant vector is again multiplied
by the trust matrix, and the operation repeated until the vector con-
verges to a fixed-point. This final vector is expected to coincide with
the dominant eigenvector of the original trust matrix, and the final
vector is treated as an accurate global trust value for the agents in the
system.

Due to its simplicity, theoretical foundations, and resulting em-
pirical behaviour, Eigentrust is widely used in domains such as P2P
systems [13], Internet-of-Things architectures [2], and Ad-hoc Sen-
sor Networks [18]. While Eigentrust performs particularly well in
networks of homogeneous agents such as P2P systems, it does not
work as well in other environments.
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In this paper we study the performance of Eigentrust in networks
with various degrees of connectivity, and describe the cases where
the algorithm accurately predicts global trust scores, others where it
is somehow inaccurate but useful (e.g., where it can spot malicious
behaviour), and those where it may be misleading. We provide a the-
oretical characterisation of all these cases to build on Eigentrust’s
core ideas toward a more generally applicable procedure.

Our goal is to formulate an algorithm that operates across more
diverse environments than Eigentrust does. We argue that Eigentrust
performs poorly in precisely those cases where convergence to the
dominant eigenvector does not occur. By framing the trust-measuring
problem within a different algebraic structure — the Max-Plus Alge-
bra [7] — we are able to obtain informative trust ratings in those sit-
uations where Eigentrust fails. We argue that this occurs —- in part
— due to Eigentrust’s conflation of the case where an agent has no
trust in another, and the case where an agent is unable to interact with
another, and the fundamental idea of our approach is to differentiate
between these two situations.

Our core contributions are therefore as follows: (1) A character-
isation of where, and why, Eigentrust performs poorly; (2) A new
Eigentrust-like algorithm based on the Max-Plus algebra which over-
comes Eigentrust’s weaknesses; (3) An empirical evaluation of the
new algorithm’s performance compared to Eigentrust.

The remainder of this paper is structured as follows. The next sec-
tion describes the Eigentrust algorithm and the algebraic assumptions
it is founded upon. Section 3 describes the Max-Plus Algebra, and
characterises the corresponding trust measuring problem. In Section
4 we present the results of our approach. The last two sections dis-
cuss our findings and provide suggestions for future work.

2 Eigentrust

2.1 The Eigentrust Algorithm

Eigentrust considers interactions between pairs of agents and ob-
serves the corresponding outcome [10]. If we let sij denote the differ-
ence between the number of successful and unsuccessful interactions
between agents i and j, then cij = max(sij , 0)/

∑
k max(sik, 0)

can be viewed as a normalised measure of trust between i and j.
Eigentrust assumes that trust is transitive, i.e., i’s trust in k can be
computed from its level of trust in j, and j’s trust in k:

tik =
∑
j

cijcjk (1)

this property means that trust in every agent, within a connected com-
ponent, can be computed in a similar manner.

The set of cij values can be represented as a trust matrix C of
local trust scores. To capture the transitive nature of trust, C must be
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applied to a vector of initial trust values r, depending on the relative
position of the agent about whom the query was made. Repeating
this multiplication incorporates direct and indirect trust information,
about all relevant neighbours, into the production of a vector of stable
trust values for every agent in the system.

Repeated multiplication of C reduces the importance of the pre-
cise contents of r, which can in fact (effectively) be random. The re-
peated multiplication of C then guarantees that the final trust ranking
converges to the “true” distribution of trust values as given by the ma-
trix’s dominant eigenvector — provided it is unique. The procedure
through which the dominant eigenvector is calculated is called the
Power Method [5]. Algorithm 1 summarises the Eigentrust approach
to quantifying trust. We note that the final trust value associated with
agent i occurs at index i within the eigenvector.

Algorithm 1 Eigentrust

1: t(0) ← r
2: repeat

3: t(k+1) ← CT t(k)

4: δ ← |t(k+1) − t(k)|
5: until δ < ε

2.2 The Algebraic Conditions Behind Eigentrust

Since Eigentrust will only operate correctly when the Power Method
converges, we now consider one case where Eigentrust performs
poorly due to the nonexistence of the dominant eigenvector, and the
outright unattainability of convergence. We then characterise one sit-
uation where the Power Method is applicable but uninformative, and
another where it is fully applicable.

