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Abstract. To effectively monitor the performance status and early warning of 

engine starting system, the multi-indicator fusion strategy for health monitoring of 
engine starting system is proposed by comprehensively considering the starting 

valve and starter performances. Combined with the operation principle of starting 

valve and starter in the starting system, the quick access recorder (QAR) parameters 
that can reflect the performance change of starting process are selected; the pressure 

value at the entrance of the starter is obtained by using the auxiliary power units 

(APU) pressure attenuation coefficient, and then the work energy is determined by 
integrating the starting process pressure; the operating time of the valve is calculated 

by the starting valve air volume-time curve, and the health indicator threshold of the 

valve and starter is obtained by using the regression fitting method and three-
parameter Burr distribution, to realize the health state monitoring of the engine 

starting system. The results show that the accuracy of proposed method for engine 

health status monitoring can reach 90%, which can effectively reflect the 
performance changes of engine starting system, and can provide a reference for 

engine health management and predictive maintenance formulation strategies. 
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1. Introduction 

Aeroengine is one of the aircraft most critical components, and has long been a core part 

of researching aircraft health management. As the core part of the engine, the starting 

process of starting system is the key indicator to evaluate the engine performance[1]. Due 

to the high cost of the aviation engine starting system spare parts, there is often a lack of 

spare parts in the outfield base. Once the starting system appears failures such as hot start 

and start-up suspension, the aircraft may enter the AOG state, and the safe and stable 

operation of the aircraft can not be guaranteed, resulting in losses to the operator[2]. 

Therefore, the predictive maintenance of engine starting systems is of great significance 

to aircraft operators. However, there is a lack of research on health state monitoring 

modeling of the aeroengine starting system due to the complex structure, numerous 

parameters, and a large amount of data. 

At present, the aeroengine health monitoring methods are mainly divided into two 

categories: the evaluation method based on system mechanism model and the evaluation 
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method based on data-driven[3-5]. The former is to establish a mathematical and physical 

model by analyzing the working principle and operating characteristics of complex 

hybrid; this method has strong interpretability and can accurately describe the system 

working mechanism. 

The second method requires collecting historical operating data of the engine and 

describing nonlinear relationships based on machine learning methods, which can 

effectively describe the nonlinear relationship between engine data characteristics and 

health status monitoring. However, the above methods have high requirements for data 

volume and quality, and the complexity of the established model is high, resulting in 

poor interpretability. Researchers usually carry out engine health monitoring research 

based on a data-driven approach[6-8]. Bai et al. used the wavelet packet decomposition 

algorithm to analyze the vibration signal of diesel engine cylinder heads, constructed a 

multidimensional health evaluation indicator vector, and established a health evaluation 

model using convolutional neural network to achieve state evaluation[9]. Zhao et al. 

applied the data statistical fitting to get the engine baseline model for the engine state 

monitor[10]. Chao et al. established the fault monitoring and diagnosis model by the 

physical performance model combined with a deep learning algorithm, and the 

calculation result is better than the pure data-driven algorithm, to achieve more accurate 

fault diagnosis. Wu et al. accomplished the turbulence model through the three-

dimensional simulation of the engine nozzle flow rate to realize the performance changes 

of engine bearing nozzle. 

To solve the difficult quantification problem of the relationship between system 

parameters and health status, it is necessary to analyze the mechanism and performance 

changes of the system in operation, and then fully explore the changing relationship 

between multiple sensor data information and conduct statistical analysis. The study first 

models the performance changes of the starting valve and starter of the starting system 

based on the system operating mechanism, establishes the mechanism model, and 

determines the health indicators. Furthermore, the collected parameter data is used to 

interpret and describe the model, and big data analysis techniques are employed to 

statistically analyze engine starting data from the past five years to determine the 

threshold values for valves and starters, which are the warning lines for health indicators. 

This enables performance monitoring of the engine starting system. Finally, the actual 

operational data of a certain airline company is used for verification to achieve health 

status assessment. 

The remaining sections of this paper are arranged as follows: the principle and 

parameter analysis of starting system are introduced in section 2. In section 3, the 

algorithm procedure and theoretical description are described. The case analysis and 

verification is performed in section 4. Section 5 provides a brief summary of the research 

work. 

