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Abstract. In this work we demonstrate the possibility of estimating the wind en-
vironment of a UAV without specialised sensors, using only the UAV’s trajectory,
applying a causal machine learning approach. We implement the causal curiosity
method which combines machine learning times series classification and clustering
with a causal framework. We analyse three distinct wind environments: constant
wind, shear wind, and turbulence, and explore different optimisation strategies for
optimal UAV manoeuvres to estimate the wind conditions. The proposed approach
can be used to design optimal trajectories in challenging weather conditions, and to
avoid specialised sensors that add to the UAV’s weight and compromise its func-
tionality.
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1. Introduction

Multi-rotor Unmanned Aerial Vehicles (UAVs) have become increasingly popular in
commercial and research sectors due to advantages over fixed-wing UAVs, such as ver-
tical take-off and landing, hovering capabilities, and the ability to yaw on the spot. How-
ever, a significant challenge for those UAVs is their vulnerability to wind disturbances,
which can affect their flight stability and energy efficiency [1]. Thus, recognising the ef-
fects of wind and incorporating this understanding into flight controls can enhance safety
and efficiency.

Currently, several methods allow different types of UAVs to measure wind speed.
For instance, fixed-wing UAVs can gauge wind speed using sensors like the pitot tube,
while multi-rotors can employ sonic anemometers. Nonetheless, these methods come
with various constraints. For instance, it is essential to place flow sensors at a distance
from the rotor’s turbulence. This arrangement might be straightforward for fixed-wing
UAVs, but it poses challenges for multi-rotors. Another limitation of utilising a dedi-
cated wind sensor is that it consumes a portion of the UAV’s mass budget, potentially
compromising the inclusion of other components.

To overcome these limitations, in this article we propose the use of a machine learn-
ing approach capable of identifying environmental conditions such as wind using only
the UAV’s position information. This approach, called causal curiosity [2], is set in the
framework of causal machine learning. Unlike traditional machine learning approaches
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that focus mainly on identifying patterns and correlations in the data, one of the objec-
tives of this framework is to distinguish between correlation and causation and establish
and use the causal relationships between variables. In this particular case, identifying
the relationship between the wind condition, the cause, and changes in the UAV’s trajec-
tory, the effect. In this way, using UAV trajectory data, we can identify the specific wind
conditions, without the need for specific sensors to measure the wind.

The original proposal of this method [2] was demonstrated in the case of a robotic
agent interacting with different objects in its environment. The study enabled a robotic
fingers agent to conduct experiments that assist in classifying the interaction with un-
known objects and consequently infer the properties of those objects. These parameters
that determine the causal dynamics of the interactions are called causal factors. They are
parameters such that, by applying a certain sequence of actions on the environment, the
observations obtained are organised in distinguishable disjoint sets according to the pa-
rameter values. For example, in the latter case, the mass and friction of the objects deter-
mined how they moved when lifted or pushed by the robotic hand. Causal curiosity en-
ables agents to discover optimal action sequences to identify causal factors that influence
the environment’s dynamics. Through this, the agents learn to deduce a categorisation or
representation for the actual causal factors in every environment they are placed in. The
strategies found by the agents possess logical meaning, such as learning to lift blocks
in order to classify them by weight. Therefore, we could use the same causal curiosity
reward system on a position trajectory of a UAV moving in different wind environments
allowing us to identify wind conditions without the need for a specific sensor for wind
speed measurement.

In this article we make the following contributions:

• We apply for the first time the causal curiosity approach to the aerospace domain
and show that it is effective in identifying wind conditions for UAVs using only
their position data.

• We analyse the effectiveness of the method in different types of wind conditions
(constant wind, shear wind, and turbulence) and in terms of its main parameters.

• We evaluate the results of using an optimisation methodology for the optimal ac-
tion selection.

2. Related work

In recent years, UAVs have become an indispensable tool in many industries such as
logistics and communications and their use is predicted to keep growing further in the
future [3]. Nevertheless, an essential aspect of drone delivery optimisation is energy con-
sumption. Energy usage during flight, especially hovering while loaded, is substantial.
An essential factor affecting energy consumption during the flight is weather, especially
wind conditions. Tailwinds can accelerate a drone, while headwinds can decelerate it [4].
Moreover, energy limitation due to size and weight constraints is a significant challenge
for UAVs in many applications such as communication systems [5]. Understanding ex-
ternal factors such as wind conditions is crucial, impacting its ability to maintain specific
trajectories and affecting its overall energy efficiency.
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2.1. UAVs wind conditions identification methods

Over time, the field of wind and airspeed measurement in fixed-wing small UAVs has
undergone extensive exploration and enhancement. These efforts have predominantly re-
volved around employing flow sensors, specifically pitot tubes, combined with the dy-
namic models intrinsic to these UAVs. An exemplary study [6], utilised an extended
Kalman filter technique combined with the Wind Triangle Relation to deduce horizon-
tal wind velocities and their directions. This methodology also integrated a calibration
factor for pitot tube readings to gauge airspeed accurately [1].

