
Data Engineering in IoT Ecosystems: ETL 
Approaches for Big Data Synchronization 

Across NoSQL and Relational Stores 

Mariia Talakha, Valentyna Dvorzhak a, Yuriy Ushenko a1 
a Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58012, Ukraine 

ORCiD ID: Mariia Talakh, m.talah@chnu.edu.ua https://orcid.org/0000-0002-5067-6848 

ORCiD ID: Valentyna Dvorzhak, v.dvorzhak@chnu.edu.ua 

https://orcid.org/0000-0003-4772-6688 

ORCiD ID: Yuriy Ushenko, y.ushenko@chnu.edu.ua https://orcid.org/0000-0003-1767-1882 

Abstract. This study presents an efficient Extract, Transform, Load (ETL) process 

for synchronizing data between NoSQL time series databases and relational data 
warehouses in IoT environments, addressing challenges of maintaining data 

consistency while supporting real-time and historical analytics. Our methodology 

uses Azure CosmosDB for NoSQL storage and Azure Synapse for warehousing. 
The ETL process is optimized for high-velocity, high-volume IoT data, focusing on 

data modeling, transformation, and loading. Key optimizations include incremental 

loading, parallel processing, and data compression. Query times improved by over 
99%. The system manages out-of-order data arrival through staging, windowing, 

and merge operations. This approach balances real-time accessibility with powerful 
analytics, enhancing IoT data processing across domains beyond smart homes. 

Keywords. IoT, ETL, NoSQL, relational databases, big data, Azure CosmosDB, 

Azure Synapse, data warehousing 

1.  Introduction 

With the proliferation of IoT devices, the volume and velocity of data generated by 

smart systems are increasing significantly [1, 2]. Integrating heterogeneous data storage 

systems to support both real-time and historical analysis is becoming crucial [3, 4.]. 

Recent advancements in edge computing and AI have further transformed the IoT 

landscape, introducing new possibilities and challenges for data processing and 

analytics [5]. Studying the mechanisms of efficient data synchronization between 

NoSQL and relational databases provides the key to understanding how IoT systems 

can adapt to future changes in data processing requirements and analytical needs [2, 6]. 

This study models and evaluates an efficient ETL process for synchronizing data 

between NoSQL and relational databases in IoT environments, evaluating hybrid 

storage for faster queries with consistent, flexible data handling [7]. 

Various studies indicate that traditional ETL approaches struggle to handle the 

high-velocity, high-volume nature of IoT data [8, 9]. Such challenges in data integration 

demonstrate the need for innovative solutions that can bridge the gap between real-time data 

ingestion and complex historical analysis. Studying these challenges through a smart home 

 
1 Corresponding Author: Yuriy Ushenko, E-mail: y.ushenko@chnu.edu.ua 

Artificial Intelligence, Medical Engineering and Education
Z. Hu et al. (Eds.)
© 2025 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/ATDE250141

317

https://orcid.org/0000-0002-5067-6848
https://orcid.org/0000-0003-4772-6688
https://orcid.org/0000-0003-1767-1882


case study opens up new opportunities for optimizing IoT data management pipelines. 

1.1. Analysis of previous studies 

The integration of NoSQL and relational databases for IoT data management presents 

significant challenges. Kang et al. (2015) [6] demonstrated the advantages of NoSQL 

systems for high-velocity data ingestion but noted difficulties in integration with 

relational databases. Ullah et al. (2017) [3] emphasized the importance of semantic 

interoperability in heterogeneous IoT infrastructure. Jiang et al. (2014) [7] proposed 

an IoT-oriented data storage framework on cloud platforms, addressing some of these 

integration challenges. 

Existing ETL frameworks for IoT data often focus on either real-time processing 

or batch analytics, rarely addressing both effectively. Ramírez-Gallego et al. [8] 

highlighted the challenges of handling high-velocity data in real-time scenarios. 

Rehman et al. [10] stressed the need for frameworks that can handle both real-time 

processing and in-depth historical analysis. 

