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Abstract. Automated driving systems are an integral part of the auto-
motive industry. Tools such as Robot Operating System and simulators
support their development. However, in the end, the developers must
test their algorithms on a real vehicle. To better observe the difference
between reality and simulation–the reality gap–digital twin technology
offers real-time communication between the real vehicle and its model.
We present a low fidelity digital twin generator and describe situations
where automatic generation is preferable to high fidelity simulation. We
validate our approach of generating a virtual environment with a vehicle
model by replaying the data recorded from the real vehicle.

Keywords. Automated Driving System, Digital Twin, OpenStreetMap,
Reality Gap, Robot Operating System, Simulation

1. Introduction

The development and testing of vehicles equipped with automated driving sys-
tems (ADS) is expensive, slow, and complicated. In many cases, simulation comes
to the rescue. However, setting up the simulator and the virtual entities, i.e.,
the environment and the models, is usually complicated, slow, and therefore ex-
pensive. The difficulties in setting up the virtual entities are particularly evident
when modern digital twin (DT) technology is to be used, as DT attempts to
interactively mirror the real world.

DT connects simulation with reality by requiring real-time bi-directional data
exchange between virtual and physical entities. The DT approach enables simul-
taneous development and testing on the virtual model and the real vehicle.

Increasing the number of parameters to describe reality in the simulation im-
proves the simulation’s credibility. However, in the case of rapid development and
testing, the important factor is the difficulty of creating virtual entities. Therefore,
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Figure 1. Connection between the topics of work on automated driving systems from the point
of view of digital twin technology. The solid lines represent a close relevance. The dashed lines
represent the connection between virtual and physical entities.

the developers creating virtual entities manually to benefit from the DT approach
must balance between a higher number of parameters and the development speed.
Automation helps to remove this trade-off and achieve both.

In this article, we argue for the automatic creation of virtual environments and
vehicle models for ADS development. We present use cases where it makes sense
to prioritize simplicity of creation at the expense of the number of parameters to
describe reality. We present our DT generator2, which generates virtual entities,
and use the generated virtual environment with the Gazebo simulator and the
Robot Operating System (ROS)34. Particularly, the contribution of our work is:

• We outline the relevance of DT to ADS development and testing.
• We present a low fidelity DT generator and showcase the generator output
in the Gazebo Classic simulator.

• We discuss the use cases for a low fidelity DT.

In Section 2 we give an overview of the work related to ADS development,
DT and simulators. In Section 3 we present our generator and look at emerging
possibilities brought by it. In Section 4 we discuss the situations in which ADS
benefit from low fidelity DT. We conclude our considerations in Section 5.
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2. Related work

Given the rapid progress in the development of automated driving systems (ADS),
we can recognize similar efforts in the tools that promise to further accelerate
the development of ADS. Mecenski et al. [1] introduce one such tool: the Robot
Operating System (ROS) – a broad ecosystem of libraries for robotics applications
with a common consensus on interfaces. ROS is the de facto standard for the
development of robotics applications, including ADS; we focus on the tools that
are compatible with ROS.

In Section 2.1, we provide an overview of simulators, a prominent group of
tools for ADS development and testing. In Section 2.2, we take a look at the use
of digital twin (DT) technology for ADS. In Section 2.3, we glance over the work
in which DT is used for ADS development and testing, even if it is not explicitly
mentioned.

Fig. 1 depicts the connection between the topics of related work. Lower part
of the figure shows that real-vehicle development and testing is necessary for ADS.
Upper part of the figure shows that accuracy and fidelity are important factors of
simulations. Middle part of the figure represents how the simulation is connected
with reality from DT point of view.

2.1. Simulators

Kaur et al. [2] review simulators for ADS testing and conclude that CARLA [3]
and LGSVL [4] are the most suitable. Gazebo [5] is popular, but it is hard to
create new environments for it.

CARLA was released as a completely new simulator developed from scratch
for ADS research. With a focus on the perception module, CARLA is an open
source layer built on the highly realistic Unreal Engine5. CARLA also features a
ROS bridge to connect to ROS-based control algorithms for ADS.

LGSVL, on the other hand, was released with the main feature of smooth
integration into the Autoware [6] – open source ADS framework built on the ROS.
The development of LGSVL has been discontinued, but its successor, AWSIM6,
also provides first-class support for Autoware.

Gazebo focuses on robotics in general, not just ADS development. The envi-
ronment and robot models are specified in an SDFormat7 file with XML syntax.
SDFormat is also supported by the new graphics engine o3de8.