2.2.1 Diagonalisable Square Matrices

Suppose the matrix C satisfies the following two conditions:

1. C is diagonalisable, i.e., there exists an invertible matrix P such
that D = P−1CP. Here, D is a diagonal matrix; and

2. C has a dominant eigenvalue λ0. That is, if λ0, . . . , λn−1 are
the eigenvalues of C, then it is the case that |λ0| > |λi| for
i = 1, . . . , n − 1. The eigenvector associated with the dominant
eigenvalue is termed the dominant eigenvector.

In such a situation, the Power Method converges to the dominant
eigenvector of C. Note that if the matrix C satisfies the two condi-
tions above, then these results also apply to its transpose.

Example 1 The following matrix depicts a situation where agents
a0, a1 and a2 have limited information about one another.

A =

⎛
⎝

a0 a1 a2

0.75 0 0.25
0 1 0

0.25 0 0.75

⎞
⎠

Despite being diagonalisable, the three eigenvalues of A are λ0 =
λ1 = 1 and λ2 = 0.5. As A does not have a dominant eigenvalue,
the convergence of the Power Method cannot be guaranteed. The lack
of connectivity between agents induces an unstable outcome.

While Eigentrust could — potentially — be applied to each con-
nected component in such a graph, this would require additional

knowledge of the network structure. Furthermore, in dynamic situ-
ations questions arise as to how trust across connected components
should be merged when the topology of the network changes.

Example 2 Consider the following trust matrix.

B =

⎛
⎝

a0 a1 a2

0.1 0.55 0.35
0 0.8 0.2
0 0 1

⎞
⎠

This matrix is upper triangular with distinct diagonal entries, and
has eigenvalues λ0 = 1, λ1 = 0.8 and λ2 = 0.1. Therefore, for a
random vector v ∈ R3 it is the case that limk−→∞

(
BT

)k · v = �π,
where �π = (0, 0, 1)T is the eigenvector associated with the dominant
eigenvalue λ0 = 1. According to this matrix, and by extension to
Eigentrust, only agent a2 can be trusted. A decision-maker views all
other options as equally irrelevant, which may not be informative
enough in some applications (e.g., when a2 is unable to provide a
service).

2.2.2 Positive Stochastic Matrices

Suppose C is a square, positive, and stochastic matrix. Using the
Perron-Frobenius Theorem [15] and the Jordan decomposition of C,
it is possible to show that there exists a unique dominant eigenvector
and that the limit limk−→∞

(
CT

)k · v exists and converges to the
same value for any initial random vector v. Note that the existence of
a dominant eigenvector is a consequence of the theorem’s conditions.
Lemma 1 and Proposition 1 below, which consider a more general
case, are built upon these observations.

Example 3 Consider the following matrix.

C =

⎛
⎝

a0 a1 a2

0.15 0.55 0.3
0.41 0.53 0.06
0.18 0.62 0.2

⎞
⎠

This matrix’s dominant eigenvalue is λ0 = 1. Thus, for any random
ranking v we have

(
CT

)k · v −→ �π, as k −→ ∞, where �π =

(0.3, 0.6, 0.1)T , and the most trusted agent within the system is a1,
followed by a0 and then a2. Here, the positive, square and stochastic
nature of such a matrix ensures that Eigentrust works as expected.

Upper triangularity with distinct diagonal entries in Example 2
guarantees diagonalisability, and hence convergence of the Power
Method. In Example 1, however, convergence is not attained de-
spite diagonalisability via symmetry. Convergence in Example 3 is
guaranteed via the Perron-Frobenius Theorem for positive (stochas-
tic) matrices. We argue that Eigentrust’s performance depends on
whether a dominant unique eigenvector does or does not exist. In
many useful cases, we argue that a dominant unique eigenvector does
not exist.