The Internet of Things (IoT) has emerged as a paradigm that facilitates the 

interconnection of various devices, generating vast amounts of data that require efficient 

processing and analysis [1]. The proliferation of IoT devices in homes has led to a surge in 

sensor data and cybersecurity concerns. This data demands dual processing: real-time 

analysis for instant insights and persistent storage for long-term studies. 

To address these requirements, many systems have adopted a dual-database 

architectural paradigm: a NoSQL time series database for rapid data ingestion and 

recent query processing, coupled with a relational data warehouse for complex 

historical analytics [6]. 

This dual approach presents unique challenges in data synchronization and 

consistency, particularly when dealing with the high-velocity, high-volume nature of 

IoT data [11]. The critical Extract, Transform, Load (ETL) processes required to 

synchronize data between these two systems effectively form the focus of this paper. 

Recent studies emphasized the importance of semantic interoperability across 

heterogeneous IoT systems [3] and the concept of osmotic computing for IoT workflows 

[12]. These approaches emphasize flexible and adaptive data management strategies in IoT 

environments. The integration of edge computing and AI in IoT environments enables more 

efficient data processing and real-time analytics. Edge computing brings computation closer 

to data sources, reducing latency and bandwidth usage [13], while AI techniques enable 

intelligent analysis and decision-making at the edge [14]. 

The rapid evolution of industrial IoT technologies has introduced new 

possibilities for data processing and analytics [15, 16]. However, these advancements 

also bring challenges in terms of data classification and processing efficiency in IoT 

environments [17]. 

Understanding and addressing these challenges is crucial for developing 

effective ETL strategies that can handle the complexity and scale of modern IoT data 

ecosystems. 

2.  Methodology 

Our methodology employs a hybrid approach integrating NoSQL and relational 

database technologies to create an efficient ETL pipeline for IoT data management, 

M. Talakh et al. / Data Engineering in IoT Ecosystems318



enabling both real-time analytics and comprehensive historical analysis. 

2.1 System Architecture 

We propose a two-tier architecture consisting of: 

1. Azure CosmosDB as the NoSQL time series database for real-time data 

ingestion and processing. 

2. Azure Synapse as the relational data warehouse for historical analytics and 

complex querying. 

This hybrid architecture leverages the strengths of both database paradigms: 

- CosmosDB provides high write throughput and low-latency access, crucial for 

handling the constant stream of data from IoT devices. 

- Synapse offers robust support for complex analytical queries and efficient storage 

of large volumes of historical data. 

To ensure data security and efficient processing in our cloud-based integration, we 

employ Azure Data Factory as the central orchestration tool [18]. This service acts as a 

bridge between CosmosDB and Synapse, managing the data flow and transformation 

processes. We developed an IoT testbed that emulated a smart home environment, 

using a reduced number of sensors while maintaining standard signal frequencies. This 

setup, despite its smaller scale, produced data patterns representative of full-scale IoT 

deployments. To collect performance data, we utilized Azure's native monitoring 

capabilities. The data collection process occurred intermittently over a six-month 

period, allowing us to capture diverse system states and ensure our results reflected a 

range of operational scenarios typical in real-world IoT implementations. 

The integration mechanism involves: 

1. Change Data Capture (CDC): Implementing CDC in CosmosDB to track 

changes and new data insertions. 

2. Data Pipeline: Creating a data pipeline in Azure Data Factory that regularly 

checks for changes in CosmosDB and triggers data movement to Synapse. 

3. Data Transformation: Utilizing Azure Databricks within the pipeline to perform 

necessary transformations, converting the NoSQL data structure to a relational schema. 

4. Incremental Loading: Implementing incremental load patterns to efficiently 

transfer only new or modified data to Synapse. 

This integration approach aligns with the IoT-oriented data storage framework 

proposed by Jiang et al. (2014) [7], which emphasizes the importance of cloud-based 

solutions for managing IoT data. The use of a NoSQL database (CosmosDB) for initial 

data ingestion is consistent with the findings of Kang et al. (2015) [6], who demonstrated 

the effectiveness of MongoDB, another NoSQL database, for handling IoT-generated 

data. 

This integration approach ensures a near real-time synchronization between the 

two systems while minimizing data transfer overhead. The emphasis on efficient data 

transfer and transformation addresses the challenges of semantic interoperability in 

heterogeneous IoT infrastructure, as discussed by Ullah et al. (2017) [3]. 

