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Abstract. Automatically understanding the rhetorical roles of sentences in a le-
gal case judgement is an important problem to solve, since it can help in several
downstream tasks like summarization of legal judgments, legal search, and so on.
The task is challenging since legal case documents are usually not well-structured,
and these rhetorical roles may be subjective (as evident from variation of opinions
between legal experts). In this paper, we address this task for judgments from the
Supreme Court of India. We label sentences in 50 documents using multiple hu-
man annotators, and perform an extensive analysis of the human-assigned labels.
We also attempt automatic identification of the rhetorical roles of sentences. While
prior approaches towards this task used Conditional Random Fields over manu-
ally handcrafted features, we explore the use of deep neural models which do not
require hand-crafting of features. Experiments show that neural models perform
much better in this task than baseline methods which use handcrafted features.

Keywords. Semantic Segmentation, Rhetorical Roles, Legal Case Documents,
Deep Learning, BiLSTM

1. Introduction

Rhetorical role labelling of sentences in a legal document refers to understanding what
semantic function a sentence is associated with, such as facts of the case, arguments of
the parties, the final judgement of the court, and so on. Identifying the rhetorical roles
of sentences in a legal case document can help in a variety of downstream tasks like se-
mantic search [1], summarization [2,3], case law analysis [4], and so on. However, legal
case documents are usually not well structured [5,6], and various themes often interleave
with each other. For instance, the reason behind the judgment (Ratio of the decision) of-
ten interleaves with Precedents and Statutes. Hence it sometimes becomes difficult even
for human experts to understand the intricate differences between the rhetorical roles.
Hence, automating the identification of these rhetorical roles is a challenging task.

For supervised machine learning of the roles, it is important to develop a high qual-
ity gold standard corpus, capturing the rhetorical roles of sentences as accurately as pos-
sible. Different approaches for the task have constructed their own set of annotated doc-
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uments [1, 2, 4], but do not report an extensive analysis on the annotation process. Apart
from Inter-Annotator Agreement (IAA) scores, it is useful to understand issues such as
the amount of subjectivity associated to the labels. In this paper, we perform a system-
atic annotation study and an extensive inter-annotator study. We show that even legal ex-
perts find it difficult to distinguish some specific pairs of labels, thus showing that some
subjectivity is inherent in these labels.

Prior attempts to automate the identification of rhetorical roles of sentences in legal
documents [2–4] rely on hand-crafted features (see Section 2 for details) such as lin-
guistic cue phrases indicative of a particular rhetorical role [2, 3, 7], the sequential ar-
rangement of labels [2], and so on. Some of these features, e.g., indicator cue phrases,
are largely dependent on legal-expert knowledge which is expensive to obtain. Also, the
hand-crafted features developed in the prior works are often specific to one or a few do-
mains/categories (e.g., Cyber crime and Trade secrets in [4]). It has not been explored
whether one can devise a set of features that works for documents across domains.

Recently developed deep learning, neural network models do not require hand-
engineering features, but are able to automatically learn the features, given sufficient
amounts of training data. Additionally, such models perform better in tasks like classifi-
cation than methods using hand-crafted features.

In this paper, we explore two neural network models to automatically identify the
rhetorical roles of sentences in legal documents – (i) a Hierarchical BiLSTM model, and
(ii) a Hierarchical BiLSTM-CRF model. Similar models have been used in the medical
domain [8], but to our knowledge, this work is the first to use them in the legal domain.
We use these models for supervised classification across seven rhetorical labels (classes)
and over documents from five different legal domains. The Hierarchical BiLSTM-CRF
model achieves a very good performance (Macro F-score in the range [0.8− 0.9]), out-
performing baseline methods that use hand-crafted features. We also analyse the rhetor-
ical roles predicted by our model, and find that the subjectivity between certain pairs
of labels (e.g., Ratio vs. Precedent) that is present among the human annotators is also
reflected in the predictions by the algorithm.

This is the first paper on identifying rhetorical roles of sentences in legal documents
that brings together (i) an extensive annotation study, and (ii) deep learning models for
automating the task. 3

2. Related Work

In this section we discuss prior work about annotation, automatic rhetorical labelling,
and applications of deep learning in the legal domain.

