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Abstract. Background: In this study, we aimed to establish an efficient and accurate 
machine -learning model for evaluating tobacco quality based on its chemical 
composition. To achieve this, we gathered a dataset comprising 188 tobacco samples 
taken from the production area of Sichuan, China in 2021. Four machine learning 
algorithms—Random Forest (RF), Support Vector Machine (SVM), K-Nearest 
Neighbors (KNN), and Gradient Boosting Classifier (GBC)—were used to establish 
a predictive model for assessing tobacco quality. The study focused on comparing 
the predictive performance of these models and exploring the upper limit of 
prediction accuracy using genetic algorithm (GA) hyperparameter optimization. 
Additionally, the SHAP value model interpretation framework was introduced to 
provide a comprehensive global interpretation and conduct feature dependency 
analysis. Results: The results showed that model accuracy ranked as RF>GBC> 
KNN>SVM, with the GA-RF machine learning model achieving a prediction 
accuracy of 86.8%. SHAP values identified seven important characteristic indexes 
affecting Sichuan tobacco leaf quality, highlighting RF as the optimal classifier for 
predicting flue-cured tobacco quality in Sichuan Province. Conclusions: The GA-
RF model constructed in this study effectively identifies Sichuan tobacco leaf 
quality. These findings offer novel insights and data support for the application of 
machine learning algorithms in tobacco fields and tobacco leaf quality evaluation. 
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1. Introduction 

Despite the adverse health effects of tobacco, it remains a vital economic crop worldwide, 

making the objective evaluation of tobacco leaf quality practically significant. The 

chemical composition of tobacco influences the taste and aroma of its products1, and 

understanding this link is crucial for optimizing tobacco quality. Recent advancements 

in machine learning have led to its application in various aspects of the tobacco industry, 

including origin identification 2, grading3, aroma quality prediction4, 5. However, there is 

a scarcity of studies examining the relationship between chemical composition and 

tobacco quality using these algorithms. 

Machine learning, a key area of artificial intelligence, excels in analyzing 

multidimensional data without subjective biases6, providing a more objective reflection 

of tobacco quality compared to traditional sensory evaluations. Yet, the "black-box" 

nature of some efficient models poses challenges in understanding prediction paths and 

identifying key predictors. Thus, the present study aimed to identify and establish a 

reliable predictive model for the quality of flue-cured tobacco, using four machine 

learning algorithms, namely, Random Forest (RF), Support Vector Machine (SVM), K-

Nearest Neighbors (KNN), and Gradient Boosting Classifier (GBC), and analyze the 

content of eight major chemical components.  

In addition, the study aimed to compare the predictive performances of four models 

and used a genetic algorithm (GA) to optimize the best model's hyperparameters. It 

introduced the SHAP (SHapley Additive exPlanations) framework to address the models' 

inherent "black-box" nature, enhancing interpretability and allowing for a more scientific 

understanding of critical features. This approach improves the alignment between 

evaluation outcomes and sensory quality, providing innovative insights and robust data 

support for applying machine learning algorithms in the tobacco industry and assessing 

tobacco leaf quality. 

2. Materials and Methods 

2.1. Tobacco samples 

Tobacco samples were collected from 94 sites across five major tobacco-producing areas 

in Sichuan, China, with each site providing one upper (B2F) and one middle (C3F) 

tobacco sample, totaling 188 samples. 

2.2. Sensory quality evaluation 

The China National Tobacco Corporation (CNTC) in Sichuan Province enlisted sensory 

evaluation experts to assess the sensory quality of tobacco, using a 9-point scoring 

system to calculate total quality scores based on weighted indicators. (Table 1). 

