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Abstract. Inverse design offers significant advantages in aerodynamic design, such 

as improved performance and efficiency. In this paper, a denoising diffusion 

probabilistic model (DDPM) is adopted as a generative model to produce pressure 

coefficient distribution data for the RAE2822 airfoil. Through the forward noise 

addition process and the reverse denoising process, the trained DDPM model can 

sample a large amount of pressure coefficient distribution data from a standard 

normal distribution. Two neural networks are then employed: one maps the pressure 

coefficient distribution to geometric parameters, linking the pressure field with 

geometric parameters, and the other maps the pressure coefficients to lift and drag 

coefficients. Computational fluid dynamics (CFD) validation of the sampled data 

shows that the CFD results are close to the generated pressure distributions, 

demonstrating the effectiveness and reliability of the proposed approach. 
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1. Introduction 

Surrogate models are essential in airfoil design as they provide a computationally 

efficient means to approximate complex aerodynamic performance metrics. These 

models enable rapid evaluations of airfoil shapes by capturing the intricate relationships 

between geometric parameters and aerodynamic performance without the need for 

extensive and time-consuming simulations. By using surrogate models, engineers can 

explore a vast design space, identify optimal configurations, and perform sensitivity 

analyses with reduced computational resources. This approach not only accelerates the 

design process but also enhances the accuracy and reliability of the results, ultimately 

leading to the development of high-performance airfoils that meet stringent aerodynamic 

requirements. Du et al. developed a convolutional neural network framework (DPCNN) 

for airfoil design and performance prediction, achieving high prediction accuracy, 

robustness, and fast computation speed, significantly improving the efficiency of airfoil 

design optimization [1]. Mufti et al. introduced DIP-ShockNet, a domain-informed 

probabilistic deep learning framework, to predict transonic flow fields with shock waves, 

achieving superior accuracy and uncertainty estimation compared to traditional methods 

[2]. Tian et al. developed a novel pressure-based optimization (PBO) method using deep 

learning techniques, demonstrating significant improvements in airfoil design accuracy 

and drag reduction compared to traditional methods [3]. 
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Inverse design plays a crucial role in airfoil design by enabling the optimization of 

aerodynamic performance through the systematic adjustment of geometric parameters. 

Instead of relying on traditional trial-and-error methods, inverse design techniques allow 

engineers to specify desired performance characteristics, such as lift, drag, or pressure 

distribution, and then compute the corresponding airfoil shape. This approach 

significantly accelerates the design process, improves accuracy, and ensures that the 

resulting airfoils meet specific performance targets. By leveraging advanced algorithms 

and computational models, inverse design enhances the efficiency and effectiveness of 

airfoil development, leading to better-performing and more efficient aerodynamic 

structures. Wang proposed a novel inverse design method for supercritical airfoils using 

generative models in deep learning, employing CVAE and CVAE-GAN models to 

generate target wall Mach distributions [4]. 

Denoising Diffusion Probabilistic Models (DDPM) have emerged as powerful 

generative models due to their ability to produce high-quality samples by systematically 

reversing a forward diffusion process. These models leverage a series of noise additions 

followed by learned denoising steps, resulting in superior sample fidelity and diversity 

compared to traditional generative models. In this work, we apply DDPM to the 

generation of pressure coefficient distributions on airfoil surfaces, demonstrating its 

effectiveness in capturing the complex aerodynamic characteristics necessary for 

accurate airfoil design.  

The structure of this paper is as follows: The validation of the numerical calculations 

is presented in Sec. 2. Sec. 3 introduced the inverse design framework. The results of the 

inverse design are analysed in Sec. 4. Finally, Sec. 5 provides a summary of the 

conclusions. 

2. Validation 

2.1. Parameterization 

In this work, the CST method [5,6] is applied to parameterize the RAE2822 airfoil. This 

method consists of shape and class functions. The class function is used to define the 

general classes of geometry, whereas the shape function is used to define specific shapes 

within the geometry class. The order of Bernstein polynomials of 5 is selected for the 

CST parameterization, corresponding to six parameters for each of the upper and lower 

airfoils. The comparison of RAE2822 airfoil CST fitting with the original geometry is 

shown in Figure 1. The geometry of the CST fitting fits the original geometry well. All 

of the above indicate that the CST method is efficient enough to parameterize the 

RAE2822 airfoil. 