2. Principle and Parameter Analysis of Starting System 

The object of this study is the starting system of a mainstream engine used by most 

airlines at present, whose function is to accelerate the engine from the static state to the 

working state of the slow car, and to convert the air pressure power into the engine high-

pressure rotor speed N2 to ensure the normal operation of the engine; it is mainly used 

for engine ground start, air restart and engine cold rotation. The starting system is 

complex, and more than ten subsystems will participate in the whole starting process, 
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including the control system (ECU), ignition system, fuel system, and auxiliary power 

unit (APU). 

2.1.  Composition of Starting System 

The starting system includes APU, starting valve (SAV), air intake pipe, air starter (ATS), 

electronic control assembly (ECU), and engine starting switch. The pressure potential 

energy is converted into kinetic energy by using the air turbine in the compressed air 

impact starter to do work, thus driving the high-pressure compressor of the engine to 

rotate. The air that drives the starter comes from the APU or other already started engine 

or ground air source. The scenario of this study is that the engine starts on the ground 

and uses APU for air supply. The engine starting procedures usually consist of a normal 

starting procedure (automatic) and a standby starting program (manual).  

2.2. Working Principle of Engine Starting 

When the engine starts normally or turns cold on the ground, the starting switch in the 

driving cabin is set to GND bit, and the start signal is transmitted to the starting control 

logic of engine control system ECU by the ARINC429 format. An open command is 

issued to SAV and the APU is entered into the starting mode. Afterwards, the power will 

be supplied to the SAV. When the electromagnetic valve in the SAV is powered on, it 

will change the state of the torsion spring, which in turn will cause the butterfly valve to 

the fully open position and supply the required air to the starter. Then N2 starts to rotate 

under the drive of the starter motor; When N2 reaches 22%, the ECU controls the fuel 

metering valve FMV to open and supply fuel to the combustion chamber. After 2-3 

seconds, the starter and engine will simultaneously perform work at approximately 25%; 

When N2 reaches 50%, the ECU will control the start valve to close and control the 

clutch in the starter, automatically disengaging the rotating shaft of the AGB, and the 

starter will stop working, and only the engine does work; The starting switch 

automatically rebounds to the OFF position, ending the starting process, and the engine 

remains in idle mode autonomously.  

2.3. QAR Parameter Determination 

The ground automatic starting process is taken as the research object, the parameters 

reflecting the performance changes of the starting valve and the starter are selected.  

According to the above analysis, the monitoring content mainly includes engine 

starting switch signal, starting valve unclosed signal, fuel metering valve signal, APU 

pressure, and high-pressure rotor speed. The parameters related to the starting process 

selected from QAR are listed in Table 1.  

Table 1. QAR parameters related to the starting process 

Serial number Name Mean 

1 ENG_START Engine start switch signal 

2 SAV_NOT_CLS Start valve not closed signal 

3 FUEL_FLOW Fuel flow 

4 FMV_SEL Rotation opening 

5 N2 High pressure rotor speed 

6 APU_BLD_PRESS APU bleed air pressure 

7 APU_P2_PRESS APU inlet static pressure 
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3. Algorithm Procedure and Theoretical Description 

3.1.  Algorithm Procedure 

Aiming at the research of engine starting system health monitoring, firstly, flight data 

are obtained by QAR decoding, and the monitoring parameters related to the 

performance of starting system are selected. The health indicator is determined by the 

analysis of the system structure and mechanism, and performance modeling of starting 

valve and starter motor. Besides, the testing data is applied to verify the effectiveness of 

the proposed algorithm. The process of presented algorithm is shown in Fig. 1. 

 

 

Figure 1. Process of presented algorithm. 

3.2.  Multi-indicator Fusion Strategy 

Multi-indicator fusion strategy is employed to evaluate the health status of the starting 

system, which contains starting valve and starter performance indicators. 

3.2.1  Starting valve performance indicators 

The opening/closing instruction signal of the starting valve comes from the starting 

switch. The opening/closing status and position information of the starting valve can not 

be directly monitored, because there is no data about the starting valve position and 

opening in the QAR data. Then the performance change of the valve is analyzed 

indirectly by analyzing the starting valve output flow.  

The performance monitoring is carried out by analyzing the corresponding relation 

curve between valve operation time and airflow volume (abbreviated as the volume-time 

curve of entrained gas). Based on the starting valve action time, the output air volume Q 

of the butterfly valve is calculated, which can be written as  

Q VS T� �                                                           (1) 

where S is the cross-sectional area of the air-entraining pipe; V represents the air-

entraining velocity; S does not change during the working process, and V remains the 

same under the same external environment, so S and V are regarded as constants.  
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In this paper, based on the relevant maintenance technical data, the time from 

SAV_NOT_CLS=YES to N2 > 0 is taken as the action time T of the starting valve. 

