
An Onboard Heterogeneous Computing

Framework Compatible with the Satellite

Management System

Qing LAN a,b,c , Lu LI a,b,c,1, Zhijiang WEN a,b,c, Junwang HE a,b and Wen CHEN a,b
a

 Innovation Academy for Microsatellites of Chinese Academy of Sciences, Shanghai,
201306, China

b
 Shanghai Engineering Center for Microsatellites, Shanghai 201306, China

c
 University of Chinese Academy of Sciences, Beijing 100039, China

ORCiD ID: Qing Lan https://orcid.org/0009-0000-3693-9202

ORCiD ID: Lu Li https://orcid.org/0009-0002-8665-0612

ORCiD ID: Zhijiang Wen https://orcid.org/0000-0001-9102-9324

Abstract. In recent years, satellites have exhibited a trend toward increased

intelligence, leading to the need for the on-orbit deployment of artificial intelligence

(AI) algorithms. Intelligent applications require heterogeneous computing to

achieve accelerated processing. At the same time, employing a centralized onboard

computing system can reduce the overhead associated with intra-satellite data

interaction and management. In this context, this paper proposes an onboard

heterogeneous computing framework compatible with the satellite management

system. The design employs a chip-level heterogeneous architecture, utilizing CPU,

GPU, and FPGA as the computational units. To manage and utilize the

heterogeneous computing resources, the satellite management software structure,

based on a multi-core processor, is expanded to form a heterogeneous computing

software framework. This framework includes dependency libraries for intelligent

applications and introduces an intelligent application management mechanism. The

satellite management system, along with a database and intelligent application, is

deployed on a hardware platform based on the Yulong810A multi-core

heterogeneous processor. Test results demonstrate that the satellite management

software, database, and intelligent applications function cooperatively and complete

computational tasks within the required timeframes, thereby validating the

fundamental capabilities of the proposed onboard heterogeneous computing system.

Keywords. Onboard heterogeneous computing, satellite management system,

intelligent applications, multi-core processor

1. Introduction

As the number of satellites continues to increase and their functionalities become more

complex, the demand for intelligent satellite systems is also growing rapidly. Numerous

researches have emerged focusing on algorithms for autonomous satellite operation and

management, such as autonomous mission scheduling[1][2][3] and onboard resource

management[4][5][6].

1 Corresponding Author: Lu Li, lilu16@mail.ustc.edu.cn

Mechanical and Aerospace Engineering
B. Guan (Ed.)

© 2025 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/ATDE250059

326

https://orcid.org/....-....-....-....
https://orcid.org/....-....-....-....
https://orcid.org/....-....-....-....

However, artificial intelligence (AI) algorithms are primarily computationally

intensive tasks that often involve extensive matrix operations[7][8], making them well-

suited for Single Instruction Multiple Data (SIMD) processing. Onboard CPUs typically

utilize a Single Instruction Single Data (SISD) architecture, and even when upgraded to

multi-core CPUs, they generally follow a Multiple Instruction Multiple Data (MIMD)

architecture. CPUs are more suitable for handling logic-intensive tasks, but their peak

computational power is significantly lower than that of GPUs, which employ a SIMD

structure, under the same transistor scale. Therefore, a CPU-only onboard computing

system is insufficient to meet the high-performance computing demands of intelligent

applications. Heterogeneous computing, which combines multiple types of processors,

is required to achieve computational acceleration and ensure both performance and

flexibility in the computing system.

Heterogeneous computing is a specialized form of parallel computing that utilizes

different types of computational units within a single system. Heterogeneous computing

can be implemented at various levels, including system-level, board-level, and chip-level

heterogeneity. System-level heterogeneity involves selecting and configuring different

computational units and interconnecting them via external interfaces, while board-level

and chip-level heterogeneity are achieved through on-chip interconnections of different

types of processors. Heterogeneous computing integrates general-purpose computing

resources like CPUs, multipurpose computing resources like FPGAs, specialized

computing resources like ASICs, and storage resources into a unified resource pool,

providing the computational power needed for various types of complex high-

performance computing tasks.

Given that current mature onboard processors are mostly single-core[9] and have

relatively low computational power, existing onboard computing systems typically adopt

a distributed design to increase computing resources by adding more computers. For

example, the satellite management computer may be paired with a payload management

computer, or an AI processing computer[10]. However, multiple computing devices

result in higher communication and management overhead. With the enhancement of

onboard computing unit performance[11][12], a single computer can now provide

sufficient computing power, making it possible to manage both the satellite management

system and the data processing system on a single computer through centralized

management. Nonetheless, the satellite management system requires high real-time

performance and low computational load, whereas data processing demands lower real-

time performance but higher computational capacity. Therefore, the hardware

architecture must be designed to minimize computational latency and provide scalability,

while the software architecture must ensure that the satellite management software and

data processing software work collaboratively without interfering with each other.