Further research [7] aimed to determine wind speed, Angle-Of-Attack (AOA), and
Sideslip Angle (SSA) for a fixed-wing UAV using kinematic relationships combined with
a Kalman Filter from the UAV’s airspeed and attitude data. This approach eliminates the
need for detailed aerodynamic models or specific aircraft data. The system works effi-
ciently if the UAV frequently changes its attitude during flight. While the results for wind
speed align well with ground observations, the AOA and SSA estimates need further
validation but show promising correlations.

Another approach [8], devised a nonlinear wind observer. By merging standard air-
craft models with readings from devices such as the GPS, IMU, and pitot tube, this
method could estimate wind speed and drone airspeed.

Rounding off these innovations, [9] introduces an approach to calculate air param-
eters data for a small UAV MEMS-based pressure sensor placed on the UAV’s exterior.
These data inform a machine-learning model that predicts the UAV’s AOA, SSA, and air-
speed. Two machine learning techniques - artificial neural networks and linear regression
- were evaluated using data from wind tunnel tests and real flights. Training with wind
tunnel data presented accuracy challenges, while real flight data proved more reliable.

Fixed-wing UAVs move in the direction they face because of their design and have a
non-zero turning radius. This makes it straightforward to measure airspeed with external
sensors, as their structure offers convenient spots for mounting these sensors, typically
on the nose or wings, without significant disruption from rotor turbulence. In contrast,
mounting airspeed or wind speed sensors on multi-rotor UAVs is more difficult. Their
design does not provide ample space for these sensors. Moreover, measurements from
these sensors can be distorted by rotor turbulence and other effects caused by the rotors.
Additionally, these sensor systems must consider that multi-rotor UAVs have a non-zero
turning radius but can swiftly move in any given direction [1].

However, there are other ways of airspeed measurement. For example, in [10] a
lightweight drone was crafted to carry a high-precision sonic anemometer. To ensure
high accuracy in dynamic conditions, it is crucial to use a full-size anemometer, maintain
a considerable distance between the anemometer and the propellers, and deploy a robust
algorithm to minimise propeller-induced airflow effects. In practical tests, the drone suc-
cessfully gauged wind velocity in a wind turbine’s wake, with its results closely matching
lidar data and theoretical predictions.

Other techniques take advantage of existing onboard sensors. The algorithm in [11]
is designed to utilise an inertial measurement unit (IMU) combined with an earth ref-
erence tracking system and sensors that monitor rotor speed. Three distinct algorithms
were tested through numerical experiments on a nonlinear quadrotor simulator. The al-
gorithms effectively estimated airspeed, particularly on the horizontal plane.

Upon examining the diverse methods available for UAV wind condition identifica-
tion, it becomes evident that each method, while innovative in its approach, has inher-
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ent limitations. Traditional sensor-based methods, while often precise, impose design
and weight constraints on the UAV. Fixed-wing UAVs provide more convenient options
for mounting such sensors away from disruptive factors like rotor turbulence. However,
multi-rotors present a challenge due to their design intricacies, which do not afford many
optimal placements for these sensors without interference.

Furthermore, using dedicated wind sensors can compromise the UAV’s weight allo-
cation, potentially necessitating trade-offs with other vital components. In [11] the au-
thors developed wind estimation algorithms which do not require additional sensors, but
they are tailored to quadrotors, with a foundational basis on their detailed aerodynamic
model. While the research provides valuable insights and advancements for quadrotor
applications, its specificity can also be seen as a limitation. This focused approach means
that the methodologies and conclusions derived might not be directly transferable or ap-
plicable to other types of drones or aerial vehicles. Diverse aerial platforms, such as hex-
acopters, octocopters, or fixed-wing drones, have distinct aerodynamic properties and
dynamics. As a result, any wind estimation method that specifically caters to quadrotors
may not address the unique challenges and nuances posed by these other aerial vehicles.
Thus, the need for broader, more encompassing solutions for varied drone architectures
remains evident. As the applications and complexities of UAVs continue to grow, it is
imperative to devise methods that can circumvent these challenges and be universally
applicable.