Automatic labelling of the rhetorical role of sentences relies heavily on manual an-
notation. While papers that aim to automate the task of semantic labelling also perform
an annotation analysis [4,5], other works focus on the process of annotation – developing
a manual/set of rules for annotation, inter-annotator studies, curation of a gold standard
corpus, and so on. TEMIS, a corpus of 504 sentences, that were annotated both syntacti-
cally and semantically, was developed in [9]. An in-depth annotation study and curation
of a gold standard corpus for the task of sentence labelling can be found in [10], where

3The dataset and implementations of the proposed neural model are available at https://github.com/Law-
AI/semantic-segmentation.
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assessor agreement was low for labels like Facts and Reasoning Outcomes. Towards au-
tomating the annotation task, [11] discusses an initial methodology using NLP tools on
47 criminal cases drawn from the California Supreme Court and State Court of Appeals.

There have been several prior attempts towards automatically identifying rhetorical
roles of sentences in legal documents. Initial experiments for understanding the rhetor-
ical/thematic roles in court case documents/judgements/case laws were developed as a
part of achieving the broader goal of summarizing these documents [2, 3, 12]. For in-
stance, Saravanan et al. [2] used Conditional Random Fields (CRF) [13] for the task on
7 rhetorical roles. Segmenting a document into functional (Introduction, Background,
Analysis and Footnotes) and issue-specific parts (Analysis and Conclusion) was looked
into by [4] on U.S. court documents using CRF with handcrafted features. A method for
identification of factual and non-factual sentences was developed in [1] using fastText
classifier. In another line of work, Walker et al [14] compared use of rule-based scripts
(that require much lesser amount of training data) with Machine Learning approaches
for the rhetorical role identification task.

Almost all prior attempts towards automatic identification of rhetorical roles in the
legal domain have used handcrafted features. In contrast, this paper uses Deep Learn-
ing models for this task, where no handcrafted features are needed. Deep Learning (DL)
methods are increasingly being applied in the legal domain, e.g., classification of factual
and non-factual sentences in a legal document [1], crime classification [15, 16], summa-
rization [6, 17] and other tasks. But, to our knowledge, DL methods have not yet been
applied to the task of automatically identifying rhetorical roles of sentences in legal doc-
uments.

3. Dataset

In this paper, we consider legal judgments from the Supreme Court of India, crawled
from the website of Thomson Reuters Westlaw India (http://www.westlawindia.
com)4. We crawled 53,210 documents in total. Westlaw assigns each document a legal
domain, such as ‘Criminal’, ‘Constitutional’, etc. We calculated the frequency of these
domains, chose the top 5 domains and randomly sampled 50 documents from these 5 do-
mains in proportion to their frequencies. Thus we have the following set of 50 documents
from 5 domains – (i) Criminal – 16 documents (ii) Land and property – 10 documents
(iii) Constitutional– 9 documents (iv) Labour and Industrial – 8 documents (v) Intellec-
tual Property Rights – 7 documents. All experiments reported in this paper are performed
on these 50 case documents.

4. Annotation Details

In this section we shall describe our annotation study, covering the rhetorical roles /
semantic labels we consider in this work, the annotation procedure, and finally, analysis
of inter-annotator agreement.

4We use only the publicly available full text judgement. All other proprietary information had been removed
before performing the experiments.
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4.1. Annotation Labels / Rhetorical Roles

Our annotators were three senior Law students from the Rajiv Gandhi School of Intellec-
tual Property Law, India (http://www.iitkgp.ac.in/department/IP). Based on discussions
with the annotators, we consider the following seven (7) rhetorical roles in our work.

1. Facts (abbreviated as FAC): This refers to the chronology of events that led to
filing the case, and how the case evolved over time in the legal system (e.g., First
Information Report at a police station, filing an appeal to the Magistrate, etc.)

2. Ruling by Lower Court (RLC): Since we are considering Supreme Court case
documents, there were some judgements given by the lower courts (Trial Court,
High Court) based on which the present appeal was made (to the Supreme Court).
The verdict of the lower Court and the ratio behind the judgement by the lower
Court was annotated with this label.

3. Argument (ARG): The Court’s discussion on the law that is applicable to the set
of proven facts by weighing the arguments of the contending parties.

4. Statute (STA): Established laws, which can come from a mixture of sources –
Acts , Sections, Articles, Rules, Order, Notices, Notifications, Quotations directly
from the bare act, and so on.