The Perron-Frobenius Theorem has been generalised to cater for
non-negative and irreducible matrices [17]. Our aim is to build on
these results in the context of the Max-Plus Algebra, providing a new
trust-measuring procedure also applicable to reducible matrices. In
the following, we will introduce a version of the Perron-Frobenius
Theorem for irreducible matrices, and consider its implications to
the Eigentrust algorithm.
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2.2.3 Non-negative Stochastic Matrices

Definition 1 (Irreducible matrix [17]) An n × n matrix A is said
to be irreducible if there exists no permutation of coordinates such
that:

PAPT =

(
A11 A12

0 A22

)
(2)

where P is an n× n permutation matrix with each row and column
having a single entry equal to one and the rest full of zeros; while
A11 and A22 are non-trivial (i.e., their size is greater than 0) square
matrices. In other words, an irreducible matrix cannot be converted
into a block upper-triangular matrix via simultaneous row/column
permutations. A matrix is reducible if it is not irreducible.

Theorem 1 (Perron - Frobenius Theorem [15]) If C = (cij) is an
n×n irreducible non-negative matrix with spectral radius5 ρ(C) =
λ0 , then:

1. λ0 ∈ R+ is a simple eigenvalue of C, called the Perron-Frobenius
eigenvalue.

2. λ0 can be associated with unique (up to a constant) and strictly
positive left and right eigenvectors.

Lemma 1 ([3]) Let C denote an irreducible non-negative stochastic
matrix. The set of eigenvalues of C has a maximal eigenvalue equal
to 1, and an associated left eigenvector describing a probability dis-
tribution �π over the set of interacting nodes.

Given the properties of the trust matrix described before and
Lemma 1, it trivially follows that:

Proposition 1 If C is an irreducible non-negative trust matrix, then
the Eigentrust algorithm yields the right eigenvector associated to
the Perron-Frobenius eigenvalue of C.

3 Trust Measuring in the Max-Plus Algebra

Eigentrust does not distinguish the lack of interactions between two
nodes from the impossibility of such interactions due to the net-
work’s topology. We redefine C = (Cij) over the corresponding
set of edges (E) to differentiate between these two cases as follows:

Cij =

{
cij if (i, j) ∈ E

−∞ otherwise
(3)

This differentiation gives rise to a distinct algebraic structure that
facilitates the measuring of trust. The algebraic structure is an idem-
potent, commutative semiring (dioid) known as the Max-Plus Alge-
bra [7], or max-plus for short. Within max-plus, we extend the Eigen-
trust algorithm to cater for multi-agent systems with reducible trust
matrices. To this end, we must consider how basic operations can
be performed within max-plus, before examining trust computation
within the algebra.

5 Given a matrix M with eigenvalues λ0, . . . λn, the spectral radius is de-
fined as ρ(M) = max{|λ0|, . . . , |λn|}.

3.1 Summing and Multiplying in Max-Plus

Definition 2 (Max-Plus [7]) Let Rmax = R ∪ {ε} be the union of
the set of real numbers R and ε = −∞. Given x, y ∈ Rmax, we
define the following two operations.

x⊕ y = max(x, y) (4)

x⊗ y = x+ y

The set (Rmax,⊕,⊗) constitutes a semiring commonly known as the
Max-Plus Algebra.

Since x ⊕ ε = x and x ⊗ 0 = x for every x ∈ Rmax, ε and 0
are the neutral elements of the⊕ and⊗ operations, respectively. The
term e is preferred for referring to the latter, as to avoid confusion
with 0 ∈ R. Also note that the Max-Plus Algebra is an idempotent
semiring in relation to ⊕, as x⊕ x = x for any x ∈ Rmax.

Addition and multiplication in max-plus can be naturally extended
to matrices by replacing the usual “ + ” and “ · ” operators with ⊕
and⊗. The m×n zero matrix is denoted by E , such that Eij = ε for
all i, j. The n× n identity matrix, En, takes the form:

[En]ij =

{
e if i = j
ε if i 	= j

The power of a matrix A ∈ Rn×n
max is inductively defined as

A⊗
0 ≡ En, and A⊗

k

= A ⊗ A⊗
k−1

for k > 0. Eigenvalues
and eigenvectors can be described within the Max-Plus Algebra as
follows.