In light of these challenges, our decision to employ a different approach becomes
justified. Drawing inspiration from [2], we advocate for a shift towards a machine learn-
ing based method which does not rely on a specific wind sensor, and instead capitalises
on the existing sensors onboard the UAV such as GPS. By adopting this method, not only
can we alleviate the challenges posed by traditional methods, but also harness the vast
potential that such an approach can offer in enhancing UAV performance in varied wind
conditions.

2.2. Causal curiosity in machine learning

In this work we apply a methodology set within the framework of causal machine learn-
ing. This combines ideas from causal analysis, focused on understanding the causal rela-
tionship between the different variables of a system, with machine learning, in this case
focused on learning which actions are the most optimal for the previous causal analysis.

In relation to causal analysis, this is a field solidly established in several works and
theoretical formulations such as [12–15]. It is an analysis rooted in the field of statistics
and nevertheless despite this basis has only recently started to connect with the field of
machine learning. The combination of the two in what is becoming known as Causal Ma-
chine Learning presents different presentations and foci of interest. [16] offers a histori-
cal introduction to the field culminating with a presentation of different areas of machine
learning in which causal analysis can be relevant and a special focus on causal represen-
tation learning. This last point is developed in more detail by [17]. Causal representation
learning focuses on the representation of the systems in which learning takes place and
its connection with the causal relationships between the elements of the system. Rep-
resentation is a key issue for machine learning whether we are talking about the initial
external representation of the data used or the latent internal representation produced by
training our models. These representations are often disconnected from the causal ap-
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proach and therefore from the variables in which it would be natural to represent the
system in order to understand its dynamics. Identifying and working with these variables
can greatly increase the efficiency, generability and interpretability of our machine learn-
ing models. [18] provides a very broad and detailed overview of the intersection between
machine learning and causal analysis and of the challenges found.

Other works [19–21] focus in particular on causal reinforcement learning. In gen-
eral, reinforcement learning works with variables that do not necessarily have a causal
relationship between them, and therefore are less effective in solving certain tasks, such
as estimating the value of some of them from the effect produced by the variables in our
control.

The methodology we apply in this work [2] is in turn connected to the concept
of curiosity. Curiosity in robotics is seen as an inner reward that pushes a reinforce-
ment learning agent to explore unknown parts of its environment in connection with the
exploration-exploitation dilemma. Several authors have explored the concept of curiosity
in robotics [22–34]. However, in this case the concept of curiosity reward is linked to
the identification of different causal factors, through the exploration of actions that pro-
duce an adequate differentiation between environments with different values, connecting
thus it in a direct way with the concepts coming from causal analysis. The most recent
work on causal curiosity in robotics applies the methodology to the case of planetary
exploration [35].

3. System model

In this section, we describe the system we have simulated in this project. We designed a
computer simulation of a UAV with a specific weight and cross-sectional area, navigating
through distinct wind scenarios for a given time.

The drone interactions with the wind are modelled and parametrised by its mass m,
drag coefficient CD, cross-sectional area S and air density ρ . The forces on the drone are
calculated at every time step of the simulation using the following force equations:

�Fnet = �Fthrust +�Fdrag +�Fgravity (1)

�Fdrag =−1
2

ρ�v2
airCDS (2)

�Fgravity =−9.81m (3)

The dynamics of the drone are calculated using the following equations of motion:

�a =
�Fnet

m
(4)

�vair =�vground +�vwind (5)

�vair =�vo,air +�adt (6)

�r =�ro +�vground dt (7)
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The wind conditions considered are constant wind, shear wind, and turbulent wind.
For constant wind, the value of�vwind stays constant for the duration of the simulation. For
shear wind, the value of �vwind is calculated using the power law wind-shear model [36]
using the following equation:

U(z)
U(zr)

=

(
z
zr

)α
(8)

where U(z) is the wind speed at altitude z, and zr is the relative altitude. Finally, for
the turbulent wind, the Dryden wind turbulence model is applied, using the implementa-
tion of [1]. This implementation uses the Dryden transfer function defined in [37] for the
X, Y, and Z directions as follows:

Hx(s) = σx

√
2Lx

πvx

1
1+ Lx

vx
s

(9)

Hy(s) = σy

√
Ly

πvy

1+
√

3Ly
vy

s(
1+ Ly

vy
s
)2 (10)

Hz(s) = σz

√
Lz

πvz

1+
√

3Lz
vz

s(
1+ Lz

vz
s
)2 (11)

The simulation is represented in Figure 1. The left plot in (a) shows the UAV position
trajectory during the simulation of two wind environments. The right plot in (a) shows the
wind speed and direction at the trajectory of the UAV in one of the wind environments.
For this latter case, the plots in (b) show the UAV and wind velocities represented in 2D
perspectives XY, XZ, and YZ.