5. Precedent (PRE): Prior case documents. Instructions similar to statute citations.
6. Ratio of the decision (Ratio): Application of the law along with reason-

ing/rationale on the points argued in the case; Reason given for the application of
any legal principle to the legal issue.

7. Ruling by Present Court (RPC): Ultimate decision / conclusion of the Court
following from the natural / logical outcome of the rationale

4.2. Annotation Process

The annotataors used GATE Teamware tool [18] to annotate the documents, following
the methodology of [5, 10]. An annotation manual was developed in discussion with the
annotators, containing descriptions and example sentences for each rhetorical role, along
with other instructions (e.g., a label should be assigned to a full sentence and not a part
of it, a sentence should have only one label, etc.). Initially, each annotator was asked to
annotate 5 documents independently, i.e., without consulting each other. Then we had a
joint discussion with all the annotators to resolve any issues, and refined the manual if
necessary. This process was followed iteratively for annotation of the 50 documents.

4.3. Analysis of Inter-Annotator Agreement and Curation of Gold Standard

We compute the Inter-annotator Agreement (IAA) for the annotation task as follows.

IAA measure: As noted in [10], aggregated pairwise Precision, Recall and F-measure
are more suitable measures for IAA than measures like Kappa. Following the same line,
we compute these pairwise IAA measures using GATE’s Annotation Diff tool.5 Since
we have three annotators (A1, A2 and A3), we compute three sets of pairwise IAA (A1,
A2), (A2, A3), (A1, A3), and then take the average of the three sets. We briefly define the
metrics below.

GATE maintains three counts based on the extent to which two annotators’ labels
match. The three counts are as follows – (1) Correct: If for a sentence, the two annotators

5https://gate.ac.uk/sale/tao/splitch10.html
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Table 1. Average inter-annotator agreement of the 3 annotators in terms of F-score as measured by GATE tool

Labels→ ARG FAC PRE Ratio RLC RPC STA

Strict 0.692 0.716 0.654 0.677 0.74 0.654 0.857

Lenient 0.953 0.934 0.878 0.908 0.925 0.968 0.967

Average 0.823 0.817 0.814 0.821 0.819 0.798 0.898

mark exactly the same span of text (covering all the words and punctuation marks) with
the same label, then this is considered a Correct match. (2) Partial: If for a sentence, the
two annotators mark the same label, but a different span of text (e.g., leaving few words
or punctuation marks), then this sentence is considered a partial match. (3) Missing and

Spurious: If for a sentence, the two annotators mark different labels, they are called
missing or spurious (both terms used interchangeably). Based on the above definitions,
Precision, Recall and F-score are calculated as follows:
Precision = (Correct +0.5×Partial)/(Correct +Spurious+Partial)
Recall = (Correct +0.5×Partial)/(Correct +Missing+Partial)
Fscore = ((β 2 +1)×Precision×Recall)/((β 2×Precision)+Recall)
where β is the weighting of Precision vs. Recall. We use the default value of 1, meaning
that both are weighed equally. For each of the Precision, Recall and F-score measures,
GATE computes three variants as follows – (1) Strict measure: considers all partial
matches as incorrect (spurious), (2) Lenient measure: considers all partial matches as
correct, and (3) Average measure: average of the strict and lenient measures.

Analysis of F-scores: We primarily report the F-scores, since they combine both the Pre-
cision and Recall scores. The F-score IAA values computed by using GATE’s Annota-
tion Diff tool are presented in Table 1. As is expected, the strict scores are low and the
lenient scores are quite high. This is due to differences in how different annotators use
the graphical interface of the GATE tool. For instance, one of the annotators may have
mistakenly excluded the full-stop (end of sentence marker) in a sentence while marking
the label, while the other annotator included the full-stop.6 The lenient method does not
take into account these errors while the strict measure does.

Table 1 reports the IAA (F-score values) for each rhetorical role individually. In
terms of strict scores, we observe Statute, Ruling by Lower Court and Facts have a high
agreement whereas the scores are lower for Precedent and Ruling by Present Court. But
in terms of lenient scores, all labels show high IAA of over 0.85. These IAA scores are
comparable with what has been reported in similar prior studies [10].