Definition 3 (Eigenvalues and eigenvectors) Let A ∈ Rn×n
max , and

consider the scalars λ ∈ Rmax, and vectors v 	= (ε, ε, . . . , ε) ∈
Rn
max satisfying:

A⊗ v = λ⊗ v (5)

λ and v are referred to as the eigenvalues and eigenvectors of A,
respectively.

Eigenvalues may be equal to ε. Both eigenvalues and eigenvectors
may not be unique. The derivation of eigenvectors, i.e., the solutions
to Equation (5), can be expressed more readily through a linear opti-
mization problem: maxj(aij + vj) = λ+ vi, where A = (aij) and
v = (v1, v2, . . . , vn).

Within the Max-Plus Algebra, the Perron-Frobenius Theorem
takes on a more succinct form:

Theorem 2 (Perron-Frobenius Theorem in Max-Plus [1]) An ir-
reducible matrix A ∈ Rn×n

max has a unique dominant eigenvalue such
that:

λ0 =
n⊕

i=1

tr(Ai)1/i

Within our adapted version of Eigentrust, we will seek to find
eigenvalues for reducible matrices. Such matrices can be rewritten
in max-plus in normal form.

Definition 4 ( [17]) Let A ∈ Rn×n
max be a reducible matrix, then its

normal form is the upper triangular matrix:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

A11 A12 . . . . . . A1n

E A22 . . . . . . A2n

E E A33 . . .
...

...
...

...
. . .

...
E E E . . . Ann

⎞
⎟⎟⎟⎟⎟⎟⎠

(6)
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where Ann is irreducible and the matrices Aii are either irreducible
or equal to ε, for all 1 ≤ i ≤ n. The remaining block matrices in
Equation (6) are all different from E .

3.2 Measuring Trust in Max-Plus

We focus now on line 3 of the Eigentrust algorithm (Algorithm 1),
situating it within max-plus. This operation updates the vector of
trust values t, effectively describing the evolution of a discrete sys-
tem throughout k iterations:

t(k + 1) = CT t(k) (7)

If C is irreducible, the above equation cannot be further expanded,
and Eigentrust would yield a satisfactory result on account of the
Perron-Frobenius Theorem. The reducible case, on the other hand,
leads to a more elaborate recurrence relation hindering Eigentrust’s
performance. Given D ≡ CT and considering its normal form we
can rewrite Equation (7) as [11]:

t(k + 1) = Dii ⊗ ti(k)⊕
q⊕

j=i+1

Dij ⊗ tj(k), ∀k ≤ 0 (8)

where Dii are irreducible or equal to ε, for i ≤ n; and Dij 	= E , for
j = i+ 1, i ∈ {0, 1, . . . , n− 1}.

Provided D is reducible, there exist finite vectors v1, v2, . . . , vn ∈
Rn×1
max and scalars ξ1, ξ2, . . . , ξn ∈ R producing a solution to Equa-

tion (8). More specifically, we have the following result [11].

Theorem 3 The solution to the discrete dynamic system in equation
(8) is given by:

ti(k) = vi ⊗ ξ⊗k
i (9)

for all k ≥ 0 and i ∈ {1, 2, . . . , n}. The vectors v1, v2, . . . , vn ∈
Rn×1
max are finite, and the scalars ξ1, ξ2, . . . , ξn ∈ R can be derived

from the eigenvalues λi of the irreducible block matrices Dij:

ξi =
⊕
j∈H

ξj ⊕ λj (10)

whereH = {j ∈ {1, 2, . . . , n} : j > i,Dij 	= E}.