 
Figure 1. Comparison of RAE2822 airfoil CST fitting with the original geometry. 
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2.2. Numerical Calculation 

The Spalart-Allmaras (SA) turbulence model, combined with the implicit, density-based 

Reynolds-Averaged Navier-Stokes (RANS) model, was employed in the computations 

using the commercial software Ansys Fluent. In this study, the Roe flux-difference 

splitting (Roe-FDS) method was utilized for space discretization. Flow-field gradients 

were computed using a second-order accurate upwind spatial discretization with a Green-

Gauss node-based scheme, and dynamic viscosity was assumed to be constant. 

The grids employed featured a hybrid unstructured topology, with a wall normal 

growth of boundary layer cells. The initial grid spacing normal to the airfoil was set as 

4×106 to ensure the overall �� < 1 for both high-fidelity grid and low-fidelity grid. The 

grid growth rate was 1.1, Figure 2 shows the computational grid around RAE 2822 airfoil. 

The adopted grid size is approximately 64893. The operating conditions are as follows: 

Mach number is 0.73, Reynolds number is 6.5 × 106, angle of attack is 2.79°  and 

freestream temperature is 300K [7,8].  

 

 

Figure 2. Sketch of grids of RAE2822 airfoil. 

Figure 3 shows the computational pressure coefficient distributions of RAE2822 

airfoil compared with experimental ones. Good agreement with the experiment results 

can be observed, which further proves the accuracy of the above CFD model. And the 

pressure coefficient contours shown in Figure 4. 

 

Figure 3. Comparison of RAE2822 airfoil pressure coefficient distribution for CFD results and experimental 

results. 
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Figure 4. Pressure coefficient contour for RAE2822 airfoil. 

3.  Inverse Design Framework 

3.1. Unconditional Generation of Pressure Coefficient 

Jonathan Ho proposed the Denoising Diffusion Probabilistic Models (DDPM) in 2020 

[9]. This method has significantly advanced generative modeling techniques, offering a 

robust framework for high-quality sample generation. DDPM leverage a Markov chain 

to generate data by iteratively adding Gaussian noise to training samples over a series of 

timesteps. During the training process, the model learns to reverse this noise-adding 

process, effectively denoising the samples step-by-step. This involves training the model 

to predict the noise at each step, allowing it to reconstruct the original data from a noisy 

version. This diffusion process creates a gradual path from a complex data sample to 

Gaussian noise, thereby simplifying the reverse denoising task. It does this by breaking 

the process into multiple intermediate steps, as illustrated in Figure 5. 

 

Figure 5. The diffusion process and its reverse for the pressure coefficient contour of RAE2822 airfoil. 

The training and sampling processes of DDPM are shown as Algorithm 1 and 

Algorithm 2, respectively [7]. Algorithm 1 describes the training procedure for DDPM. 

In this algorithm, the model is trained by repeatedly sampling data points x0 from the 

data distribution, selecting a random timestep t, and generating Gaussian noise ϵ. The 

training objective is to minimize the mean squared error between the added noise and the 

model's predicted noise for the given timestep. This process iteratively adjusts the model 

parameters to learn how to denoise the data at each timestep. Algorithm 2 outlines the 

sampling procedure, where the trained model generates new data samples. Starting with 

Gaussian noise x� , the algorithm progressively denoises the sample by reversing the 

diffusion process. At each timestep t, the sample xt-1  is computed using the model's 

denoising function and adjusted for the timestep's parameters. If t > 1 , additional 
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Gaussian noise z  is incorporated. This iterative process continues until the model 

reconstructs the original data sample x0 from the noise. 