Table 1. Indicators of sensory quality and their weights 

Aroma Characteristics  

(0.600) 
Smoke characteristics (0.150) Taste characteristics (0.250) 

Aroma 
quality 

Aroma 
quantity 

Offensive 
odor 

Fineness Softness Roundness Irritation Dryness 
After-
taste 

0.250 0.250 0.100 0.050 0.050 0.050 0.100 0.050 0.100 
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2.3. Chemical composition measurements 

Conforming to CNTC tobacco industry standards, measurements were conducted for 

conventional chemical components (soluble total sugars, reducing sugars, total alkaloids 

such as nicotine, total nitrogen, starch, proteins, potassium, and chloride), polyphenols, 

alkaloids, polyhydric acids, higher fatty acids, free amino acids, as well as mono- and 

disaccharides and polyols, the latter prepared following Ghfar et al.’s method.7 

2.4. Data processing  

2.4.1. Derivatization of chemical composition 

This study explores the cross-linked information in tobacco leaves to enhance variable 

utility and clarify the nonlinear relationship between chemical and sensory qualities. We 

used automatic feature derivation, combining 13 selected tobacco chemical indicators 

(e.g., total sugars, alkaloids, nitrogen, starch, proteins) into pairwise combinations to 

create deeper features. Data were standardized to mg/g and aggregated using three 

relationships ("divide," "add," "subtract") to generate 312 new features. 

2.4.2. Normalization of raw data 

Due to variations in dimensions and data distribution disparities, standardization 

preprocessing was crucial to minimize scale differences' impact on spatial distance 

measurements in analysis. Z-score normalization transformed features to a mean of 0 and 

standard deviation of 1. 

2.4.3. Model evaluation  

A confusion matrix evaluated model prediction accuracy using four metrics: Accuracy, 

recall, precision, and F1-score, which serve as performance evaluation indicators (Figure 

1). 

 

 

Figure 1. Evaluation principle of the confusion 
matrix. Lowercase letters in the green region along 
the diagonal represent true predictions and those in 

the orange region represent false predictions. 

Figure 2. Hierarchical cluster analysis pedigree of 
188 samples of Sichuan flue-cured tobacco. 

2.4.4 Model construction and interpretation  

Four machine learning models, namely RF, SVM, KNN, and GBC, were built using the 

pycaret 2.3.10 package in Python 3.9.7. To ensure the stability of the models, 5-fold 

cross-validation was employed. This involved dividing the entire dataset into five equal 

parts, where each part was used for testing, and the remaining four parts were used for 

training. This process was repeated five times to ensure that each part had been tested. 

The average accuracy of the five iterations represented the final accuracy of the models. 

The GeatPy 2.7.0 toolbox was utilized for model GA hyperparameter optimization8. 

Additionally, the SHAP values were calculated based on the SHAP 0.41.0 package for 

feature importance analysis. 
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3. Results and Discussion 

3.1. Sample hierarchical clustering 

In this study, 188 Sichuan flue-cured tobacco samples were analyzed for sensory quality. 

To avoid subjective bias in manual grading, hierarchical clustering was used to 

objectively classify the samples based on sensory multivariate variables. The samples 

were divided into three grades: grade 1 (good), grade 2 (medium), and grade 3 (general), 

as shown in Figure 2. 

Tobacco leaves of different quality grades were labeled for classification modeling. 

Table 2 summarizes sensory scores: overall average was 67.80 points. Specifically, 66 

samples (35%) were "good" (avg. 70.21), 96 samples (51%) were "medium" (avg. 67.04), 

and 26 samples(14%) were "ordinary" (avg. 64.49). 

Table 2. Clustering information table of 188 samples of Sichuan flue-cured tobacco 

Label Quality grade Number of samples Sensory score Max Min CV 

1 Grade1 (good) 66 70.21±1.23 73.62 68.68 1.75% 
2 Grade2 (medium) 96 67.04±0.89 68.57 65.50 1.32% 
3 Grade3 (general) 26 64.49±0.70 65.45 62.67 1.08% 

Total 188 67.80±2.20 73.62 62.67 3.25% 

3.2. Selection of key quality features 

3.2.1 Created feature selection  

The method of deriving new features from feature indicators enables rapid and extensive 

feature construction. While it can generate new features strongly correlated with tobacco 

leaf quality, it may also produce unimportant or low-content features that intermingle 

with important or high-content ones, leading to confusion during feature selection. 

Additionally, irrelevant features may persist, complicating their removal through 

traditional statistical methods, such as data dimensionality reduction and feature 

selection—a critical preprocessing step in machine learning. This step effectively 

reduces redundancy, enhances learning accuracy, and improves result comprehensibility9. 