Proof: Set r = w ⊗ ξ as our initial vector of trust values for
ξ ∈ Rn and a random vector w ∈ Rn

max, and also let Dii be a ma-
trix. Dii is irreducible, hence Theorem 2 guarantees the existence
of an eigenvalue λ ∈ R with eigenvector v ∈ Rn, chosen in accor-
dance with the initial vector of trust scores: v⊗λ ≥⊕q

j=i+1 Dijrj .
Whenever λ > ξj for j ∈ {i+ 1, . . . , q}, v satisfies both of the fol-
lowing relations.

v ⊗ λ⊗k+1 = Dii ⊗ v ⊗ λ⊗k,v ⊗ λ⊗k ≥
q⊕

j=i+1

Dijwj ⊗ ξ⊗k
j

This, in turn, implies the following equation.

v ⊗ λ⊗k+1 = max{Dii ⊗ v ⊗ λ⊗k,

q⊕
j=i+1

Dijwj ⊗ ξ⊗k
j }

or, equivalently, if we set t(k) ≡ v ⊗ λ⊗k equation (8) is obtained.
Note that this procedure is also applicable if the diagonal blocks are
scalars, by making λ = ε and v =

⊕q
j=i+1 Dijwj .

When λ ≤ ξj for j ∈ {i + 1, . . . , q} we could still obtain v
as before given that

⊕q
j=i+1 Dijwj has at least one finite element.

This choice, however, would also involve the following inequality.

v ⊗
q⊕

j=i+1

ξj ≥ Dii ⊗ v ⊗ λ⊕
q⊕

j=i+1

Dijwjξj

Again, this leads to equation (8), if we let t(k) ≡ v ⊗ μ⊗k and
μi =

⊕
j∈H ξj⊕λj for all k ≥ 0, i ∈ {1, 2, . . . , n}, andH defined

as in the statement of the theorem. �

Algorithm 2 Power Method for regular irreducible matrices in Max-
Plus
Input: r: Arbitrary vector of trust values, C: Trust Matrix.
Output: λ: Dominant eigenvalue of C, v dominant eigenvector of

C.
1: procedure MAX POWER

2: p← 0
3: vp ← r
4: repeat

5: vp+1 ← CTvp

6: p← p+ 1
7: until There is some q ∈ [0, . . . , p] such that vq = c⊗vp for

some c ≥ 0.
8: λ← c

p−q

9: v←⊕p−q
i=1

(
λ⊗(p−q−i) ⊗ vq+i−1

)
10: return λ,v

Theorem 3 indicates that trust can be measured over reducible ma-
trices as prescribed by the Eigentrust algorithm, invoking the spectral
properties of the irreducible blocks of its normal form. Thus, we can
recover the main graph-theoretic asymptotic traits of the system by
looking into the connected components of the underlying network.
Based on this, we introduce the MaxTrust Algorithm (Algorithm 3).

Algorithm 3 Trust-Measuring Algorithm in Max-Plus
Input: C: Regular Trust Matrix, w: Vector of initial trust values, T :

Terminal time.
Output: t: trust ranking of agents at terminal time.

1: procedure MaxTrust
2: D← GET NORMAL FORM(C)
3: λn,vn ← MAX POWER(Dnn)
4: ξn ← λn

5: j ← n− 1;
6: while j > 1 do

7: λj ← MAX POWER(Djj).
8: if λj > ξj+1 then

9: ξj ← λj

10: vj ←⊕n
k=1 Djk ⊗wk ⊗ λ⊗j−1

j

11: else

12: ξj ← λj+1

13: vj ← (ξj)
−1 ⊗⊕n

k=1 Djk ⊗wk ⊗ λ⊗j−1
j

14: j ← j − 1

15: return t← v ⊗ ξ⊗T

As with Eigentrust, the MaxTrust Algorithm uses a vector of initial
trust values w which can be selected randomly. After converting the
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trust matrix to normal form, a straightforward max-plus adaptation
of the Power Method — shown in Algorithm 2 — is applied to the
last irreducible block of D, obtaining its corresponding eigenvalues
and eigenvectors. A similar operation is carried out for the rest of
the diagonal blocks in D, serving as the basis for the eigenvectors
of the supradiagonal blocks (lines 10 and 13). Lines 8 and 15 mirror
Equation (10) in the conventional algebra, and Equation (9) in max-
plus, respectively.