 
Algorithm 1 Training Algorithm 2 Sampling 

1: repeat 
2:   x0 ~ q(x0) 

3:   t ~ Uniform({1, … , T}) 

4:   ϵ ~ Ν(0, I) 

5:   Take gradient descent step on 

            ∇θ �ϵ − ϵθ��α	tx0+�1 − α	tϵ, t
�2
 

6: until converged 

1: x� ~ Ν(0, I) 
2: for t = T, … , 1 do 

3:   z ~ Ν(0, I) if t > 1, else z = 0 

4:   xt-1=
1

�αt
�xt − 1-αt

�1-α	t
ϵθ(xt, t)� +σtz 

5: end for 

6: return x0 

 

3.2. UNet Architecture 

DDPM often leverage U-Net architectures due to their effectiveness in capturing and 

reconstructing complex data structures through a series of downsampling and 

upsampling layers. The U-Net architecture used in DDPM typically includes residual 

blocks, self-attention mechanisms, and various convolutional operations to process and 

generate high-quality samples. 

As illustrated in Figure 6, the U-Net begins with a 1D convolution layer (kernel size 

7, stride 1, padding 3) processing the initial input of size 1×128. The downsampling path 

follows, consisting of several residual blocks, each paired with a downsampling layer 

using a 1D convolution (kernel size 4, stride 2, padding 1). These blocks, some of which 

incorporate self-attention mechanisms, reduce the feature map dimensions progressively 

from 64×128 to 256×16 while extracting rich features. At the bottleneck, feature maps 

are further processed through residual blocks, ensuring the preservation and effective 

utilization of input information. The upsampling path mirrors the downsampling path, 

using upsampling operations followed by residual blocks and concatenation with 

corresponding downsampling features, progressively increasing dimensions back to 

1×128. The output, after passing through convolution and residual blocks, matches the 

target dimensions. 

3.3. Residual Block Architecture 

The Residual block is a residual module designed for one-dimensional convolutional 

networks. As shown in Figure 7, it incorporates multiple convolutional layers, group 

normalization, activation functions, a time embedding projection, and an optional 

attention mechanism. The module starts with a group normalization and a Swish 

activation function, followed by a convolutional layer that adjusts the input to the 

required dimensions. A time embedding projection is added to the output of this 

convolutional block. The second part of the module includes another group 

normalization, a Swish activation function, a dropout layer, and a convolutional layer. 

To ensure compatibility of dimensions for the residual connection, a shortcut path is used, 

which either applies a 1×1 convolution or an identity mapping, depending on the input 

and output dimensions. If attention is enabled, an attention block is applied at the end. 

The primary function of this block is to stabilize the training process and extract deeper 

features through residual connections. 
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Figure 6. UNet architecture. 

 

 

Figure 7. Residual block architecture. 

3.4. Pressure Distribution-geometry Neural Network Model 

The neural network is designed to predict geometric parameters from the pressure 

coefficients generated by DDPM. It utilizes fully connected layers, each incorporating 

linear layers, batch normalization, ReLU activation function, and dropout. This 

architecture enables efficient feature extraction and stable training, allowing for accurate 

mapping from pressure coefficients to geometric parameters.  

3.5. Pressure Distribution-aerodynamic Performance Neural Network Model 

The neural network is designed to predict aerodynamic performance from the pressure 

coefficients generated by DDPM. The architecture of the neural network is consistent 

with that of the Pressure distribution-geometry neural network model. 
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Figure 8. Design space. 

4. Results and Discussion 

In this paper, 2400 airfoil samples were generated using the Latin hypercube sampling 

(LHS) method. The design space of airfoil is shown in Figure 8. After CFD calculations, 

the pressure coefficient distribution data for each airfoil surface were extracted. A total 

of 128 points were sampled on the upper and lower surfaces, which were subsequently 

used as input for the DDPM model. 

4.1. Training Process 

In this study, the parameters for the DDPM model were set as follows: The initial beta 

value, β
1
, was set to 1×10-4, and the final beta value, β

T
, was set to 0.02, with a total of 

T=1000 timesteps. These parameters were chosen to ensure a smooth diffusion process 

from the original data to Gaussian noise, facilitating the training of the reverse denoising 

model. 