M. Talakh et al. / Data Engineering in IoT Ecosystems 319



 

Figure 1. Comprehensive IoT data schema for real-time transactional database (CosmosDB) with interconnected 

entities for sensors, users, and dashboards supporting high-velocity data ingestion in smart homes 

2.2 ETL Pipeline Components 

Our ETL pipeline consists of the following key components: 

1. Data Ingestion: Utilizing Azure IoT Hub to collect data from various IoT 

devices and sensors. 

2. Real-time Processing: Implementing Azure Stream Analytics for immediate data 

processing and real-time insights. 

3. Data Transformation: Developing custom logic to convert data from the NoSQL 

format to a structured schema suitable for the relational data warehouse (fig. 2). 

4. Data Loading: Using Azure Data Factory for orchestrating the data movement 

from CosmosDB to Synapse. 

5. Data Optimization: Implementing columnar storage and partitioning strategies 

in Synapse for improved query performance. 

2.3 Optimization Techniques 

To enhance ETL efficiency, we incorporate optimization techniques including: 

1. Incremental Loading: Transfers only new or modified data from CosmosDB to 

Synapse, reducing processing overhead and optimizing resource utilization [11]. 

2. Parallel Processing: Leveraging distributed architectures of CosmosDB and 

Synapse for concurrent data transformations and loads. This approach efficiently 

M. Talakh et al. / Data Engineering in IoT Ecosystems320



manages high-volume, high-velocity IoT data, aligning with findings on big data 

classification in IoT by Lakshmanaprabu et al. [17].

3. Data Compression: The utilization of columnar storage in Synapse was selected 

for its dual benefits of reducing storage costs and enhancing analytical query 

performance. This optimization is particularly vital in the context of IoT analytics, 

where rapid data retrieval and cost-effective storage are paramount, as emphasized in 

the IoT-oriented data storage framework proposed by Jiang et al. (2014) [7].

4. Adaptive Indexing: We implemented a dynamic indexing strategy in CosmosDB 

to accommodate the highly variable access patterns typical in IoT scenarios. This 

approach allows for real-time optimization of data access, crucial for maintaining 

performance in the face of evolving query patterns [8].

5. Materialized Views: The creation of pre-computed aggregates in Synapse for 

frequently accessed IoT metrics was incorporated to further enhance query 

performance. This technique significantly reduces computation time for common 

analytical operations, thereby improving overall system responsiveness [10].

Figure 2. Optimized star schema design for IoT analytical data warehouse (Azure Synapse), with fact and 

dimension tables for historical analysis, and SnapDaily for daily aggregated smart home metrics

2.4 Handling Out-of-Order Data

To address the challenge of out-of-order data arrival common in IoT environments, we 

implement:

1. A staging area in Synapse for temporarily storing out-of-order data.

2. A windowing mechanism to define time ranges for data processing.

3. Merge operations to correctly integrate late-arriving data into the appropriate time 

periods.

M. Talakh et al. / Data Engineering in IoT Ecosystems 321



3. Results of Applying Hybrid ETL Methodology for IoT Data Processing 
Optimization  

3.1 Performance Evaluation 

To assess the effectiveness of our approach, we conduct a series of performance tests: 

1. Query execution time comparisons between our hybrid system and a traditional 

relational-only approach. 

2. Scalability tests to evaluate system performance under increasing data volumes 

and IoT device counts. 

3. Data consistency checks to ensure accurate synchronization between CosmosDB 

and Synapse. 

 

Figure 3. Performance metrics of the original database system for IoT data processing in smart home 

environment 

By implementing this comprehensive methodology, we aim to create a robust and 

efficient ETL pipeline that addresses the specific challenges of IoT data management, 

balancing the need for real-time processing with powerful analytical capabilities. Our 

approach leverages the strengths of both NoSQL and relational databases, optimized 

through carefully selected techniques to handle the unique characteristics of IoT data 

streams. The performance enhancements (Figure 4) align with Kang et al. [6], 

demonstrating the effectiveness of NoSQL databases for IoT data while integrating 

with traditional analytical systems. 