Because the airflow Q at which the starter drives the high-pressure rotor to start rotating 

during each start-up process is approximately the same, the shorter the time, the faster 

the engine starts rotating. T can indirectly reflect changes in the volume of airflow in the 

pipeline, thereby reflecting changes in SAV performance. Therefore, the shorter the time 

between the opening of SAV and beginning of N2 rotation is enough to directly reflect 

the performance of SAV, and the operating time T is used as a health indicator to reflect 

the starting valve performance.  

3.2.2   APU Error Analysis 

The efficiency of the starter determines the amount of work done. To quantify the amount 

of work done during each starting process, it is necessary to integrate the pressure at the 

inlet of the starter motor. Then the trend of starter and APU pressure changes are 

analyzed because the error between starter and APU pressure value in QAR. According 

to the recorded air pressure parameters PU_BLD_PRESS at the APU outlet and APU 

inlet static pressure P2 in the aircraft, the air pressure at the APU outlet can be obtained 

by measuring the total air pressure of the load compressor (PBLD) and the static pressure 

at the APU inlet (P2), i.e., the APU gauge pressure value can be expressed as  

                  2apu BLDP P P� �                                                  (2) 

Within the starting system, the APU outlet pressure and ATSV inlet pressure can 

cause obvious errors due to the environment and system structure; refer to the Honeywell 

APU pressure calculation manual, the errors at different heights are illustrated in Table 

2.  

Table 2. APU pressure varies with altitude. 
Altitude 

(ALT) 

APU outlet pressure 

(Papu) 

ATS inlet bleed pressure

Pats  

Pressure error 

between APU and ATS (D) 

0ft 45.1psig 38.8 psig 6.3 psig 

15000ft 29.6psig 25.5 psig 4.1 psig 

 
By calculating the relationship between the pressure error D and the outlet pressure 

of APU, it is found that the efficiency attenuation varies linearly, and the attenuation 

coefficient k of APU pressure is calculated to be equal to 0.138, so the pressure at the 

entrance of ATS/SAV at different air pressure height can be obtained.  

2(1 ) 0.862( )ats apu BLDP k P P P� � � �                                     (3) 

Since the engine begins to provide power at 25% of N2, this paper only studies the 

situation where work is done only by the starter before 25%. The energy change of the 

whole process is that the potential energy of the air intake pressure after the starter is 

converted into the high-pressure rotor N2 kinetic energy (i.e., the engine kinetic energy 

Weng). The friction can form resistance in the process of motion because the starter is 

physically connected to the high-pressure rotor. The energy Wdrag consumed by 

resistance in the starting process of the same series engines is fixed, which can be 

expressed as  

eng ats dragW W W� �                                             (4) 
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The starter converts the pressure generated by the APU into kinetic energy that 

drives the high-pressure rotor to rotate, causing the engine rotor speed N2 to run to 25%. 

Therefore, the work done by the starter during each starting process can be calculated 

based on the pressure integration method, i.e.,  

2 2

1 1
2( ) 0.862*( ( ) ( ))

t t

ats ats BLDt t
W P t dt P t P t dt� � �� �                       (5) 

where t1 is the time when N2 starts to rotate; t1 denotes the time when N2 rotates to 

25%; Pats(t) is the intake pressure of ATS at t time; Wats represents the energy produced 

by the starter work done.  

Normally, the bleed pressure is a constant value, and the high-pressure rotor speed 

N2 represents the energy produced by the engine at the moment. N2 is 25%, which means 

the engine energy is constant at this time, i.e. the Weng and Wdrag are constant. The 

starting performance of the starter is poor when Wats is larger. Therefore, Wats is used 

as a health indicator to monitor changes in starter performance. 

4. Algorithm Procedure and Theoretical Description 

Based on the operating mechanism and mathematical model of the starting system, 

different indicators are extracted from the starting valve and starter to reflect the 

performance changes of the components. The training and testing sets of SAV and ATS 

are established respectively by collecting 27000 flight data of an airline. Data mining 

techniques are used to calculate the set of indicators and fit the data. The monitoring 

threshold Ysav and Yats for health indicators is obtained based on expert experience. 

The indicator value of the test flight is compared with the monitoring threshold value to 

realize the system health monitoring. 