To address the high-dimensional problem, we first employed the RF algorithm in this 

study to assess the derived features. This algorithm evaluates each feature's importance 

for modeling by measuring the average reduction in impurity caused by the feature. 

Importantly, it is unaffected by inter-feature scale and multicollinearity10. Moreover, the 

algorithm ranks feature importance and provides visual output, reducing interpretation 

costs and achieving the goal of selecting optimal features. 

Figure 3A shows the importance ranking of the division of composite features based 

on the RF algorithm. The results indicated that 10 indicators, namely starch/total 

alkaloids (as nicotine), starch/total alkaloids, total mono- and disaccharides/total 

nitrogen, total mono- and disaccharides/total alkaloids, soluble total sugars/total 

alkaloids, soluble total sugars/total higher fatty acids, soluble total sugars/total nitrogen, 

total higher fatty acids/total alkaloids (as nicotine), total alkaloids (as nicotine), reducing 

sugars, and total nitrogen/proteins are the most important division composite features for 

predicting the quality gradient in this model.  

However, the analysis revealed that, even after feature selection, some features with 

severe collinearity remained. These features were further reduced to ensure the model's 

accuracy. For instance, only the starch/total alkaloids (as nicotine) with higher 

importance were retained, whereas other starch/total alkaloids were discarded. Similarly, 
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only the total mono- and disaccharides/total nitrogen with higher importance were 

maintained, and the total mono- and disaccharides/total alkaloids were removed. The 

same approach was followed for soluble total sugars/total alkaloids and soluble total 

sugars/total nitrogen, and only those with higher importance were retained. 

Figure 3B shows the importance ranking of the addition and subtraction of 

composite features based on the RF algorithm. The results indicate that 10 indicators, 

namely soluble total sugars + proteins, starch + reducing sugars, soluble total sugars + 

reducing sugars, starch-total alkaloids, starch +soluble total sugars, starch + total mono- 

and disaccharides, total polyhydric acids + soluble total sugars, total polyols + total 

alkaloids, soluble total sugars, total mono- and disaccharides, and soluble total sugar-

starch, are the most important addition and subtraction composite features for predicting 

the quality gradient in this model. Regarding the three collinear features, starch + 

reducing sugars, starch + soluble total sugars, and starch + total mono- and disaccharides, 

only the starch + reducing sugars of higher importance were retained. 

 

Figure 3. Feature importance plot. 

Note: A, feature importance plot of division composite features; feature importance plot ofadditive and 
subtractive composite features. 

Table 3. Feature tool-generated datasets of newly created features 

New feature, mg/g 
Relation of 

aggregation 
New feature, mg/g 

Relation of 

aggregation 

Starch/Total alkaloids (as 
nicotine) 

divide_numeric Soluble total sugars + Proteins add_numeric 

Total mono- and 
disaccharides/Total nitrogen 

divide_numeric Starch + Reducing sugars add_numeric 

Total mono- and 
disaccharides/Total alkaloids 

divide_numeric 
Soluble total sugars + Reducing 

sugars 
add_numeric 

Soluble total sugars/Total 
higher fatty acids 

divide_numeric 
Total polyhydric acids + 

Soluble total sugars 
add_numeric 

Total higher fatty acids/Total 
alkaloids (as nicotine) 

divide_numeric 
Total polyols + Total alkaloids 

(as nicotine) 
add_numeric 

Total alkaloids (as 
nicotine)/Reducing sugars 

divide_numeric Starch - Total alkaloids subtract_numeric 

Total nitrogen/Proteins divide_numeric 
Soluble total sugars - Total 
mono- and disaccharides 

subtract_numeric 

  Soluble total sugars - Starch subtract_numeric 

Based on the importance ranking of division and addition-subtraction composite 

features, a total of seven division composite indicators and eight addition-subtraction 
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composite indicators were selected as the derived feature dataset for the subsequent 

modeling process, as shown in Table 3. 

3.2.2. Original feature selection 

 

Figure 4. Mantel test of original chemical sensory quality evaluation indexes. 