For neural networks, we utilized the AdamW optimizer with a weight decay of 1e-

4 for training the model. The initial learning rate was set to 0.0001 for the first 500 steps 

to ensure stable training. After 500 steps, the learning rate was increased to 0.1 to 

expedite convergence. The batch size was set to 32 to efficiently utilize computational 

resources while maintaining stability during training. The total training duration was 

1000 steps. MSE is used as the loss function. The 128-dimensional pressure coefficient 

data was first reduced using PCA. The cumulative energy of the PCA as a function of 

the number of principal components is shown in Figure 9. When the number of principal 

components reached 19, the cumulative energy exceeded 0.99. Therefore, we selected 

20 principal components. The network consisted of five hidden layers, with the number 

of neurons in each layer being 256, 256, 512, 256, and 256. The model was trained on a 

single NVIDIA Tesla GPU. The training time for the pressure distribution-geometry 

neural network model was approximately 17 minutes, while the pressure distribution-

aerodynamic performance neural network model took around 16 minutes. The DDPM 

model required about 281 minutes to train. CFD simulations were performed on 28 CPUs, 

with each CFD case taking approximately 5 minutes to complete. Although the model 

training time is longer compared to a single CFD simulation, once training is completed, 

predictions can be generated in less than one second. This significant reduction in 
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computation time offers substantial savings for subsequent analysis or optimization 

processes. 

 

 

Figure 9. Cumulative Energy vs. Number of Principal Components. 

 

After training, 16 pressure coefficient distributions were generated through random 

sampling using the DDPM. These generated pressure distributions were then mapped to 

geometric parameters using a specialized pressure-to-geometry mapping network. 

Subsequently, the obtained geometric parameters were fed into CFD solver to produce 

the corresponding real pressure coefficient distributions. As illustrated in Figure 10, the 

generated pressure distributions closely match the real pressure distributions derived 

from CFD simulations. This agreement indicates the effectiveness and reliability of the 

entire inverse design framework. The results demonstrate the potential of this method to 

accurately predict and generate pressure coefficient distributions, thereby establishing a 

robust foundation for future inverse aerodynamic optimization design.  

 

 

Figure 10. Comparison of the true and predicted pressure coefficient distributions for the generated samples. 
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Additionally, Figure 11 compares the predicted and real lift coefficients and drag 

coefficients obtained from the CFD solver. The plots show a strong correlation between 

the predicted and real values, with R² values of 0.946 and 0.956, demonstrating the high 

accuracy of the predictive model.  

 
Figure 11. Comparison of Predicted and Real Lift and Drag Coefficients for the generated samples. 

4.2. Effects of the Training Set Size 

This section studies the impact of the number of training samples on the performance of 

the DDPM model. Since the focus is on the DDPM model, the Pressure distribution-

geometry and Pressure distribution-aerodynamic performance models still use those 

trained with 2400 samples, while the DDPM is trained with 1200 samples. 

 

 

Figure 12. Comparison of the true and predicted pressure coefficient distributions for the generated samples 

with 1200 training samples. 
 

With the DDPM model trained on only 1200 samples, the generated pressure 

coefficient distributions were transformed into geometric parameters using the 

previously trained pressure-to-geometry network, and then the resulting geometries were 

G. Tao et al. / Inverse Design of Transonic Airfoils 17



input into a CFD solver to produce real pressure distributions. Figure 12 shows that the 

generated distributions closely resemble the real distributions, albeit with a slight 

decrease in precision compared to the results from 2400 samples. 

In Figure 13, the comparison between predicted and real lift and drag coefficients is 

presented, with R² values of 0.836 and 0.873, respectively. These values indicate a strong 

correlation, though they are somewhat lower than the values obtained using the larger 

training set. This highlights the model's robustness and effectiveness even with fewer 

training samples. 

 

 

Figure 13. Comparison of Predicted and Real Lift and Drag Coefficients for the generated samples with 

1200 training samples. 

5.  Conclusion 

This paper investigates the application of inverse design in airfoil development, focusing 

on the use of DDPM to generate pressure coefficient distribution data. Two neural 

networks are employed: one maps these pressure coefficients to geometric parameters, 

and the other maps the pressure coefficients to lift and drag coefficients. The generated 

samples are validated through CFD simulations, demonstrating the effectiveness and 

feasibility of this approach. This study establishes a robust foundation for future inverse 

aerodynamic optimization design, significantly enhancing the efficiency of the design 

process and ensuring that the generated airfoil shapes meet desired aerodynamic 

performance criteria. 
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