Analysis of sentence-level agreement: To understand in more detail where the anno-
tators tend to disagree, we perform a sentence-level agreement study. We construct an
agreement matrix C (whose rows and columns are the labels) for two annotators Ax and
Ay. An entry C[i][ j] of this matrix denotes the number of sentences which Annotator Ax
labeled as Li, but Annotator Ay labeled the same sentences as label L j. Table 2 shows this
agreement matrix for the annotator pair (A2,A3) who have the lowest IAA (as reported
by GATE). Similar tables for the annotator pairs (A1,A2) and (A1,A3) are given in the
Supplementary Information accompanying this paper.7

6Though clear instructions were given to include the end of sentence marker in the label, the annotators
committed this mistake while marking some of the sentences.

7Supplementary Information: http://cse.iitkgp.ac.in/~saptarshi/docs/

Bhattacharya-et-al-JURIX19-SuppleInfo.pdf
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Table 2. Table showing the the sentence level agreement between the two annotators (A2, A3) who have the
lowest IAA (0.79, as measured by GATE)

A2 ↓ A3 → FAC ARG PRE STA Ratio RLC RPC

FAC 2154 5 0 3 40 8 0
ARG 17 822 16 1 0 0 0
PRE 0 11 1425 0 47 0 0
STA 0 0 0 635 12 2 0
Ratio 4 13 4 5 3499 1 0
RLC 47 1 0 0 25 294 0
RPC 6 0 0 0 21 0 262

The high values in the diagonal elements indicate that the annotators have a high
overall agreement in general. Among the non-diagonal elements, we see relatively high
values (signifying some disagreement or subjectivity) for some label-pairs. For instance,
there is subjectivity among the label pairs (PRE, Ratio), (FAC, Ratio), (RLC, Ratio)
and (RPC, Ratio), since the reason behind the final judgement (Ratio) depends on the
facts (FAC), as well as judgements in prior cases (PRE) and the Ruling in the lower
courts (RLC). There is also a tendency of annotators to differ between the labels (ARG,
FAC) because framing the arguments relies on the facts of the case.

Analysis of agreement across domains: Since we have documents from five domains
of law, we checked the average IAA F-score for the labels across each domain. We found
that inter-annotator agreement is uniform across different domains. Detailed results can
be found in the Supplementary Information.

Curation of the gold standard: The gold standard dataset was curated as follows: For
a particular sentence, we took a majority voting of the labels given by the 3 annotators.
There was a clear majority verdict regarding the label (rhetorical role) of each sentence.
We use this annotated dataset in our experiments to automate the task of assigning se-
mantic roles to sentences. Further statistics of the dataset are given in the Supplementary
Information.

5. Methods for automatically identifying rhetorical roles

Now we describe our efforts towards automating the task of identifying rhetorical roles
of sentences in a legal document. We treat this problem as a 7-class sequence label-
ing problem, where supervised Machine Learning models are used to predict one label
(rhetorical role) for every sentence in a document.
Pre-processing the documents: Each document was split into sentences using the
SpaCy tool (https://spacy.io/). Splitting a legal document into sentences is chal-
lenging due to frequent presence of abbreviations [19]. We observed SpaCy to do a rea-
sonably good splitting (accuracy close to 90%), which agrees with observations in prior
works [1]. There were 9,380 sentences in total in these 50 documents, as identified by
SpaCy. Each such sentence was considered a unit for which one label (out of the seven
rhetorical roles) is to be predicted.

Baseline: CRF with handcrafted features: As stated in Section 2, this is the approach
adopted in most prior works. Each document is treated as a sequence of sentences. Some
dependencies exist in the corresponding sequence of labels; e.g., RLC usually follow
FAC, RPC is always the end label, etc. Conditional Random Fields (CRFs) [13] can be
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used to model such sequences, since they consider both emission scores (probability of a
label given the sentence) and transition scores (probability of a label given the previous
label) while generating the label sequence.

To implement the baseline approaches [2,4], we represent each sentence as a vector
of all features stated in these works – parts-of-speech tags (used in [4]), layout features
(used in both [2, 4]), presence of cue phrases (used in [2]), and occurrence of named
entities like Supreme Court, High Court in the sentence (used in [2]). The CRF works on
these vectors to predict the labels (rhetorical roles).