4. Methodology

The aim of our methodology is to distinguish between different wind conditions based on
the trajectories. To do so, we use machine learning time series classification to identify
the trajectories and assign them to each wind condition.

In order to compare the trajectories we use Dynamic Time Warping (DTW) [38].
This is a method that allows for flexible comparisons between two time series, poten-
tially of different lengths. The core idea behind DTW is to find the optimal alignment
between two time series that minimises the distance (or “warping cost”) between them.
This is achieved by “warping” the time dimension of one or both series to get an optimal
match. The strength of DTW lies in its ability to identify patterns in sequences that might
be out-of-sync or have different temporal stretches. For example, if a UAV follows a par-
ticular trajectory pattern but at varying speeds in different instances, DTW can capture
the inherent pattern across these varied speeds, making it invaluable for tasks like UAV
trajectory classifications.

For the clustering process we use k-means clustering. In the context of time series
classification, k-means works by partitioning time series data into k number of clusters
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(a) UAV trajectory (left) and wind direction and magnitude on multiple trajectory points (right).

(b) UAV velocity direction and magnitude along the trajectory (left) and wind direction and magni-
tude on multiple trajectory points (right).

Figure 1. UAV position and wind velocities through the trajectory.

based on their similarity. Each cluster’s centroid represents a mean value for the time
series data points within that cluster.

The implementation of these methods has been done using the tslearn2 library [39],
an extension of the widely used scikit-learn library [40] specialised for time series data
tasks.

To gauge the quality of clusters created by the clustering algorithm we use the Sil-
houette score metric. The score ranges from -1 to 1, where a high value indicates that the
object is well-matched to its own group and poorly matched to neighbouring groups. In

2 https://tslearn.readthedocs.io
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the context of our UAV trajectory classification, the Silhouette score becomes essential
to understand how distinct our time series clusters are. A good Silhouette score would
indicate that trajectories within the same cluster are similar, while trajectories across dif-
ferent clusters are distinct. [41] offers an in-depth exploration of the Silhouette score and
its use in cluster quality evaluation.

According to [2], some actions done by the agent could provide more useful infor-
mation about causal factors than other actions. For example, in the robotic scenario anal-
ysed in that work, if the robotic fingers agent is tasked with classifying an object by its
weight, a lifting action is more useful than a pushing action on the object. The reason
is that friction and weight can cause resistance when pushing. In our case, some UAV
actions (i.e. thrust sequences) could give more information about wind conditions, and
other UAV actions can give less information. For example, if the UAV is tasked with
classifying if it is flying in shear wind or constant wind, actions (or thrust) in the vertical
plane are more useful than the ones in the horizontal plane because shear wind speed
varies with altitude while constant wind speed does not vary. In our experiment we test
an optimisation strategy to find these optimal sequences of actions.

The system’s overall framework is depicted in Figure 2(a), where the simulation
begins with a UAV executing consistent thrust actions in varied wind conditions in two
different wind environments. Once completed, the UAV’s position trajectories of the
two environments, being time series, are compared using the Dynamic Time Warping
algorithm and clustered using the k-means technique. The final classification receives a
Silhouette score. The objective of this machine learning model is to differentiate between
the wind conditions by examining the UAV’s position trajectories. Since certain actions
yield more precise classifications, it is crucial to identify action strategies that optimise
the classification. Additionally, the cross-entropy method (CEM) was utilised as a search
strategy, as shown in Figure 2(b).

The CEM method uses the following algorithm [42]:

1. Initialise: Choose μ̂0 and σ̂2
0 . Set t = 1.

2. Draw: Generate a random sample X1, ...,XN from the N(μ̂t−1, σ̂2
t−1) distribution

where Xi = (Xi,1, ...,Xi,n)
3. Select: Let I be the indices of the Ne best performing (=elite) samples.
4. Update: For all j = 1, ...,n let

μ̂t, j = ∑
k∈I

Xk, j/Ne (12)

σ̂2
t, j = ∑

k∈I
(Xk, j− μ̂t, j)

2/Ne (13)

In this method, a multivariate Gaussian distribution probability with mean μ and
standard deviation σ is used to produce N samples. In this case, the samples represent
thrust magnitude values. Next, the simulation is run for 1 loop for each one of the N sam-
ples. Based on the Silhouette score, the Ne best-performing samples are used to calculate
a new mean and standard deviation. These cycle back into the same algorithm until no
improvement is shown. See an example of this approach in [43].
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(a) System overview using random exploration.

(b) System overview using CEM.