4 Evaluation

We performed an empirical evaluation of MaxTrust in a simple sim-
ulated peer-to-peer network scenario. We begin by describing our
experimental setup before detailing our results.

It is important to note that we did not use existing trust corpora
such as epinions or the Ciao dataset. We justify this decision by not-
ing that such datasets capture trust relationships between entities, but
do not differentiate between lack of trust and lack of connectivity.
Augmenting the datasets to capture such features would require mak-
ing (unjustifiable) decisions resulting in an arbitrary dataset. Instead,
we believe that the experimental setup described below is (some-
what) realistic, as it is based on ideas from peer-to-peer network-
ing, and better illustrates the advantages and disadvantages of our
approach and of Eigentrust.

4.1 Experimental Setup

Our experiments evaluated how trust propagates across a peer-to-
peer network of routers, whose goal is to make routing decisions
for data by deciding which of their neighbours such data should be
transmitted to. Routers in the network interact with each other by ex-
changing connectivity information, consisting of trust measures re-
garding the network. This trust measure mirrors tij — if router i is
broadcasting such a trust measure to its neighbours, index j of the
vector will contain either the level of trust i ascribes to j; or ε if i has
no knowledge of j through direct or indirect experiences (in the case
of MaxTrust), or 0 (in the case of Eigentrust).

Routers could either be trustworthy or malicious. The former
broadcast trust measures correctly, while the latter transmit either a 0
or a value which begins at 0.5 and decays towards 0 as the router re-
peatedly interacts with others (to simulate the malicious router trying
to undermine the network more actively). Initially, each trustworthy
router began by imputing a random level of trust to all of its neigh-
bours (with ε in the remaining indices of its trust vector).

Experiments were run over 100 time steps. In each time step, all
routers were given 10 opportunities to exchange information with
their most trusted neighbour. After each such interaction, the trust
they ascribed to their neighbour was either increased (if the neigh-
bour was a trustworthy router) or decreased (if the neighbour was a
malicious router) by 0.0001. There was also a 0.0025 chance of trust
decreasing (effectively due to a mis-catagorisation of the neighbour).

After each time step, all routers computed new trust values for
the system using Eigentrust or MaxTrust, and the process repeated.
We considered three different router topologies: free trees (branch-
ing factor of 2); a toroidal network; and a random network of con-
nections. Each network began by containing 4 routers with 8 links
between them.

Each topology was evaluated under 3 different scenarios.

• Scenario 1 Network was unchanged over all 100 trials.

• Scenario 2 Every 5 interactions, between 2 and 6 new routers
were added to the system. Half of the new routers in the system
were set to be malicious.

• Scenario 3 As in Scenario 2, between 2 and 6 new routers were
added to the system every 5 interactions. None of the routers in the
initial system were malicious, each new router had a 1/3 likelihood
of being malicious.

When adding routers, network topology was preserved.

4.2 Results

We ran a total of 18 experiments (for each topology, scenario and
trust algorithm combination), averaging 100 runs of each experi-
mental condition (over 100 time steps) to obtain the results shown
in Figure 1. The vertical axis in each plot compares averaged dis-
tance between the dominant eigenvector v obtained by Eigentrust
(dashed lines) or MaxTrust (solid lines), with the (actual) dominant
eigenvector computed for the trust matrix obtained at the end of each
experimental run (vλ0 ). This actual dominant eigenvector was ob-
tained from the corresponding eigenvalue computed with the Newton
method [19].

While all methods converge to the final dominant eigenvector as
more information is exchanged between routers, it is clear that by
differentiating between distrust (i.e., a trust value of 0) and no trust
information (i.e., a trust value of ε), MaxTrust significantly outper-
forms Eigentrust across all topologies and scenarios, converging to
the dominant eigenvector more rapidly. Within Scenario 1, trees gave
the sparsest connectivity structure, meaning that Eigentrust struggled
most in this case. As connectivity increased in Scenario 1, Eigen-
trust’s performance improved, but still converged much more slowly
than MaxTrust.