We consider three baseline approaches: (1) CRF using the features of [2]; (2) CRF
using the features of [4]; and (3) CRF using a combination of features from both [2, 4].

Neural model 1: Hierarchical BiLSTM Classifier: We use a hierarchical BiLSTM
(Bi-directional Long Short Term Memory) architecture [20] to automatically extract fea-
tures for identifying the rhetorical roles. This requires us to feed the sequence of sentence
embeddings to the BiLSTM, which returns a sequence of feature vectors. The BiLSTM
model needs some initialization of the sentence embeddings, with which learning can
start. We try two variations of sentence embeddings: (1) We construct sentence embed-
dings from randomly initialized word embeddings using another BiLSTM; and, (2) We
used a large set of documents from the same domain to construct pre-trained sentence
embeddings. Specifically, we used sent2vec [21] to construct the sentence embeddings
from the set of 53K court case documents that we had collected (see Section 3), exclud-
ing the 50 documents considered for this task.

Neural model 2: Hierarchical BiLSTM CRF Classifier: The probability scores gen-
erated by the above model do not take into account label dependencies, and thus can
be regarded as simple emission scores. To enrich the model further, we deploy a CRF
on top of the Hierarchical BiLSTM architecture. This CRF is fed with the feature vec-
tors generated by the top-level BiLSTM. As described above, we try both variations of
sentence embeddings – randomly initialized embeddings, and pre-trained embeddings
trained over a large set of legal documents.

6. Results and Analysis

We now compare the performance of the models (stated in the previous section) on the
set of 50 manually-annotated documents (described in Section 4.3).

6.1. Experimental setup and evaluation metrics

We perform 5-fold cross validation with the 50 documents, which is a standard way of
evaluating Machine Learning models. In each fold, we have 40 documents for training
the model, and the other 10 documents for testing the performance of the model. The
performance measures reported are averaged over all five folds.

Evaluation metrics: For a particular sentence, the label (rhetorical role) predicted by a
model is considered to be correct, if it matches with the label assigned by the majority
opinion of the human annotators (see Section 4.3). We use standard metrics for evaluat-
ing the performance of algorithms – macro-averaged Precision, Recall and F-score. For
macro-averaged metrics, we compute these metrics for each class separately, and then
take their average (to prevent any bias towards the high-frequency classes).
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Table 3. Macro Precision, Recall and F-score of the baseline methods and neural network-based methods.
Best performances highlighted in boldface.

Category Method Variations Precision Recall F-score

Baselines
(CRF with handcrafted

features)

Features from [2] - 0.4138 0.3308 0.4054
Features from [4] - 0.4580 0.4196 0.3250

Features from [4] and [2] - 0.5070 0.4358 0.4352

Neural models
Hier-BiLSTM

Pretrained emb 0.8168 0.7852 0.7968
Random initialization 0.5358 0.5254 0.5236

Hier-BiLSTM-CRF
Pretrained emb 0.8396 0.8098 0.8208

Random initialization 0.6528 0.5524 0.5784

Table 4. F-score of the Hier-BiLSTM-CRF model, for the different labels, and for each domain of law. The
last column indicates the average F-score for each domain. The last row indicates the average F-score for each
of the seven labels (rhetorical roles).

FAC ARG Ratio STA PRE RPC RLC
Macro Average

(across categories)
Constitutional 0.903 0.659 0.909 0.832 0.904 0.857 0.85 0.845

Labour & Industrial Law 0.776 0.505 0.929 0.423 0.728 0.783 0.681 0.689
Criminal 0.836 0.567 0.945 0.689 0.891 0.917 0.865 0.816

Land & Property 0.847 0.624 0.908 0.841 0.845 0.98 0.778 0.832
Intellectual Property 0.832 0.607 0.927 0.824 0.901 0.964 0.886 0.849

Macro Average
(across labels)

0.8388 0.5924 0.9236 0.7218 0.8538 0.9002 0.812 –

6.2. Comparing performances of different models

The comparative results are presented in Table 3. Clearly the neural models perform
much better than the baselines, which shows that the latent features learnt by the neural
models are better than the hand-crafted features used in prior works [2, 4].
Effect of pre-trained embeddings: Using pretrained embeddings (learned over a large
legal corpus) shows a high improvement in performance for both the neural models, as
compared to using random initializations for the embeddings. Since deep neural models
require lot of data to learn efficiently, it is especially beneficial to use pretrained embed-
dings learned over large domain-specific data.
Effect of combining CRF with neural model: Hier-BiLSTM-CRF performs only a
little better than Hier-BiLSTM (both with pretrained embeddings). This is because legal
documents consist of large sequences (average of 200 sentences per document), and we
have few such documents; thus the CRF is unable to learn the transition scores well.
Hence, there is not much additional benefit in combining CRF with the neural model.