In this paper, we propose an onboard heterogeneous computing system compatible

with the satellite management system. The design employs a chip-level heterogeneous

architecture, utilizing CPU, GPU, and FPGA as the computational units. To manage and

utilize the heterogeneous computing resources, the software structure of the satellite

management system, based on a multi-core processor, is expanded to form a

heterogeneous computing software architecture.

Q. Lan et al. / An Onboard Heterogeneous Computing Framework 327

2. Onboard Heterogeneous Computing Hardware Architecture

2.1. Typical Computational Units

Typical computational units include CPUs, FPGAs, GPUs, and ASICs. The CPU is

characterized by its extensive control logic, branch prediction, and other functions, while

its arithmetic logic unit (ALU) occupies only a small portion of the chip area. This makes

CPUs the most flexible and easiest to program, making them suitable for general-purpose

computing and control tasks.

FPGAs, on the other hand, are distinguished by their ability to dynamically alter

their hardware logic structure through software, allowing for task-specific optimization

to achieve higher computational efficiency. FPGAs offer abundant computational

resources and strong parallel processing capabilities, along with stable and extremely

low latency. This makes FPGAs well-suited for streaming processing and applications

requiring low latency, as well as for computation-intensive and communication-intensive

tasks.

GPUs are notable for their large number of cores, often numbering in the thousands,

which support high concurrency and offer powerful floating-point computation

capabilities. While GPUs are less flexible than CPUs, they generally outperform FPGAs

in executing general algorithms, making them ideal for numerical computations

involving large volumes of homogeneous data and computation-intensive tasks.

ASICs feature circuits that are customized according to specific tasks and

algorithms, meaning the chip logic cannot be modified. Although ASICs have a long

development cycle, they outperform other computational units in power efficiency and

performance in specialized fields, making them suitable for dedicated computational

tasks.

A comparative summary of these typical computational units is provided in Table

1.

Table 1. Comparison of typical computing units.

Architecture Performance Latency Power Consumption Flexibility

CPU Low Very High High Very High

GPU High High Very High High

FPGA High Extremely Low Low High

ASIC Very High Extremely Low Low None

2.2. Hardware Architecture Design

The organizational structure of a heterogeneous computing system typically centers

around a CPU, with other types of computational units used as accelerators, forming a

CPU+xPU heterogeneous architecture. The selection of the appropriate level of

heterogeneity and types of computational units is determined by the task requirements

and the characteristics of the computational units, forming the basis of the heterogeneous

computing system. For an onboard heterogeneous computing system, the primary

consideration is real-time performance, where computational latency must be minimized

to meet the needs of real-time satellite control and operations. The second consideration

is generality, as onboard processors must undergo extensive validation for in-orbit

Q. Lan et al. / An Onboard Heterogeneous Computing Framework328

operation, meaning that the chips should not be limited to a few specific tasks. Future

satellites will need to employ various types of intelligent algorithms to accomplish

functions such as mission scheduling, fault prediction, and image analysis, requiring

onboard computing resources to be general-purpose, flexible, and scalable.

To reduce computational latency, a chip-level heterogeneous approach is adopted,

integrating the computational units on a single chip, allowing all units to directly access

memory. This eliminates the need for memory copying and storing data in local memory

during inter-unit data exchange, saving significant time. Given that FPGA's DMA

functionality is well-developed, additional FPGA boards can be added via PCIe

interfaces to expand computing resources when necessary. Considering the needs of

various intelligent algorithms and the requirement for flexibility, a multi-core CPU, GPU,

and FPGA Fabric are selected as the computational units on the chip. The CPU is

responsible for task management and handling general-purpose computations with low

computational demands, the GPU is used for tasks such as image processing or matrix

operations, and the FPGA Fabric is utilized for task-specific computational acceleration.

The hardware architecture of the heterogeneous computing system is illustrated in Figure

1.

Figure 1. Hardware framework of heterogeneous computing system.

To achieve chip-level heterogeneity by integrating CPU, GPU, and FPGA Fabric on

a single chip, chiplet technology is selected[13]. Chiplets are pre-manufactured,

function-specific die components that can be combined and integrated. Within a single

package, these chiplets are interconnected using on-chip interconnect technology,

forming a complete chip with complex functionalities. The use of chiplet technology will

allow for the rapid integration of various types of computational units, reducing both the

cost and time required for chip design.