Figure 2. System flow charts using different optimal action search strategies.

5. Experiments

In our experiments, we evaluated how different thrust sequences give different informa-
tion about the wind conditions. Initially, we used a random exploration strategy to anal-
yse the effect of the parameters that define the environment and the interaction with it
in the information obtained. The parameters explored are wind speed, range length, the
total number of wind condition environments, the number of thrust changes, and wind
direction.

In each experiment the objective is to differentiate between two types of wind condi-
tions. For example, the first can be light shear wind speeds, and the second light constant
wind speeds. For each of the two conditions, we create 5 environments that represent
variations over that wind condition. The UAV interacts with the 10 environments carry-
ing out the same sequence of thrust but describing different trajectories depending on the
surrounding wind.

The simulation starts with the UAV having a pre-specified random thrust magnitude
and direction, and the thrust vector value changes six times at pre-set times t1, t2, ..., t6.
After running the simulation, the ten UAV trajectories are clustered and classified using
Soft Dynamic Time Warping and the k-means method. Finally, these clusters are given a
Silhouette score. This process constitutes a single simulation loop. The random sequence
generation tests ran for 50 loops except if specified otherwise.

In Experiment 1 we explored the effect of the wind conditions in the classification.
The pairs of wind conditions that were used in the experiments are described in Table 1.
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Table 1. Wind conditions experimented.

Scenario Wind condition 1 Wind condition 2

1 light constant light constant
2 light constant strong constant
3 strong constant strong constant
4 light shear light shear
5 light shear strong shear
6 strong shear strong shear
7 light constant strong turbulence

Experiment 1 allowed us to understand the effect of different combinations of wind
types. After analysing the results, it was found that several of the scenarios were qualita-
tively similar, and thus the rest of the experiments were performed with a representative
selection of the previous combinations.

The objective of Experiment 2 was to test the effect of the gap size between the two
groups’ wind speeds on the classification. The goal of Experiment 3 was to test the effect
of the number of environments on the classification. The test was done using 10, 8, 6,
4, and 3 environments for each wind condition. Experiment 4 was performed to test the
effect of the number of thrust vector changes on the classification. The test was done with
12, 10, 8, 6, 4, 2, and 0 thrust vector changes. The wind conditions used in Experiments
2, 3 and 4 are the scenarios 1 to 4 shown in Table 1.

The objective of Experiment 5 was to test the effect of wind direction on classi-
fication. Therefore, all parameters like wind speed, range length, the total number of
wind condition environments, and the number of thrust vector modifications remained
unchanged. In one of the two groups, the wind speed sign was altered to negative. The
testing was done on light constant wind vs light shear wind conditions.

These previous experiments analyse the possibility of identifying different combi-
nations of wind conditions and the effect of the parameters of the environments and the
interactions within them. Experiment 6 uses a search strategy to optimise the search for
optimal thrust sequences. The strategy used in this case is the cross-entropy method,
described in Section 4.

To exemplify the experiments, we show here the details in the case of the scenario
in which we try to distinguish between strong shear wind and light constant wind. Light
wind speeds are in the range of 0.45-1.34 m/s, and strong wind speeds are in the range
of 11.18-13.86 m/s according to the US National Weather Service3. For each of the wind
conditions, we generate 5 environments, with wind parameters shown in Table 2. We
note that the shear wind speeds are U(zr) in equation 8 at ground altitude or zr = 0.

The UAV used in all the experiments is defined with the mass, drag coefficient,
and cross-sectional area shown in Table 3. These properties represent an average micro
UAV available in global markets such as the 1.38 Kg DJI Phantom 4 or the 3.44 Kg DJI
Inspire 2 [44]. Additional simulation parameters are also shown: time step, total time,
and number of loops. In these experiments, the thrust vector and time marks for when the
thrust force changes are generated randomly. However, thrust magnitude is in the range
of 0 to 50 Newtons which is a reasonable upper limit since the max thrust for the DJI

3 https://www.weather.gov/pqr/wind
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Table 2. Parameters of the wind models for the classification of strong shear wind vs light constant wind
environments.

(a) Shear wind. α = 0.143, ρ = 1.225
Wind speed for different axes.

x axis
(m/s)

y axis
(m/s)

z axis
(m/s)

2.1 10.1 0
2.2 10.2 0
2.3 10.3 0
2.4 10.4 0
2.5 10.5 0

(b) Constant wind. ρ = 1.225
Wind speed for different axes.

x axis
(m/s)

y axis
(m/s)

z axis
(m/s)

1.1 1.1 0
1.2 1.2 0
1.3 1.3 0
1.4 1.4 0
1.5 1.5 0

Phantom 4 is 36.6 N and 64 N for the DJI Inspire 2 [45,46]. The current experiments are
estimated to work with submeter accuracy in the position.

