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Abstract. This paper addresses the challenge of predicting chaotic behavior in 

automatic control systems and robotics, especially in unstable environments. 

Chaotic elements in observational data diminish the effectiveness of traditional 

statistical methods, necessitating novel predictive approaches. We propose a 

predictive framework based on a multi-expert data analysis model for control 

applications. Preliminary predictions are generated by software experts as weak 

classifiers, while a supervising expert consolidates these into a final decision. This 

approach resembles stacking algorithms used in ensemble decision-making. Our 

methodology enhances predictive accuracy in chaotic environments, leveraging the 

structural redundancy of multi-expert systems for improved robustness. Empirical 

results indicate that it strengthens decision-making in unpredictable scenarios, 

paving the way for future research on managing chaotic dynamics in automatic 

control and robotics. 
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1. Introduction 

Contemporary methods for managing complex dynamic systems increasingly rely on 

predictive technologies that utilize advanced algorithms. A major challenge is predicting 

the behavior of chaotic systems in unstable environments, where changes in the state 

vector are hard to anticipate. These systems encompass various phenomena, from 

turbulent gas-dynamic processes to the volatility of capital markets. The main difficulty 

lies in chaotic components represented by complex nonlinear differential equations and 

incomplete disturbance data, necessitating robust predictive techniques for automatic 

control and robotics [1-3]. 
Traditional statistical extrapolation methods are often inadequate for these chaotic 

systems due to their unpredictability. This has created a demand for novel computational 

approaches [4, 5]. Leveraging high-performance computing and advancements in data 
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analytics and AI, these methods enhance prediction accuracy and reliability, crucial for 

effective decision-making in dynamic environments. 

One promising solution is the Multi-Expert System (MES) framework, which 
coordinates the efforts of multiple independent Software Experts (SEs) to improve 

predictive outcomes [6-8]. Unlike decentralized multi-agent systems, MES employs a 

collaborative approach where each SE generates preliminary predictions that a 

supervisory expert aggregates into a final decision[9-11]. This resembles ensemble 

learning, particularly stacking algorithms [12-14]. By utilizing the unique strengths of 

each SE, MES enhances prediction reliability and robustness, outperforming traditional 

methods. 

The two-tiered structure of MES—integrating findings from various SEs—offers a 

flexible framework well-suited for navigating the complexities and uncertainties of 

chaotic systems, ultimately enabling more effective and resilient automated control 

strategies in robotics. 

2. Data Model  

To formally describe this time series, we employ a conventional additive model. This 

model posits that the observed time series can be decomposed into several distinct 

components, each contributing to its overall structure. These components typically 

include a systematic trend, seasonal variations, and random noise. By representing the 

time series in this manner, we can analyze and isolate the individual effects of each 

component, thus enhancing our ability to predict future values with greater precision. 

Mathematically, an additive model can be expressed as:  

�� � �� � ��� 	 
 � �� � � � � �                                  (1) 

where the systemic component ��� 	 
 � �� � � � � � represents the regular dynamics 
of the process being predicted, which is utilized in the formation of control decisions, 

and ��� 	 
 � �� � � � � �  is the random component reflecting observational noise that 

needs to be filtered. 

Traditional additive models, as per Wold's decomposition [15], assume the systemic 

component �� is a smooth process, yet under unstable environmental conditions, chaotic 

dynamics emerge-characterized by high sensitivity to initial conditions which complicate 

long-term predictions and require advanced frameworks like nonlinear dynamics and 

bifurcation theory [16-20]. 

Typically, the noise component ��� 	 
 � �� � � � � �  is modeled as white noise. 
However, in practice, this is often an inadequate representation, particularly for systems 

in unstable environments. In these cases, the noise is a non-stationary random process, 

better represented by a Gaussian model of the Huber type [21]	� � �� � ��������
�� �

�������
��� 	 � � ��� ���	 �� �� ��, where the contamination coefficient � is usually 

significantly less than 1. For heteroscedastic non-stationary processes, the variance may 

change over time � � ����.  
In robotics and automatic control systems, traditional computational methods often 

struggle with chaotic conditions, as they are slow to adapt to fluctuations, whereas Multi-

Expert Systems (MES), which leverage a group of Software Experts (SEs) to provide 

tailored strengths, enhance adaptability and resilience to unpredictable changes, 
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ultimately supporting more reliable predictions and decision-making, despite challenges 

in combining conflicting outputs and varying predictor accuracies. 

3. Problem Statement 

From a mathematical standpoint, each software expert (SE) engaged in the predicting 

function embodies a transformation, which can be articulated as follows: 

������ ����� �!�" # �$�%&� 	 
 � �� � � � ��'                             (2) 

where � is the structure of the predicting algorithm, parameterized by the set  �, ( is 

the predicting horizon, and �' is the total number of predicts generated. The input data 

for generating the prediction is a set of retrospective data 

� � )!*� 	 + � �� � � � �� ,                                            (3) 

used for training the SE, along with the current observation !�. 