Within Scenario 2, Tori provided more connectivity than trees,
leading to improved performance for Eigentrust compared to the lat-
ter case, and both outperform random networks. Given the results of
the third scenario, we believe that this behaviour is caused by the dis-
ruption in the transmission of information due to the introduction of
malicious routers. Indeed, when the majority of routers are not ma-
licious, as in Scenario 3, the extra connectivity provided by random
networks enhance their performance, while trees and tori induce no
considerable changes.

Figure 2 illustrates the effectiveness of the algorithms in identify-
ing potential threats and the dispersion of trust. Generally, Eigentrust
underestimates the levels of trust agents accrue, reducing the scores
corresponding to good peers computed in the presence of malicious
agents interacting within heterogeneous environments. This is least
apparent in random topologies, possibly due to the large number of
connections in such a network.

The frequency of successful interactions is measured as
max(sij , 0)/

∑
k max(sij +fij , 0), where sij designates the num-

ber of correct interactions between i and j — following the notation
in Section 2 — while fij denotes the number of unsuccessful interac-
tions. The vertical axes of Figure 2 represent the differences between
the trust values imputed to good peers by the different algorithms and
the observed frequency of successful interactions. According to these
results, Maxtrust is more stable than Eigentrust, but tends to inflate
the level of trust accrued by good peers, thus penalising the rest of
the agents.

The degree of reliability associated with the global rankings pro-
duced by Eigentrust and Maxtrust agrees with our underlying as-
sumptions. On (potentially) reducible trust matrices (i.e., where the
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Figure 1. Relative Convergence to the Dominant Eigenvalue.

network topology prevents the formation of (weakly) connected
components), Eigentrust yields less informative rankings. The time
series plots with error bands in Figure 2, and the statistical tests in
Table 1, provide additional statistical evidence for this result.

Table 1 summarises the essential statistics detailing the posterior
distributions of the distance |vλ0 −v| for MaxTrust (MT) and Eigen-
trust (ET). When treated as random variables the distributions of such
deviations indicate how different the two results may be. Here, the
mean and standard deviation are calculated over all 100 time steps
(again over all 100 experiment runs). The low means and standard
deviations of MaxTrust across all scenarios and topologies demon-
strate its faster rate of convergence when compared to Eigentrust.

Ultimately, our results demonstrate the benefit of a trust and repu-
tation system being able to differentiate between the lack of trust in
an agent (i.e., a 0 trust value), and lack of information about trust in
an agent (captured via ε). While Eigentrust conflates these two con-
cepts, MaxTrust deals with them separately. This differentiation is
particularly important in open dynamic multi-agent systems.

Figure 2. Deviations from Trustworthy Peers

5 Discussion

Our experimental results indicate that a trust-measuring procedure
framed in the Max-Plus algebra outperforms the standard Eigentrust
approach with regards to convergence and stability of trust ratings
across different scenarios and topologies. By leveraging max-plus,
we are able to differentiate between no trust rating, and the inability
of an agent to provide a trust rating, and we are able to extend the
Eigentrust approach to the domain of reducible matrices.

Reducible trust matrices can be used to represent domains other
than trust, and can capture many situations where the underlying net-
work is not fully-connected.Although Eigentrust is often applied to
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Scenario
Network

Structure
Mean

Standard

Deviation
95% HDP

One

Random MT 0.035 0.001 [0.034, 0.037]
Random ET 0.516 0.039 [0.442, 0.583]
Torus MT 0.074 0.003 [0.067, 0.079]
Torus ET 0.802 0.066 [0.662, 0.925]
Tree MT 0.068 0.0015 [0.065, 0.070 ]
Tree ET 1.106 0.059 [1.012, 1.225]

Two

Random MT 0.028 0.0003 [0.027, 0.028]
Random ET 0.221 0.012 [0.203, 0.246]
Torus MT 0.036 0.0001 [0.035, 0.036]
Torus ET 0.097 0.0012 [0.095, 0.099]
Tree MT 0.029 0.0002 [0.029, 0.030]
Tree ET 0.176 0.0029 [0.171, 0.180]