6.3. Detailed analysis of the best performing model (Hier-BiLSTM-CRF)

Table 4 shows the F-score values of the best performing model (Hier-BiLSTM-CRF) for
each of the seven labels and the five domains.
Performance on specific labels: From the last row of Table 4, we find that the model
performs the best in predicting the Ratio and Ruling by Present Court (RPC). Ratio has
the highest fraction of sentences in the corpus (38.63%), and this large amount of training
data enabled this label to be predicted well. Ruling by the Present Court, though having
less sentences (2.79% of the dataset), always has a fixed position – towards the end of a
document. Hence this label could also be identified well.
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Table 5. Label agreement matrix for labels assigned by (i) the best performing Hier-BiLSTM-CRF model, and
(ii) majority opinion of the human annotators.

Human ↓Model→ FAC ARG Ratio STA PRE RPC RLC

FAC 1986 109 43 28 35 0 18
ARG 265 455 49 22 52 0 2
Ratio 129 51 3334 33 72 3 2
STA 57 23 47 461 55 0 3
PRE 16 46 64 11 1330 1 0
RPC 0 0 9 1 3 231 18
RLC 33 5 7 0 7 8 256

The model performs satisfactorily for all other labels, except ‘Arguments’ (F-score
of 0.5924). The ‘Argument’ sentences get interleaved with other labels. Additionally,
only 9% of the total number of sentences in our corpus contribute to this label. Hence
the neural model did not perform well in identifying these sentences.
Performance across Domains: The last column of Table 4 shows how generalizable
the model is across the 5 different domains. The model gives consistent performance (F-
score in [0.82−0.86]) across all the domains, except for ‘Labour & Industrial law’. This
performance is consistent with the inter-annotator agreement scores, where the IAA was
low for the domain ‘Labour & Industrial law’ (see Supplementary Information).
Comparing inter-annotator agreement and annotator-model agreement: We now
compare the agreement between the human annotators (IAA), and agreement between
the model and the annotators. We create an agreement matrix (Table 5), where the
rows represent the human-assigned labels (majority opinion of the annotators), and
the columns represent the labels assigned by the model. The diagonal elements show
the number of sentences for which the model-assigned label matches with the human-
assigned label. The non-diagonal elements C[i][ j] shows the number of sentences where
the human-assigned label i does not match the model-assigned label j.

We focus on the non-diagonal elements that have relatively high values. For instance,
the model seems to have frequent confusion between the labels Arguments (ARG) and
Facts (FAC), and between the labels Ratio, Fact and Precedence (PRE). Comparing Ta-
ble 5 with the IAA agreement matrix (Table 2), we find that these label-pairs are exactly
the ones where the IAA values were also low, i.e., there is sufficient confusion around
these label-pairs even among the human annotators. This observation suggests that these
rhetorical roles are largely subjective. Hence it is natural that the model will also face
some difficulty in identifying these subjective rhetorical roles.

7. Conclusion and Future Work

We show that deep learning models can much better identify rhetorical roles of sentences
in legal documents, compared to methods using hand-crafted features. We also perform
an extensive annotation study, and analyse the agreement between different human an-
notators, as well as the agreement of the model with the annotators.

The principal advantage of neural models is that no hand-crafting of features is
needed, hence expensive legal expertise is not essential. However, this property also
poses difficulties in understanding why exactly a sentence is more likely to be as-
signed to one rhetorical role than the others. Thus, neural models trade-off explainabil-
ity/transparency with the cost of hand-crafting features. Deep Learning models can be
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used for tasks like identifying rhetorical roles of sentences, if it can be assumed that
achieving good performance is more important than transparency.

In future, we plan to check how deep learning models generalize across different
jurisdictions, by experimenting on legal documents of other countries.
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