4.1. Start Valve Data Analysis 

The training set consists of 12000 sets of data, and the set of health indicators for SAV 

is calculated, which smooth spline curve are shown in Fig. 2. 

 

Figure 2. Smooth spline curve of SAV health indicators. 

As described in Fig. 2, the health indicator T of the starting valve performance 

exhibits two forms of variation, i.e., stable operation in the first half and rapid 
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performance degradation in the second half. In this case, the fast decay segment of SAV 

performance is fitted by regression, as illustrated in Fig. 3. 

 

Figure 3. Smooth spline curve of SAV health indicators. 

The regression equation for the performance degradation stage is expressed as  

( ) 2.81*exp(0.00061* )f x x�                               (6) 

According to equation (19), the R2 and RMSE are 0.6841 and 0.7995. Based on the 

engine maintenance manual and expert experience, when T is greater than 6, it can be 

determined that the starting valve opens slowly and with a delay. Therefore, the 

monitoring threshold Ysav for T is set to 6.  

4.2. Starter Data Analysis 

Data fitting analysis. The fitting results of the three parameter Burr distribution function 

are shown in Fig. 4 and Fig. 5, respectively.  

 

Figure 4.  PDF curve of three parameter Burr distribution function. 
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Figure 5.  CDF curve of three parameter Burr distribution function. 

From Fig. 4 and 5, it can be seen that the starter power data is similar to the 

probability density curve of the three parameter Burr distribution, and the peak positions 

are basically the same. The cumulative probability curve basically overlaps with its 

cumulative frequency curve. 

Determination of monitoring threshold. To accurately screen starter motors with 

poor performance efficiency for precise maintenance, it is necessary to set a failure 

probability indicator q and calculate the monitoring threshold based on the PDF formula. 

In the field of civil aircraft safety, the unscheduled removals rate (URR) is commonly 

used as a fundamental parameter for system reliability, i.e.,  

 ( *100) / ( * )URR T� ��                                              (7) 

where α represents the number of times system components have been disassembled 

and replaced; T is the total flight time of the fleet, and β is the number of aircraft installed 

for each system component.  

Based on the replacement data of starter components from 100 aircraft of a certain 

airline for 375000 flight hours, the URR is calculated to be 0.01%, i.e., q=0.01%. The 

probability of meeting the starting criteria is 0.99%. Furthermore, the monitoring 

threshold is 48.7.  

4.3. Testing Data Validation 

To verify the effectiveness of the method proposed in this paper, the actuation time T of 

the starting valve and the work Wats of the starter are calculated separately based on 

15000 sets. The window size is taken as j=3. Compare the results obtained from the start-

up performance analysis model and the manual evaluation by maintenance engineers by 

treating the portion exceeding the threshold as abnormal data, as shown in Fig. 6 and Fig. 

7.  
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Figure 6.  Simulation results of ATS sliding window abnormal data. 

 

Figure 7.  Simulation results of SAV sliding window abnormal data. 

According to Fig. 6 and Fig. 7, the accuracy of ATS and SAV models is 90.6% and 

89.7%, respectively.  

The data indicators of the starting valve and starter before maintenance are 

accurately calculated through the above analysis. The proposed method has strong 

robustness and can better adapt to the jump data generated in the engine, and effectively 

identifying stages of rapid performance degradation. To determine whether the system 

needs predictive maintenance and achieve health monitoring of the engine system.  

5. Conclusions 

This article proposes a multi-indicator fusion health status monitoring method for engine 

starting system performance monitoring. The effectiveness of the proposed method is 

verified through actual operating data from a certain airline company over the past five 

years. The main conclusions are as follows: 

(i) Based on the mechanism of the starting system, a multi-indicator fusion strategy 

for monitoring the health status of the starting system has been developed by integrating 
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APU pressure attenuation coefficient, bleed air volume time curve, regression fitting 

method, and three parameter Burr distribution; 

(ii) The proposed method is validated using 27000 sets of flight data from a certain 

airline company, and the accuracy of engine health monitoring reached 90%; 

(iii) The proposed method can quantify the performance degradation degree of the 

starting system, achieve predictive maintenance of the aircraft engine starting system, 

and reduce unplanned maintenance frequency. In addition, the explored methods have 

significant reference value for the health management research of aircraft engine starting 

systems, and also have important guiding significance for relevant enterprises in the 

industry to carry out predictive maintenance of starting systems. 
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