To avoid introducing unnecessary features into the model from the original high-

dimensional chemical index dataset, key index features needed to be selected. Unlike 

Pearson analysis, which quantifies the correlation between two continuous variables 

individually, the Mantel test treats sensory multivariate variables as one distance matrix 

and each chemical variable as another matrix. This allows for regression analysis 

between the two distance matrix forms. Additionally, the R-package LinkET was 

employed for data visualization, representing bidirectional correlation strength with line 

thickness and indicating the significance of 999 substitution tests through line segment 

color. As depicted in Figure 4A, several components displayed significant correlations 

with sensory quality. These included four conventional chemical components (soluble 

total sugars, reducing sugars, total alkaloids as nicotine, and starch), two polyhydric acid 

components (malonic acid and succinic acid), and four higher fatty acid components 

(palmitic acid, linoleic acid, linolenic acid, and total higher fatty acids). As shown in 

Figure 4B, except for anatabine and Mantel's r -value, the correlation index between 

other alkaloid indexes and sensory quality was greater than 0.1. Notably, Mantel's p-

value for the total amount of glucose, sucrose, and total mono- and disaccharides in 

relation to sensory quality was less than 0.01. Conversely, chemical components like 

polyphenols and polyols exhibited weak correlations with sensory quality and lacked a 
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significant relationship. In Figure 4C, among the 17 free amino acid indexes and eight 

total amino acid indexes, three basic amino acid indexes (arginine and histidine), one 

aromatic amino acid index (phenylalanine), and one aliphatic amino acid index (valine) 

displayed a close association with sensory quality. In summary, 23 indicators exhibited 

varying degrees of strong correlation with sensory quality, making them pivotal chemical 

indicators affecting Sichuan flue-cured tobacco. Consequently, these indicators were 

incorporated into the feature datasets (Section 2.2.1) and employed alongside their 

variables in the final entry model. By screening the quality index features, redundancy 

was eliminated to obtain the optimal feature subset, simplifying subsequent modeling 

and enhancing the model's accuracy and prediction potential. 

3.3. Performance analysis of different prediction models 

Algorithm choice hinges on data type and size, with no universal solution due to varying 

principles. Performance can differ even with the same dataset, necessitating multiple 

trials for optimal results. Hyperparameter selection also impacts model performance. To 

streamline, we used pycaret for model training and optimization, reducing workload and 

enhancing prediction accuracy and model versatility. Considering the Sichuan flue-cured 

tobacco dataset, we selected RF, SVM, KNN, and GBC for hyperparameter tuning and 

performance comparison using 5-fold cross-validation. Table 4 shows significant 

variations in prediction results among algorithms, with RF standing out at 78.2% 

accuracy and superior recall, precision, and F1-score, despite slower processing due to 

large datasets. Thus, RF was chosen as the classifier for predicting Sichuan flue-cured 

tobacco quality. 

Table 4. Evaluation index scores of different prediction models 

Model Accuracy Recall Precision F1-score Time/s 

RF 0.782 0.630 0.758 0.759 0.178 
SVM 0.704 0.521 0.643 0.669 0.026 
KNN 0.740 0.545 0.668 0.698 0.022 
GBC 0.746 0.545 0.680 0.704 0.264 

3.4. Establishment of the RF model 

3.4.1 GA optimization 

The setting of hyperparameters is crucial for enhancing model prediction stability and 

generalization ability. To avoid the subjectivity of manual tuning, GA is employed to 

optimize and adjust the hyperparameters of the RF model. GA is a type of random search 

algorithm that simulates the evolutionary principles of natural selection in biology, 

showing favorable performance for highly complex nonlinear problems11. It facilitates a 

leap from local to global optima, enhancing model performance significantly. Therefore, 

GA's efficient spatial search ability was chosen to determine the optimal RF model and 

the optimal combination of hyperparameters. GA sets the initial population to 100, a 

maximum number of iterations to 50, the error accuracy to 1*10-6, and the coding mode 

to real integer coding. Several hyperparameters can affect RF model performance. 

Optimizing these hyperparameters is a complex task, and it is challenging to determine 

the optimal combination by considering only a single parameter12. After preliminary 

debugging, six hyperparameters were selected for global optimization of the RF model. 