Following the implementation of the optimized hybrid ETL methodology, we 

performed comparative performance testing between the previous and optimized 

systems. 

 

Figure 4. Optimized DW system performance metrics for efficient IoT data processing in smart home setup 

Analysis results (table 1): 

1. Execution Speed: Query execution time improved from 3320 ms to 20 ms 

(166-fold increase). 

2. CPU Usage: Reduced from 9319 ms to 313 ms (29.8-fold improvement). 

3. Data Reading Efficiency: Number of data reads decreased from 8498 to 494 

(17.2-fold improvement). 

4. Accuracy of Results: Prediction accuracy significantly improved, correctly 

expecting 13 rows instead of 99,294. 

5. Query Complexity: Execution became much more efficient despite unchanged 

SQL queries. 

A detailed scalability assessment, based on tests with 100,000 records, reveals 

M. Talakh et al. / Data Engineering in IoT Ecosystems322



efficient scaling characteristics. At this level, the system exhibited an execution time of 

20 ms, CPU usage of 313 ms, and 494 read operations. Comparatively, for 10,000 

records, the execution time was approximately 10 ms, and for 50,000 records, it was 15 

ms. This sublinear growth across key performance metrics suggests that the system 

effectively handles increasing workloads, making it highly scalable as data volume 

expands. 

Table 1. Comparison of performance metrics between previous and optimized systems 

Metric Previous System Optimized System Improvement 

Query Execution Time > 300 seconds < 3 seconds > 99% 

Data Reads Millions 8,500 > 99% 

Result Set Size 365 rows 365 rows No change 

The following key points are analyzed: 

 Distribution of query execution times before and after system optimization. 

 Percentage of queries that showed significant improvement in execution time. 

 Correlation between specific optimization techniques and performance 

improvements. 

Our hybrid ETL methodology, combining NoSQL (Azure CosmosDB) and 

relational (Azure Synapse) databases, successfully addresses IoT data management 

challenges. The system shows remarkable acceleration and reduction in I/O and CPU 

load by orders of magnitude. 

Key strengths include effective handling of out-of-order data and the adapted 

Kimball approach resulting in an optimized star schema. This reduces data redundancy 

while supporting complex analytics. 

These results demonstrate that our methodology provides a scalable and efficient 

solution for both real-time and historical data analysis in IoT environments, making it 

well-suited for real-world deployment. 

4. Conclusion 

This study presents an innovative ETL methodology for synchronizing data between 

NoSQL and relational stores in IoT environments. Key contributions include: 

1. Efficient data synchronization between Azure CosmosDB and Azure Synapse, 

addressing IoT data challenges. 

2. Novel out-of-order data processing mechanism using staging areas, 

windowing, and merging operations. 

3. An optimized data warehouse model based on Kimball's approach, specifically 

adapted for IoT-driven OLAP systems. 

4. A significant improvement in query performance, reducing execution times by 

over 99% compared to traditional methods. 

5. A scalable architecture capable of handling high-frequency data ingestion in 

IoT environments. 

M. Talakh et al. / Data Engineering in IoT Ecosystems 323



6. A balanced approach supporting both real-time and historical analytics. 

While our performance testing yielded strong results within a simulated smart 

home setup, this environment may not fully represent the diversity of larger-scale IoT 

scenarios. Future research should validate the solution across a broader range of IoT 

environments, including industrial IoT and smart cities. Additionally, incorporating 

edge computing and AI techniques could further enhance data processing, improve 

fault tolerance, and reduce network latency – key aspects for critical applications such 

as smart manufacturing, where real-time data synchronization is crucial for process 

optimization and predictive maintenance. 

This work provides a robust, scalable solution that bridges NoSQL and relational 

data management in IoT contexts, laying the groundwork for more efficient, real-world 

IoT systems. 

References 

[1] Atzori L, Iera A, Morabito G. Understanding the Internet of Things: Definition, Potentials, and Societal 
Role of a Fast Evolving Paradigm. Ad Hoc Networks. 2017; 56:122-40. 