Table 3. Simulation and UAV parameters.

(a) UAV properties

UAV mass (Kg) 2
CD 0.1

S (m2) 0.01

(b) simulation properties

Time step (s) 0.1
Total time (s) 12

Number of loops 50

(c) UAV thrust action properties

Fthrust magnitude (N) Randomly selected
in the range [0-50]

Fthrust directions [x y z] Randomly selected
Fthrust application times (s) Randomly selected

After one loop of simulations for two groups of 5 wind conditions is finished, UAV
position trajectories are clustered and classified using the time series k-means and the
Silhouette score is calculated. In Table 4 can be seen the output of the simulation after
finishing the simulation loops, showing the score, the classification of each trajectory in
the 2 wind environment groups, the randomly generated time marks for thrust changes,
and the randomly generated thrust vectors. The score of the loop of the example Figure 3
(a) was 94.55. During the simulation, the UAV had a thrust of 40 Newtons in the z direc-
tion for 4 seconds, and then the thrust changed to 15N in the x direction for 6 seconds,
and finally 45N in the y direction for 2 seconds. The maximum Silhouette score is 100.
In this example, the observations are correctly classified into their corresponding groups.
To visualise the trajectories, a plot is generated shown in Figure 3 (a). The process is
performed 50 times and plotted in (b), including the maximum score and mean score
values.

It should be noted that when any trajectory is classified incorrectly in a certain loop,
the Silhouette score in that loop is set to zero.
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Table 4. Simulation parameters and outputs after one simulation loop.

Silhouette score 94.55
Observations1 [1 1 1 1 1]
Observations2 [0 0 0 0 0]

Thrust change times (s) [ 0 4 10]
Thrust magnitude (N) [40 15 45]

Thrust directions [x y z] [[0 0 1] [1 0 0] [0 1 0]]

(a) UAV trajectories in two groups
of 5 different wind environments.

(b) Silhouette score for 50 loops.

Figure 3. Example trajectories for a single loop and scores for all of them.

6. Results

6.0.1. Effect of Wind speed on classification

In this Experiment 1 we study the effect of the wind speed on the efficiency of the
method. With the same steps done in the previous example, more experiments were done
to compare wind speeds in both constant and shear wind models: light vs light, light vs
strong, and strong vs strong. The results are shown in Figure 4 (a) to (f). In all cases the
average score was over 95 except for the two cases with only light wind conditions. In
the first case, with light constant wind vs light constant wind, the maximum score was
85.86, and in the light shear wind vs light shear wind case, the maximum score was 79.83
as shown in Table 5. Additionally, these two cases had more frequent low scores in some
of the loops (see the dips in the curves) which caused the mean to drop.

Table 5. Maximum and mean Silhouette scores for all wind conditions scenarios in the wind speed
experiments.

Scenario Maximum Mean

Light constant vs light constant 85.86 85.03
Light constant vs strong constant 97.86 97.68
Strong constant vs strong constant 96.19 95.73

Light shear vs light shear 79.83 77.29
Light shear vs strong shear 97.65 97.11

Strong shear vs strong shear 97.49 97.07
Light constant vs strong turbulence 93.59 92.44

Light constant vs light constant (500 loops) 81.20 79.30
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(a) Light vs light constant winds. (b) Light vs strong constant winds. (c) Strong vs strong constant winds.

(d) Light vs light shear winds. (e) Light vs strong shear winds. (f) Strong vs strong shear winds.

(g) Light constant wind vs strong
turbulence.

(h) Light constant wind vs light
constant wind with 500 loops.

Figure 4. Silhouette score vs loop number for the wind speed experiments.

An experiment with strong wind turbulence vs light constant wind was conducted.
It is illustrated in Figure 4 (g), the mean score is 92.44 and the maximum score is 93.59
which is slightly lower than most of the cases above. Nevertheless, it is higher than the
two cases where both wind speeds were light.

The last case analysed here was an experiment with 500 loops for the light constant
wind vs light constant wind case. The result is shown in Figure 4 (h). It can be seen how
the maximum score did not improve despite extending the number of loops.

6.0.2. Effect of range similarity on classification

In this section, we examine the impact of wind condition groups’ similarities on the clas-
sification results. To discount the effect of changes in the average strength of the wind in
this experiment, the length change in the study is done by eliminating the closest envi-
ronments between the two groups. Starting with 10 wind environments for each group,
the highest-value environment of the bottom group and the lowest-value environment of
the top group are both removed, thus increasing the difference between the ranges. This
is repeated until each group has 3 wind conditions environments out of the initial 10. Ta-
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ble 6 and Figure 5 show the result of experimentation on different cases, which generally
show an increase in the score when the dissimilarity between the two groups is increased
(meaning a decrease in the number of environments in the plots).