3. Onboard Heterogeneous Computing Software Architecture

3.1. Overview

To manage and utilize heterogeneous computing resources, the software architecture

based on a multi-core processor needs to be expanded, forming a heterogeneous

computing software architecture. In order to be compatible with the satellite management

Q. Lan et al. / An Onboard Heterogeneous Computing Framework 329

system, the satellite management software and advanced applications that depend on

heterogeneous computing must run simultaneously on the same computing platform.

First, the operating system needs to be able to provide all the management functions

required for both to run. Meanwhile, since the satellite management software is a real-

time periodic application, while advanced applications such as AI algorithms are

typically non-real-time, their operation should not interfere with each other.

Figure 2. Structure of heterogeneous computing software.

To solve the above problems, a software structure as shown in Figure 2 was

designed. On the platform software side, the primary components include loading drivers

for the heterogeneous computing units within the operating system, adding libraries that

intelligent applications depend on, designing a heterogeneous computing scheduler, and

introducing an intelligent application management mechanism. Additionally, a database

is used for unified management and integration of onboard data.

On the application software side, the primary focus is on extending the

functionalities of the satellite management software that is compatible with multi-core

processors to include advanced applications such as database and intelligent algorithms,

organizing them in an appropriate manner.

3.2. Low Level Software

In terms of the operating system, Linux is used as the operating system due to the

extensive system functionality required to support heterogeneous computing and

intelligent applications. The Linux configuration and customization should consider real-

time performance, expandability and support for intelligent applications, so Linux with

Preempt-RT patch[14] is chosen with only the necessary drivers loaded.

Regarding libraries, executing programs on different types of computing devices

requires the use of the OpenCL heterogeneous programming framework. Device

Q. Lan et al. / An Onboard Heterogeneous Computing Framework330

programs are written in a C-like language and depend on the OpenCL core library,

“libOpenCL”, for execution. While the satellite management software based on multi-

core processors uses task distribution across different CPU cores for parallel computing,

intelligent applications often require breaking down a task into multiple cores for

simultaneous computation to increase speed, necessitating parallel models like OpenMP,

which relies on the “libomp” library.

For software development related to image processing and analysis, the cross-

platform computer vision library OpenCV provides a useful programming interface. If

hardware acceleration is required for computer vision processing, OpenVX can be used

to optimize performance and power consumption, with dependencies on the “libopencv”

and “libOpenVX” libraries, respectively. For deep learning applications, an efficient and

user-friendly deep learning inference framework is necessary, one that supports various

types of neural network architectures and mainstream neural network model storage

formats. NCNN, an open-source neural network inference library developed by Tencent

and optimized for mobile devices, is a suitable choice[15]. This library has no third-party

dependencies and is fully implemented in C++, making it easy to port across different

platforms. It also has a small size of less than 700KB, which is advantageous for onboard

deployment. Therefore, NCNN can be used as the onboard deep learning inference

framework, although other frameworks can be selected based on specific application

needs.

Regarding task scheduling, tasks on the CPU can be distributed to different CPU

cores through CPU affinity settings, with satellite management software and intelligent

applications assigned to different CPU sets for execution, isolating them to prevent the

operation of intelligent applications from impacting the satellite management software.

Since intelligent applications are primarily non-real-time, while satellite management

software is real-time, isolating real-time and non-real-time applications helps ensure the

real-time performance of the satellite management software. For tasks on other

computing devices, tasks should be allocated to the appropriate computing device based

on the task type and the characteristics of the computing device, with tasks on these

devices typically following a first-in, first-out (FIFO) scheduling method.

3.3. Application Level Software

The development and usage of intelligent applications differ in several ways from that

of satellite management software. Firstly, intelligent applications are often developed by

multiple organizations, each responsible for their own applications, leading to varying

requirements for the runtime environment, such as different deep learning inference

frameworks. Secondly, unlike satellite management software, which is rarely updated in

orbit, intelligent applications require more frequent updates and injections due to the

rapid pace of upgrades and the discrepancies between in-orbit application scenarios and

ground simulation environments. To enhance compatibility and management capabilities,

Docker container technology[16] is introduced to manage intelligent applications.

Docker provides a virtual runtime environment with far lower system resource overhead

than virtual machines, allowing intelligent applications to run in the same environment

on the satellite as during ground development, without requiring additional configuration.

This saves time and effort in synchronizing production environments. Moreover, Docker

isolates and limits system resources, running intelligent applications in a sandbox, so that

the startup, shutdown, or failure of an application does not affect other applications in

the system, facilitating in-orbit updates of intelligent applications. To use Docker, the

Q. Lan et al. / An Onboard Heterogeneous Computing Framework 331

Docker engine needs to run within the platform software, providing support for Docker

containers, while intelligent applications run within these containers.