[2] Agrawal S, Kumar S. MLSMBQS: Design of a Machine Learning Based Split & Merge Blockchain 

Model for QoS-Aware Secure IoT Deployments. International Journal of Image, Graphics and Signal 
Processing. 2022;14(5):58-71. 

[3] Ullah F, Habib MA, Farhan M, Khalid S, Durrani MY, Jabbar S. Semantic interoperability for big-data 

in heterogeneous IoT infrastructure for healthcare. Sustainable Cities and Society. 2017; 34:90-6. 
[4] Maithri C, Chandramouli H. Parallel DBSCAN Clustering Algorithm Using Hadoop Map-reduce 

Framework for Spatial Data. International Journal of Information Technology and Computer Science. 

2022;14(6):1-12. 
[5] Shi W, Cao J, Zhang Q, Li Y, Xu L. Edge Computing: Vision and Challenges. IEEE Internet of Things 

Journal. 2016;3(5):637-646. 

[6] Kang YS, Park IH, Rhee J, Lee YH. MongoDB-based repository design for IoT-generated RFID/sensor 
big data. IEEE Sensors Journal. 2015;16(2):485-97. 

[7] Jiang L, Xu DL, Cai H, Jiang Z, Bu F, Xu B. An IoT-oriented data storage framework in cloud 

computing platform. IEEE Transactions on Industrial Informatics. 2014;10(2):1443-51. 
[8] Ramírez-

data stream mining: Current status and future directions. Neurocomputing. 2017; 239:39-57. 

[9] Rodrigues TN. A Fast Topological Parallel Algorithm for Traversing Large Datasets. International 
Journal of Information Technology and Computer Science. 2023;15(1):1-8. 

[10] Rehman MH, Yaqoob I, Salah K, Imran M, Jayaraman PP, Perera C. The role of big data analytics in 

industrial Internet of Things. Future Generation Computer Systems. 2019; 99:247-59. 
[11] Chen CP, Zhang CY. Data-Intensive Applications, Challenges, Techniques and Technologies: A Survey 

on Big Data. Information Sciences. 2014; 275:314-47. 

[12] Nardelli M, Nastic S, Dustdar S, Villari M, Ranjan R. Osmotic flow: Osmotic computing + IoT 
workflow. IEEE Cloud Comput. 2017;4(2):68-75. 

[13] Mao Y, You C, Zhang J, Huang K, Letaief KB. A Survey on Mobile Edge Computing: The 

Communication Perspective. IEEE Communications Surveys & Tutorials. 2017;19(4):2322-2358. 
[14]  Li H, Ota K, Dong M. Learning IoT in Edge: Deep Learning for the Internet of Things with Edge 

Computing. IEEE Network. 2018;32(1):96-101. doi:10.1109/MNET.2018.1700202. 

[15] Khan WZ, Rehman MH, Zangoti HM, Afzal MK, Armi N, Salah K. Industrial internet of things: Recent 
advances, enabling technologies and open challenges. Computers & Electrical Engineering. 2020; 

81:106522. 

[16] Matta JCP, Siddaiah P. Channel Estimation of massive MIMO Using Code Shift Keying Pilot Symbols 
(CSK-PS). International Journal of Image, Graphics and Signal Processing. 2022;14(3):23-31. 

[17] Lakshmanaprabu SK, Shankar K, Ilayaraja M, Nasir AW, Vijayakumar V, Chilamkurti N. Random 
forest for big data classification in the internet of things using optimal features. International Journal of 

Machine Learning and Cybernetics. 2019;10:2609-18. 

[18] Tiwari CS, Jha VK. Enhancing Security of Medical Image Data in the Cloud Using Machine Learning 
Technique. International Journal of Image, Graphics and Signal Processing. 2022;14(4):13-31. 
 

M. Talakh et al. / Data Engineering in IoT Ecosystems324


	1.   Introduction
	1.1. Analysis of previous studies

	2.   Methodology
	2.1 System Architecture
	2.2 ETL Pipeline Components
	2.3 Optimization Techniques
	2.4 Handling Out-of-Order Data

	3. Results of Applying Hybrid ETL Methodology for IoT Data Processing Optimization
	4. Conclusion
	References