(a) Light vs light constant winds. (b) Strong vs strong constant winds.

(c) Light vs strong constant winds. (d) Light vs light shear winds.

Figure 5. Silhouette score vs the number of environments for the range similarity experiments. A decrease in
the number of the environment is equivalent to an increase in the difference between the wind speed ranges of
the two wind conditions.

Table 6. Maximum and mean Silhouette scores for all wind conditions scenarios in the range similarity
experiments.

Maximum Mean

Scenario 6 env 20 env 6 env 20 env

Light const. vs light const. 95.05 81.19 94.45 79.50
Light const. vs strong const. 96.30 95.90 95.75 95.30
Strong const. vs strong const. 97.47 93.96 97.25 92.61

Light shear vs light shear 93.49 77.42 92.49 72.44

6.0.3. Effect of number of environments on classification

In contrast with the previous experiment, here the distance between the wind speed
ranges of the two wind conditions is kept constant while decreasing the number of en-
vironments. This is done by removing the environment with median wind speed in each
group starting with 10 environments each and ending up with 3 environments each. Ta-
ble 7 and Figure 6 show the results of the experiments. They show an increase in the
score when the number of environments is increased. Another finding of this experi-
ment is that the number of environments score improvement seems to plateau around 15
environments in each group.

A. Alwalan and M. Arana-Catania / Wind Estimation in Unmanned Aerial Vehicles 15



(a) Light vs light constant winds. (b) Light vs strong constant winds.

(c) Strong vs strong constant winds. (d) Light vs light shear winds.

Figure 6. Silhouette score vs number of environments. The number of environments changes but the difference
between the wind speed ranges of the two wind conditions is constant.

Table 7. Maximum and mean Silhouette scores for all wind conditions scenarios in the number of environ-
ments experiments.

Maximum Mean

Scenario 6 env 20 env 6 env 20 env

Light const. vs light const. 68.80 81.19 66.46 79.50
Light const. vs strong const. 94.42 96.48 93.33 95.89
Strong const. vs strong const. 90.91 93.96 88.10 92.61

Light shear vs light shear 64.41 77.42 55.58 72.44

6.0.4. Effect of number of thrust changes on classification

In this test, both range distance and number of environments are kept constant. Here,
the number of UAV thrust vector changes during the simulation is varied starting with
no change and ending with 12 changes which means a change every second. The results
of the experiment are presented in Table 8 and Figure 7. They do not show any major
change in the score.

Table 8. Maximum and mean Silhouette scores for all wind conditions scenarios in thrust changes experi-
ments. 0 and 12 changes.

Maximum Mean

Scenario 0 ch. 12 ch. 0 ch. 12 ch.

Light const. vs light const. 81.19 81.19 80.11 80.61
Light const. vs strong const. 96.55 96.21 95.51 96.09

Strong const. vs strong const. 95.52 93.67 92.03 92.81
Light shear vs light shear 76.17 74.70 70.26 73.88
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(a) Light vs light constant winds. (b) Light vs strong constant winds.

(c) Strong vs strong constant winds. (d) Light vs light shear winds.

Figure 7. Silhouette score vs number of UAV’s thrust changes during the simulation.

6.0.5. Effect of wind direction on classification

In this case, all other parameters (wind speed, range length, number of wind condition
environments, and number of thrust vector changes) are kept constant while the wind
speed sign was changed to negative in one of the two groups. Table 9 and Figure 8
show two cases of the experiment. In Figure (a) we can see many loops with incorrect
classification. However, when the wind direction is changed, all incorrect classifications
disappear.

(a) Light constant vs light shear
wind. Similar direction.

(b) Light constant vs light shear
wind. Opposite direction.

Figure 8. Silhouette score vs loop number where the two groups of wind conditions had (a) similar or (b)
opposite wind direction.

6.0.6. Cross-entropy method search strategy for thrust actions sequence

In this case, the search method used for optimal UAV thrust sequences that maximise
the identification of two wind conditions is the Cross-Entropy Method. Its algorithm is
shown in section 4. In Table 10 are shown the UAV, simulation and search method pa-
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Table 9. Maximum and mean Silhouette scores for all wind conditions scenarios in wind direction
experiments.