Intelligent applications often require the fusion of various types of information as

input. For instance, mission scheduling applications need to gather information on

satellite power, storage space, current attitude, and tasks to be executed, while fault

prediction applications require operational status data from various satellite devices. On

the satellite management software side, as software functionality increases, the data

interactions between modules become more complex, and there is a need to manage and

back up operational status and mode data for various satellite subsystems. Therefore, a

database management system is needed to manage and integrate the large and complex

data onboard. SQLite can be used as the database management system[17]. SQLite is a

lightweight, open-source relational database widely used in embedded devices on the

ground and can be reduced to a size of less than 250KB. Additionally, the SQLite engine

is not an independent process but is linked to the application itself, resulting in low

operational latency and overhead, making it well-suited for use in space.

In terms of application software, since Linux supports multi-process operations,

various applications on the satellite can run and be managed independently as separate

processes. Besides satellite management software, the application software on the

onboard heterogeneous computing system primarily consists of various intelligent

applications, including autonomous mission scheduling, satellite health management,

and onboard resource management. The core of these intelligent applications lies in the

neural network structures and models. To deploy a trained neural network on the satellite,

the network must be quantized and pruned to reduce its size and computational load, and

it must be deployed in a C/C++ environment, retaining only the data processing and

forward propagation steps.

The heterogeneous computing software architecture designed in this paper can

effectively manage and utilize heterogeneous computing resources while supporting the

operation of both satellite management software and intelligent applications, providing

a foundation for satellite intelligence.

4. Application and Testing

4.1. Testing Scheme

To validate the basic functionality of the heterogeneous computing system described in

this paper, the satellite management software and extended intelligent applications were

deployed on a multi-core heterogeneous hardware platform for operational testing.

In terms of hardware, the multi-core heterogeneous development board

Yulong810A-DKIT[18], developed by Orbita company, was selected as it largely meets

the requirements of the heterogeneous computing hardware architecture described in this

paper. This development board employs chip-level heterogeneity, featuring a quad-core

CPU and an AI coprocessor composed of a GPU and a neural network acceleration unit.

It supports interfaces like OpenCL/OpenVX and can seamlessly integrate with

mainstream deep learning software frameworks such as TensorFlow and Caffe.

In terms of software, the Linux with Preempt-RT patch is used, with the addition of

satellite management software, a database management system and an intelligent

application example program provided by Orbita. The example program uses the

YOLOv3-tiny algorithm for ship target detection and utilizes Orbita’s YLANN as the

Q. Lan et al. / An Onboard Heterogeneous Computing Framework332

deep learning inference framework. Although Docker facilitates the deployment of

intelligent applications, it is not essential for basic functionality verification; hence,

Docker is not used in this validation process. The basic functionality of the

heterogeneous computing system is verified through the successful operation of the

satellite management software and intelligent applications, as well as data management

via the database.

The testing process is as follows:

� Database Porting: Since SQLite has no third-party dependencies, it is compiled

using a cross-compiler to generate the SQLite library “libsqlite3”.

� Modification of Intelligent Application: The intelligent application example

program is modified to allocate its usable CPU set to Core 3, isolating it from

the satellite management software. Additionally, SQLite database access

operations are added, allowing the application to write its computational results

to the database.

� Modification of satellite management software: The satellite management

software is modified by adding SQLite database access operations in the task

management module. Each cycle, the software reads the computational results

of the intelligent application from the database and prints them on the console.

The collaborative testing scheme for the heterogeneous system application is illustrated

in Figure 3.

Figure 3. Collaboration scheme of heterogeneous system application test.

4.2. Test Results

The operational test was conducted by running the system continuously for 1000 seconds.

During this time, the average execution time per cycle of the satellite management

software was recorded, along with the average time taken by the intelligent application

to complete target detection in a single 512x512 image. Additionally, the console output

was monitored.

The average execution time of the application software is shown in Table 2. The

results indicate that, even under high computational demands, the satellite management

software was able to complete each cycle within the required deadline, with sufficient

idle time remaining. This suggests that the system has the capacity to handle more

complex tasks in the future.

The intelligent application took an average of 4573 microseconds to complete target

detection in a 512x512 image. This demonstrates that the intelligent application can

Q. Lan et al. / An Onboard Heterogeneous Computing Framework 333

perform its computations within a reasonable timeframe, indicating that the

heterogeneous computing system possesses strong computational capabilities, sufficient

to support certain onboard intelligent applications.