The results of the optimization process are listed in Table 5. The remaining 

hyperparameters were set to their default values. 
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Table 5. RF hyperparameter value range and GA optimization results 

RF hyperparameter Value range  GA optimization results 

n_estimators [1,150] 21 
max_features [10,38] 27 
max_depth [1,30] 13 
min_samples_split [2,20] 11 
min_samples_leaf [1,10] 2 
min_impurity_decrease [0.00,0.20] 0.00 

3.4.2. Model evaluation 

The training set served to assess the learning ability of the model, whereas the test set 

was used to evaluate its generalization capability. Through processing, analysis, and 

learning from the data in the training set, machine learning algorithms enable models to 

make predictions on unknown samples13. In this study, 38 random samples out of 188 

were designated as the test set, with the remaining 150 used for training. To maintain 

class balance, the test set reflected the dataset's quality grade proportions. Table 6 shows 

the GA-RF prediction model's evaluation metrics, with a discriminatory accuracy of 

86.8%. Recall, precision, and F1-scores for grades 1, 2, and 3 were 0.846-0.900-0.800, 

0.917-0.857-0.800, and 0.880-0.878-0.800, respectively. Compared to the single RF 

model (78.2% accuracy, 0.630 recall, 0.758 precision, and 0.759 F1-score), the GA-RF 

model significantly outperformed. GA's integration enhanced the model's deep 

information extraction, improving overall effectiveness and performance. Thus, the GA-

RF model's superiority was demonstrated, showcasing GA's crucial role in model 

optimization and intricate data pattern extraction. 

The optimized GA-RF model, designed to avoid overfitting and boost generalization, 

delivered overall accurate predictions. Figure 5 shows minor misclassifications across 

tobacco leaf quality grades, with five samples (two grade 1, two grade 2, and one grade 

3) miscategorized due to similar chemical compositions among adjacent grades, causing 

slight deviations in model judgment. 

 

Figure 5. Confusion matrix of the GA-RF prediction model 

Table 6. Evaluation index scores of the GA-RF prediction model 

Quality grade Recall Precision F1-score Number of samples 

Grade 1 (good) 0.846 0.917 0.880 13 
Grade 2 (medium) 0.900 0.857 0.878 20 
Grade 3 (general) 0.800 0.800 0.800 5 

Accuracy 0.868 38 

3.5. Key Feature Analysis of SHAP Values 

3.5.1 Comprehensive feature analysis 

Besides evaluation indicators, reliability of a model is also judged by transparency and 

explainability. The SHAP value, rooted in game theory, enhances tree model 

interpretation with rich visualizations for global and personalized feature insights14. 

Figure 6 shows the global feature importance using mean absolute SHAP values. The 

top 10 features affecting model predictions were ranked. Beeswarm plots for each quality 

grade illustrate the positive and negative contributions of each feature index. Here, each 

J. Qiu et al. / Machine Learning-Based Prediction of Flue-Cured Tobacco Quality 247



 

color point indicates a sample's feature index level, with the SHAP value showing its 

contribution magnitude to the grade prediction15. As shown in Figure 6A, in the 

characteristic importance analysis of the GA-RF model, starch + reducing sugars 

contributed the most to the correct classification of Sichuan flue-cured tobacco quality; 

other important chemical indexes such as histidine, total basic amino acids, and total 

mono- and disaccharides/total nitrogen were also found, but their importance was 

significantly lower than that of starch + reducing sugars. As shown in Figure 6B and C, 

the indexes of starch + reducing sugars, histidine, total basic amino acids, and total 

mono- and disaccharides/total nitrogen had significant effects on the first and second 

quality grades. High starch + reducing sugars and total mono- and disaccharides/total 

nitrogen contents inclined predictions toward the first quality grade. Elevated histidine 

and total basic amino acids content suggested a likelihood of second quality grade 

prediction. As shown in Figure 6D, when the sucrose content was low, it had a positive 

contribution to the determination of the third-quality grade, while the trend of mysmine, 

malonic acid, nornicotine, and other indicators was the opposite. 