The ensemble of m simultaneously operating SEs ���*��� ��, + � �� � � � � - allows 

the generation of a set of possible predictions at each predicting step 
 � �� � � � ��': 

./�%& � )�$�%&�+�� 	 + � �� � � � � -,.                                       (4) 

The objective of the proposed methodology centers around the development of a 

System of Software Experts (SEs), denoted as ��0 (2). This system is tasked with the 

intricate process of aggregating and jointly analyzing the outputs of individual predictive 

models, each contributing partial predictions, symbolically represented as 12 (4). The 

fundamental goal is to synthesize these partial predicts into a cohesive, comprehensive 

prediction that optimally aligns with a designated efficiency metric 3�./�%&���%&�  

�$�%&
4 � 5��6�3�./�%&���%&��� 	 
 � �� � � � � �'.                        (5) 

In the context of linear computational frameworks within robotics and automatic 

control systems, we assert that the average value of this prediction quality indicator, 

when evaluated across Np discrete time steps, will reach an optimal state. This 

underscores the importance of employing robust statistical metrics to assess the 

predictive efficacy of models operating in dynamic environments. Among these metrics, 

Mean Squared Error (MSE) is a prominent criterion, capturing the average of the squared 

differences between predicted and actual values. Mathematically, MSE is expressed as: 

7�� � �
�

89
: ��$�%& � ��%&�

��
;

<
89

�=�
                                    (6) 

or the Mean Absolute Deviation (MAD): 

7>? �
�

89
: @�$�%& � ��%&@
89

�=�
.                                         (7) 
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Prediction is a vital tool for enhancing decision-making in complex systems like 

robotics and automated control. Metrics assessing predictive accuracy should be seen as 

preliminary indicators guiding system improvements, not final outcomes. The true value 
of predictions lies in their ability to enhance control system efficiency; accurate predicts 

of environmental variables can significantly improve robotic responses to changing 

conditions.  

For instance, in navigation, the accuracy of predicting obstacles is important, but 

success should be measured by improvements in operational efficiency, such as faster 

travel times and better obstacle avoidance. Thus, evaluating predictive quality requires 

consideration of broader system performance metrics linked to informed decision-

making. Ultimately, the impact of predictions on system effectiveness is what determines 

their true value. 

4. Methodology 

Numerous methodologies exist for creating predictive algorithms that predict non-sta-
tionary stochastic processes, particularly in robotics and automated control. We focus on 

a method using polynomial approximation with a moving window, followed by extrap-

olation over a defined future time, τ. 

According to the Weierstrass approximation theorem, any continuous process can 

be uniformly approximated by a sequence of polynomials 1A���� B � ��C� � ��, where с is 

the order of the approximating polynomial [22]. Due to the rapid fluctuations of the ob-

served process, the polynomial model uses a moving observation window that matches 

the prediction interval. This is crucial in robotics and automated control, where condi-

tions can change unpredictably. In applications like autonomous navigation, adapting to 

variable environments is essential. The model captures local trends and quickly responds 

to changes by continuously integrating the latest data for accurate predictions. This ap-
proach enhances prediction accuracy and provides the robotic system with the capability 

to make timely, informed decisions based on current conditions: 

��DE%��� � �!�DE%���� � � � � !�� ,     
 � �� � � � ��'.                            (8) 

For each SE, the structure �A�+�� 	 + � �� � � � � 7, is fixed, determined by the chosen 

order of polynomial approximation - . The parameters ��+�� 	 + � �� � � � � 7  of each 

approximating model are determined using the traditional least squares fitting method, 

i.e., such that: 

�4�: �!F � 1F��A� ���
�E

F=� � -+G�                                          (9) 

The predict is then performed by directly substituting the corresponding prediction 

time into the value of the approximating polynomial, i.e., 

�$�%&
4 � 1H�
 � (�� 	 
 � �� � � � � �'.                                  (10) 

A fundamental method for collaborative decision-making among independent SEs 

is simple averaging, but weighted averaging using Bayesian risk evaluations offers a 

more effective approach [23]. This is crucial in robotics and automated control, where 
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uncertainty and environmental variability are significant. The Bayesian framework 

considers the reliability of different SEs by applying weights based on prior confidence 

derived from performance metrics. This results in a more nuanced amalgamation of 
predictions, enhancing decision-making, situational awareness, and adaptability in 

complex scenarios, ultimately improving operational efficiency in applications like 

autonomous vehicles and automated processes. Using the same base of retrospective data 

� , the predicting task is sequentially solved for each SE, and the average predicting error 

I!$��&
* 	and the corresponding Bayesian risks 6��*

&  are assessed. The final decision is based 

on the weighted prediction: 

!$�%& � : J��*!$�%&
*H

*=� K: J��*
H
*=� , 
 � �� � � � � � � (.                          (11) 

That is, it is formed as a linear combination of partial predicts !$�%&
*  with weights 

inversely proportional to the Bayesian risks J��* � �6��*
& �D�.  