Three

Random MT 0.016 0.0002 [0.016, 0.017]
Random ET 0.080 0.0006 [0.078, 0.080]
Torus MT 0.020 0.0001 [0.020, 0.020]
Torus ET 0.125 0.0019 [0.121, 0.129]
Tree MT 0.031 0.001 [0.028, 0.033]
Tree ET 0.129 0.002 [0.125, 0.135]

Table 1. Summary of results for MaxTrust (MT) and Eigentrust (ET) over
all scenarios and topologies.

P2P systems, many software and managerial applications functioning
under trust protocols are modelled using non-fully connected graphs.
This observation posits the question of whether Eigentrust is suitable
for computing trust with reducible trust matrices.

In its original form, the Eigentrust algorithm employs the Power
Method to compute the state of the (discrete) multi-agent system in-
duced by a query about some peer’s reputation. Max-plus provides an
environment amenable to optimisation problems on discrete dynamic
systems, enabling trust-measuring while circumventing the stringent
assumptions behind the convergence of the Power Method.

Despite the numerous applications of the Max-Plus Algebra [7, 4,
6, 8], our proposal is among the first attempts to bring elements of
tropical mathematics into the field of reputation and computational
trust. Several works on Petri nets for the verification of cryptographic
methods and the operation of autonomous vehicles [14] have already
investigated techniques to circumvent the curse of dimensionality.
Our work, albeit related, provides an algorithm for the more efficient
functioning of trust protocols within an ample range of multi-agent
systems.

Equally relevant to many applications is the robustness of our ap-
proach to dealing with malicious agents and the ability to update trust
during each round within each trial. These results not only indicate
MaxTrust’s ability to fend off the effects that deceptively reliable
agents have on the overall functioning of the system, but also cor-
roborate the algorithm’s accuracy when agents are allowed to revise
past trust assignments before a trust-measuring cycle is over. Fur-
thermore, these results point to the possibility of retrieving one of
the system’s invariant properties through MaxTrust.

6 Conclusions

Algorithms for trust measurement and computation are critical for
the effective operation of open multi-agent systems. Due to its sim-
plicity and effectiveness, Eigentrust is perhaps the most widely used
trust-measuring algorithm. Building on an analysis of the situations
where Eigentrust performs poorly (notably in cases where multiple
distinct connected components exist), we introduced the MaxTrust
algorithm. This algorithm shares the same basic intuitions used to
create Eigentrust, but builds on the Max-Plus Algebra, and, in do-
ing so, provides improved convergence to the ex-post or actual trust
values when compared to Eigentrust.

We note that a vast number of popular trust and reputation sys-
tems have been proposed in the literature [9, 16]. Our focus in this

work was — due to its popularity and ease of explanation — on the
simplest version of (distributed) Eigentrust, and we did not consider
other trust and reputation systems. Nor did we consider variants of
Eigentrust such as those with pre-trusted peers [10]; or extensions of
Eigentrust (e.g., [12]). In future work, we intend to examine whether
the gains obtained using the Max-Plus algebra translate to Eigen-
trust’s extensions. We believe, given the similarities between Max-
Trust and Eigentrust, that the application of the Max-Plus Algebra
to Eigentrust extensions will not be difficult, and given the improved
results presented in the current work, we further believe that the ap-
plication of Max-Plus to these extensions will also yield improved
results. A comparison between MaxTrust (and variants) against other
trust and reputation systems would therefore be a natural piece of fu-
ture work.

We also intend to investigate the theoretical properties of Max-
Trust in future work. Such properties include identifying guarantees
on convergence rates, and the effects of different attacks against the
algorithm. Given the shared intuitions between MaxTrust and Eigen-
trust, we believe that many results will carry through, but stress that a
theoretical and empirical evaluation of MaxTrust under different sce-
narios is critical if the performance improvements it seems to hold,
are to be realised in practical applications.
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