 

Figure 6. Global interpretation of the GA-RF prediction model based on SHAP value. 

Note: A, summary plot; B, first quality grade warmth; C, second quality grade warmth; D, third-quality grade 
warmth. 

3.5.2. Feature dependence analysis 

To delve deeper into how each characteristic index affects model predictions, seven key 

indices—starch + reducing sugars, histidine, total basic amino acids, total mono- & 

disaccharides/total nitrogen, starch/total alkaloids (nicotine), total alkaloids (nicotine), 

reducing sugars, and sucrose—were chosen for feature-dependent analysis. These 

indices significantly contribute to overall interpretation and quality grading. Three-

dimensional scatter plots were created for different quality grades, showing feature value 

ranges on the X-axis and corresponding SHAP values on the Y-axis. Since the tree model 

is unaffected by inter-feature dimension and multicollinearity16, importing all indicators 

with original data allows the SHAP value to determine contribution degrees and help 

identify suitable intervals for feature indicators. 

Figure 7A–C reveals the SHAP values for starch + reducing sugars in the first and 

second quality grades, reaching 0.100 and 0.075, respectively, while the prediction 

performance for the third-quality grade was weaker. The results indicate that when starch 

+ reducing sugars exceeded 350 mg/g, most tobacco leaves improved in quality. 

Conversely, when the content fell below 325 mg/g, the tobacco leaves tended to be of 

the second quality grade. Starch and reducing sugars are the primary carbohydrates in 

flue-cured tobacco plants. Starch accumulates during growth in the field and is 

subsequently degraded during baking and curing, typically breaking down into small 

molecules of water-soluble sugars such as glucose, maltose, and other reducing 
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sugars17,18. Studies suggest that full conversion of macromolecular substances like starch 

benefits tobacco leaf drying, aroma enhancement, and quality improvement after 

roasting19. This indicates that there is a certain intensity of metabolic conversion between 

starch and reducing sugars in complex physiological activities, as well as a suitable 

dynamic balance relationship of content, which reflects the importance of the 

accumulation and decomposition of sugars in high-quality Sichuan tobacco leaves to a 

certain extent. 

As shown in Figure 7D–I, histidine content ranging from 0.050 mg/g to 0.075 mg/g 

positively impacts the first quality grade of tobacco leaves. Slight deviations upwards 

lean towards the second grade, while extreme deviations in either direction favor the 

third grade. The optimal total basic amino acid content for the highest quality falls 

between 0.075 mg/g and 0.100 mg/g. Deviations suggest a nonlinear relationship, 

impacting sensory quality. Excessive free amino acids have been linked to the formation 

of harmful nitrogen-containing substances, such as hydrogen cyanide (HCN) and 

ammonia (NH3), during flue gas combustion, thereby affecting the quality and safety of 

cigarette smoke20, 21, 1, 22. In Sichuan flue-cured tobacco, histidine comprises 82.5% of 

total basic amino acids.  

 

Figure 7. Dependence plot of starch + reducing sugars, histidine, and total basic amino acids among the three 
quality grades. 

As shown in Figure 8, the contributions of sugar base characteristics, such as total 

mono- and disaccharides/total nitrogen, starch/total alkaloids (as nicotine), total 

alkaloids (as nicotine), and reducing sugars, to the model were also large. When the ratio 

of total mono- and disaccharides/total nitrogen was more than 12, and the ratio of 

starch/total alkaloids (as nicotine) was more than 2.5, the tobacco leaf tended to be of the 

highest quality grade. When the total alkaloid (as nicotine)/reducing sugar ratio was 

lower than 0.08, that is, the sugar-alkali ratio was higher than 12.5, the probability of 

judging the sample as the first quality grade was greater. When the ratio of total alkaloids 

(as nicotine) to reducing sugars exceeded 0.08, or the ratio of total mono- and 

disaccharides to total nitrogen was lower than 12, along with starch to total alkaloids 

ratio less than 2.5, the probability of categorizing the samples as quality grades 2 and 3 

was higher. 