5. Experiments 

We present a MES for predicting robotic control systems using a low-order statistical 

extrapolator, benchmarked against a linear extrapolator on a chaotic model's time series. 

As shown in table 1, our analysis evaluates prediction accuracy through Mean Squared 

Error (MSE) and Mean Absolute Deviation (MAD), focusing on the impact of 

observation window size and prediction horizon on accurate prediction for real-time 
decision-making in robotics. 

Table 1. Dependence of Predicting Quality Indicators on Model Parameters 

Figure 1 illustrates how varying observation window sizes (L=60, 120, 180) and 

prediction horizons (τ=5, 15, 30) affect prediction quality. Errors increase with larger 

horizons, significant in chaotic robotic systems due to sensitivity to initial conditions. 

While increasing the window size enhances smoothing, it doesn't reduce bias from 

chaotic behavior, posing challenges for precise real-time applications. To overcome the 
limitations of a single linear extrapolator, we introduce a MES featuring three Software 

Experts (SEs): a linear extrapolator (SE1), a quadratic extrapolator (SE2), and a cubic 

extrapolator (SE3). 

As shown in figure 2, all three models are initially trained with a dataset of size L = 

120 and a prediction interval of ( = 30 time steps. In particular, the reliance on continuity 

and smoothness assumptions in polynomial models poses a limitation, as chaotic systems 

often exhibit nonlinear interactions and sensitivity to initial conditions, which violate 

these assumptions. Consequently, polynomial models tend to produce misleading 

predictions, as they are unable to capture the erratic shifts that characterize chaotic 

behavior. 

 

τ=3, L: 60 120 180 
MSE 8.99 12.61 14.56 

MAD 5.80 7.41 9.17 

L=120,  τ: 5 15 30 
MSE 8.99 12.61 14.56 

MAD 5.80 7.41 9.17 
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Figure 1. Impact of the learning window size L (Left Graphs) and prediction depth ( (right graphs) on 

predict quality 

 

Figure 2. Illustration of the low effectiveness of SEs based on statistical extrapolation of observation series 

Increasing the order of polynomial models may seem to improve predictive accuracy, 

but it often causes overfitting, reducing generalizability and reliability in robotics, where 

accurate predictions of dynamic environments are crucial. As robotics increasingly 

interacts with chaotic environments, the development of robust predictive methodologies 

becomes essential for operational reliability, with future efforts aimed at enhancing 

adaptability and performance in unpredictable settings. 

6. Results 

Implementing adaptive Software Experts in a Multi-Expert System (MES) enhances 

predictive capabilities in robotics by reducing errors in dynamic system predictions. 

!$�%& � !$�%&�+�D�
4 �,                                                 (12)           

where  +�D�
4 	0M�+0N+50	7��*4 � -+G  �7���� � � � �7��H"�D�.            
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Figure 3.  Monitored Process, 3rd-Order Polynomial Prediction, and Prediction Error 

To illustrate, we evaluate the average Mean Squared Error (MSE) of daily 

predictions from SEs 1-3 and the MES strategy, following the algorithm described in 

equation (11). The accuracy metrics from the numerical experiments for SEs 1-3 and 

MES (as the fourth component in vector �	O ) are presented as average MSE values over a 

10-day period: �	O = [13.5, 13.1, 12.8, 12.6]. 

The data show that implementing MES improves prediction quality and solution 
stability, as illustrated by methodologies in equations (6) and (7). Evaluating prediction 

quality necessitates a thorough analysis of task efficacy, particularly in robotics and 

automated control, where adaptability and accuracy are essential for enhancing decision-

making. This MES approach demonstrates how adaptive strategies lead to more resilient 

predictions in chaotic systems, resulting in better outcomes in dynamic, unpredictable 

environments. 

7. Conclusion 

This article examines how informational redundancy can improve decision-making in 

robotics and control systems, drawing inspiration from John von Neumann's concept of 

reliable systems using unreliable automata. We introduce the Method of Extrapolation 

Strategies, which leverages an ensemble machine learning approach to generate 
predictive decisions in chaotic environments, overcoming limitations of traditional 

probabilistic methods. 

Our research demonstrates that MES can enhance predictive accuracy and stability, 

key factors for autonomous systems. However, empirical findings lack a solid theoretical 

foundation, highlighting the need for further research. Future directions include: 

� Developing advanced state estimation models for adaptability in unpredictable 

settings. 

� Creating a multi-expert system to address MES limitations in chaotic 

environments. 

� Establishing a theoretical framework for control theory in indeterministic 

conditions using entropy measures. 
These efforts aim to enhance the effectiveness and robustness of robotics and 

automated control systems in real-world applications. 
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