Scenario Maximum Mean

Light const. vs light shear - similar direction 71.18 21.58
Light const. vs light shear - opposite direction 92.16 90.33

rameters. The thrust vector is defined by its magnitude and its three direction compo-
nents. All of them are generated according to Gaussian distributions defined by μ and σ
which are updated with every iteration of the CEM method. In Figure 9 we can see the
result for the light shear wind vs light constant wind case where σ̂mag,0 = 50 and μ̂mag,0 is
centred at 25N for the thrust magnitude. For each thrust direction component, we started
with σ̂dir,0 = 0.33 and μ̂dir,0 = 0. The number of samples is 30 for each iteration. The
4 elite samples (Ne) are the ones with the highest scores. These elite samples are used
to calculate the new μ̂t and σ̂t for the next iteration. An improvement trend can be seen
through the iterations, as compared to the random choice of the sequences of the previous
experiments. The graph plateaus around the 12th iteration. The max and mean results in
Figure 9 can be compared directly with the ones in Figure 8(c) because they had the same
wind condition. We can observe that the max value was 72.21 with the random search
method while the max value with the CEM search reached 79.79.

Table 10. Simulation, UAV and search strategy parameters for the CEM case.

(a) UAV properties

UAV mass (Kg) 2
CD 0.1

S (m2) 0.01

(b) simulation properties

Time step (s) 0.1
Total time (s) 12

Number of samples N 30
Elite samples Ne 4

(c) UAV thrust action properties

Fthrust magnitude (N) Gaussian distribution
with (μmag,σmag)

Fthrust directions [x y z] Gaussian distribution
with (�μdir,�σdir)

Fthrust application times (s) Randomly selected

Figure 9. Silhouette score vs number of iterations for the light shear wind vs light constant wind case, using
CEM with σ̂0=50 N=30 Ne=4.
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7. Discussion

The results in Figure 4 show that the lighter the wind the more difficult it is to identify
it. The reason for this is that the forces acting on the UAV by the light wind are low
and cause fewer changes in the trajectory which is the only input used in this method.
We can also observe that some thrust actions give more useful information than others
which results in better classification and better scores. This calls for a method for optimal
thrust action sequences that maximise the classification. Here the Cross-Entropy Method
is used.

The graphs in Figure 5 show that the larger the difference between wind speed ranges
the easier it is to identify the two wind conditions, even if in this experiment it means
reducing the number of environments.

Next, when testing the effect of the number of environments on the classification
while keeping the range similarity constant, the increase in the number of environments
increases the Silhouette score in all cases of Figure 6. This is produced because the in-
crease in the number of environments means more data input to the system. Neverthe-
less, the improvement plateaus around 20 environments, and for this reason the following
tests were done using 20 environments.

It is important to note that the increase in the number of wind environments in each
group could have improved the classification score in the previous experiment on the
ranges difference, but it did not. Thus, the range length is a more sensitive parameter in
classification than the number of wind environments in each group.

As shown in Figure 7, the number of UAV thrust vector changes during the simula-
tion has no major effect on the identification. In contrast, Figure 8 clearly shows that the
difference in wind direction is a major factor for the identification.

Figure 9 shows that the Cross-Entropy Method can improve the result for wind type
identification. In the experiment the improvement plateaus at the 12th iteration.

Regarding future work, the collected observations in the current system are position
versus time, but since observations are only required to be time series, future experimen-
tation could be done with other UAV parameters such as attitude angles versus time or
speed versus time and the actions could be roll, pitch, or yaw moments and not only the
forces. Additionally, instead of using an open-loop approach where the thrust sequence
is set at the beginning of the trajectory, a closed-loop system could be applied, observing
the trajectory and producing thrust actions dynamically during the trajectory.

8. Conclusions

In this work we have applied a causal machine learning driven approach to identify the
wind conditions of a UAV environment using only its position information. This method
used for discerning causal factors in different environments, has been employed here
in the aerospace domain for the first time. By applying this approach to the position
trajectory of a UAV in diverse wind environments, we have forged a path to identifying
wind conditions without the requisite of a dedicated wind speed sensor.

In this work we have utilised machine learning time series classification combined
with the causal curiosity approach to discern various wind conditions, solely based on
the UAV’s trajectory. We have analysed three distinct wind environments: constant wind,
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shear wind, and turbulence. We analysed the effect of methodological and wind param-
eters in our approach and explored the use of the Cross-Entropy Method as a search
strategy to maximise the accurate wind classification by using optimal UAV manoeuvres.

The findings offer an enhanced understanding of UAV dynamics in wind distur-
bances and promise practical applications, such as optimising UAV pathways in windy
scenarios for efficient energy consumption or faster destination reach.
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