Carbon and nitrogen metabolism are crucial for flue-cured tobacco growth, 
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influencing leaf compound composition and cigarette quality. Carbon metabolism 

converts inorganic carbon to sucrose, eventually forming carbohydrates like starch. 

Nitrogen metabolism involves amino acid-based protein synthesis or nitrogen conversion 

to nitrogenous substances23. Sichuan, situated in Southwest China's interior, features 

varying terrain, a complex climate, and diverse soil types. These unique ecological 

conditions in Sichuan promote sugar accumulation. high-quality flue-cured tobacco in 

the region boasts elevated levels of soluble total sugars and reducing sugars compared to 

the national average. Tobacco carbohydrates, along with nitrogen compounds, are key 

aroma precursors 19, 22, 24. The sugar-alkali ratio (reducing sugars/total alkaloids) of 

Chinese tobacco leaves, typically ranging from 10 to 15 for high-quality leaves, affects 

tobacco flavor and internal quality, balancing vitality and aroma intensity. 

 

Figure 8. Dependence plot of total mono- and disaccharides/total nitrogen, starch/total alkaloids (as 
nicotine), total alkaloids (as nicotine)/reducing sugars among the three quality grades. 

For the third-quality grade with a low discrimination accuracy of the GA-RF 

prediction model, the SHAP value was positioned to play a key role in the prediction of 

sucrose. According to the SHAP values in Figure 9A–C, the ranking of the contribution 

of sucrose to model quality grade prediction is as follows: 3> 2> 1 quality grade; when 

the sucrose content is less than 30 mg/g, the sample is more inclined to predict the third-

quality grade. Sucrose, the main non-reducing sugar in tobacco leaves, reacts with amino 

compounds such as amino acids in non-enzyme-catalyzed Maillard reactions. This not 

only generates a series of important flavor substances in smoke, such as pyrazines, furans, 

and pyrroles, but also produces intermediate products, such as Amadori rearrangement 

products19, 26. Furthermore, sugars are also precursors of some characteristic flavor 

compounds during the tobacco preparation process. Some studies have shown that 

spraying a sucrose solution at a certain mass concentration before curing is beneficial for 

increasing the aroma of tobacco, alleviating green spots, and improving the sensory 

quality of cigarettes24, 26, 27.  

In the comprehensive feature analysis, SHAP values identified seven key indicators 

affecting Sichuan tobacco leaf quality: starch, reducing sugars, histidine, alkaline amino 

acids, total mono- and disaccharides/total nitrogen, starch/total alkaloids (nicotine), and 

sucrose. Starch, reducing sugars, and histidine significantly impact first- and second-
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grade quality, while sucrose affects third-grade quality. Chemical composition and ratios 

closely relate to leaf quality, but no single indicator can fully represent it. Future studies 

will use multivariate statistical methods to explore these indicators across quality grades, 

establishing suitable ranges and enhancing the quality evaluation system. 

 

Figure 9. Dependence plot of sucrose among the three quality grades. 

While a predictive model using the GA-RF algorithm has been developed, 

comprehensive validation and debugging are incomplete. The current dataset, limited to 

a specific Sichuan region and time period, may affect the model's predictive accuracy in 

different contexts. Thus, broadening data collection and refining the model through 

ongoing research is crucial. 

4. Conclusion 

In this study, model performance comparison, construction, and optimization were 

performed using various machine learning algorithms. In the case of unbalanced sample 

classification, the accuracy of the prediction model under 5-fold cross-validation was as 

follows: RF>GBC>KNN>SVM; the RF model performed the best in the evaluation 

metrics of recall, precision, and F1-score. Therefore, RF was identified as the best 

classifier model for predicting the quality of Sichuan tobacco plants. The six 

hyperparameters of the RF model underwent adjustment and optimization through GA, 

resulting in the identification of the optimal hyperparameter combination. The GA-RF 

prediction model achieved an impressive accuracy of 86.8% for Sichuan tobacco, 

successfully distinguishing between various tobacco quality grades. Furthermore, the 

incorporation of SHAP values offered a deeper insight into the model, enhancing its 

interpretability. This development holds significant value in advancing our scientific 

understanding of Sichuan tobacco's essential characteristic components and determining 

appropriate content ranges. 
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