Table 2. Execution time of the application software.

Applica�on So�ware A�ribute Average Execu�on
Times(us)

Average response
ji�er(us)

Dependency

Satellite Management

Software

A Cycle 50321 1.89 libm,librt,libdl,

libsqlite
B Cycle 42684 2.01

C Cycle 42704 1.03

D Cycle 42749 1.15

E Cycle 50273 0.70

F Cycle 52688 0.76

G Cycle 50293 1.21

H Cycle 52729 1.19

I Cycle 42691 1.36

J Cycle 42693 1.43

Intelligent Application YOLOv3-tiny

Algorithm

4573 / YLANN

The console output is shown in Figure 4, which indicates that the satellite management

software successfully read the data written by the intelligent application from the

database. This confirms that the satellite management software, database, and intelligent

application are functioning together as intended, thereby validating the basic

functionality of the heterogeneous computing system described in this paper.

Figure 4. Console output

5. Conclusion

This paper extends the satellite management system towards an onboard multi-core

heterogeneous computing system. The design employs a chip-level heterogeneous

Q. Lan et al. / An Onboard Heterogeneous Computing Framework334

architecture, utilizing CPU, GPU, and FPGA as the computational units in the hardware

framework. To manage and utilize the heterogeneous computing resources while

ensuring that the satellite management software and data processing software work

together without interference, an onboard heterogeneous computing software

architecture is designed. The system's functionality was validated through operational

experiments by deploying the satellite management software, expanding the database,

and running intelligent applications on a multi-core heterogeneous hardware platform.

The test results demonstrate that the satellite management software, database, and

intelligent applications function cooperatively and complete computational tasks within

the required timeframes, thereby confirming the basic functionality of the onboard

heterogeneous computing system described in this paper.

References

[1] Dalin L, Haijiao W, Zhen Y, Yanfeng G and Shi S 2020 IEEE Geoscience and Remote Sensing Letters

18 1901–1905

[2] Huang Y, Mu Z, Wu S, Cui B and Duan Y 2021 Remote Sensing 13 2377

[3] Lam J T, Rivest F and Berger J 2019 International Conference on Theory and Practice of Natural

Computing (Springer)pp 184–196

[4] Lin Z, Ni Z, Kuang L, Jiang C and Huang Z 2024 IEEE Transactions on Wireless Communications

[5] Hu X, Wang L, Wang Y, Xu S, Liu Z and Wang W 2022 IEEE Communications Letters 26 808–812

[6] Lin Z, Ni Z, Kuang L, Jiang C and Huang Z 2022 IEEE Transactions on Vehicular Technology 71 3917–

3930

[7] Girshick R 2015 Proceedings of the IEEE international conference on computer vision pp 1440–1448

[8] Han K, Wang Y, Chen H, Chen X, Guo J, Liu Z, Tang Y, Xiao A, Xu C, Xu Y et al. 2022 IEEE

transactions on pattern analysis and machine intelligence 45 87–110

[9] He J, Xu L, Xu D, Yu S, Wang K and Chang L 2020 2020 International Conference on Sensing,

Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD) (IEEE) pp 352–356

[10] Zhang X, Chen W, Zhu X, Meng N, He J, Bi X, Zhang Y, Shi Q, Li F, Liu R et al. 2024 Science China

Technological Sciences 67 240–258

[11] Hijorth M, Aberg M, Wessman N J, Andersson J, Chevallier R, Forsyth R, Weigand R and Fossati L

2015 DASIA 2015 DAta Systems in Aerospace 732 7

[12] Zhang C, He X, Zhan P, Qi Z, Gu M and Yan D 2020 Communications, Signal Processing, and Systems:

Proceedings of the 8th International Conference on Communications, Signal Processing, and Systems

8th (Springer) pp 2068–2074

[13] Li T, Hou J, Yan J, Liu R, Yang H and Sun Z 2020 Electronics 9 670

[14] Reghenzani F, Massari G and Fornaciari W 2019 ACM Computing Surveys (CSUR) 52 1–36

[15] Peng Y and Wang Y 2021 Computers and Electronics in Agriculture 187 106253

[16] Merkel D et al. 2014 Linux j 239 2

[17] Bhosale S, Patil T and Patil P 2015 Int. J. Comput. Sci. Mob. Comput 44 882–885

[18] Tang H, Ye B, Shi H, Wang H and Yu T 2023 3rd International Conference on Artificial Intelligence,

Automation, and High-Performance Computing (AIAHPC 2023) vol 12717 (SPIE) pp 282–289

Q. Lan et al. / An Onboard Heterogeneous Computing Framework 335