Koenig and Howard [5] published Gazebo’s original work in 2004 with case
studies about reverse engineering real robots by creating the model in the simu-
lator and simulating the robots in a virtual copy of the environment before de-
ploying them. They even mentioned the possible real-time sensor data exchange
between real and virtual entities. Then, almost ten years after the publication of
Gazebo, Shafto et al. [7] introduced DT.

2https://git.sr.ht/~qeef/gen-sdf
3https://libre.video/videos/watch/e15b96af-9c2c-4b72-adf8-234148d6044c
4https://libre.video/videos/watch/b2e90dd6-ef61-4756-822f-a915aa2aa23a
5https://www.unrealengine.com/en-US
6https://tier4.github.io/AWSIM/
7http://sdformat.org/
8https://o3de.org/
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2.2. Digital twin technology

In recent years, DT has also become increasingly important in the field of ADS.
Schwarz and Wang [8] describe what DT brings to ADS: “The presence of com-
munication [between virtual model and real vehicle] is a key differentiator for
the digital twin.” Wright and Davidson [9] explain the difference between a dig-
ital twin and a model in simulation: “A digital twin without a physical twin is a
model.” Jones et al. [10] give a detailed characterization of the DT and name its
most important components.

We emphasize two DT components important for our article: twinning and
fidelity. Twinning is a process of synchronizing parameter values between phys-
ical and virtual entities. Fidelity describes the level of details in the simulation,
including the number of twinned parameters. Be aware of the difference between
fidelity and accuracy. Fidelity tells us how detailed the virtual entity is compared
to the physical one. Accuracy describes the deviation of the twinned parameter
values between the virtual and the physical entity.

The meanings of DT fidelity and fidelity of simulators overlap but are not the
same. In both cases, increasing fidelity improves credibility. DT fidelity includes
the number of twinned parameters, and the fidelity of simulators depends on the
number of simulated parameters.

Samak et al. [11] present DT with all the necessary components. This includes
physical and virtual entities for the environment (roads, traffic lights, smart in-
frastructure) and a real prototype vehicle (1:14). Their AutoDRIVE platform is
based on ROS, has a Unity-based simulator and is intended for ADS research and
education. The downside is the self-written simulator and the limited number of
environments and vehicles.

Stocco et al. [12] describe how ADS testing in simulation relates to ADS
testing in reality, targeting deep neural networks. They attempt to answer the
question of whether the difference between virtual tests and real-world tests, the
reality gap, affects test performance. They conduct tests on a 1:16 prototyping
platform that includes a high-fidelity simulator and conclude that real-world ve-
hicle testing is still important. In other words, the realism of the simulators is not
yet good enough.

Hu et al. [13] provide an overview of work on the reality gap with the aim
on perception and high-fidelity simulation. They divide the related topics into
(i) knowledge transfer from simulation to reality, (ii) learning in digital twins,
and (iii) learning through parallel intelligence. They conclude that there is always
a reality gap and that there is a need to further investigate the methods for
knowledge transfer.

From the work above, we could conclude that decreasing the reality gap re-
quires increasing the fidelity of simulators. This statement holds for the research
in perception but not for ADS and DT in general. We argue that it is important to
consider DT fidelity, too. Depending on the use case, we can achieve a sufficiently
small reality gap even with a low-fidelity DT and simulator.
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2.3. Development and testing

In this section, we review how various teams use DT for ADS development and
testing. Wang et al. [14] evaluate ADS safety. First, they run ADS in parallel
with the human driver but without access to the actuators and compare online
the trajectories of the human driver with the trajectories generated by ADS.
Later, they reduce uncertainties of the world model and carry out offline safety
assessments of the recorded trajectories. Their goal is the offline safety assessment.
The first stage, the online trajectory comparison, uses the elements of DT.

Genevois et al. [15] inject lidar data at sensor level in real time from the
simulation to the real ADS. This augmented reality approach has potential for
vehicle-in-the-loop tests, especially when complex scenarios have to be tested on
the real vehicle.

Gelbal et al. [16] describe a very similar approach, which they call vehicle in
virtual environment. They include ADS in the simulation with a prepared scenario
and let the ADS react to this scenario. Both studies show the convergence of
virtual and physical entities, which corresponds to DT.

Finally, Drechsler et al. [17] had several real road participants at different
physical locations encounter each other in the simulation. They demonstrate the
concept of emergency braking system testing. Looking from the DT perspective,
ADS and the pedestrian synchronize their parameters, e.g., position and speed,
to their virtual models. ADS and the pedestrian also observe another participant
via the simulation. The result of the simulation is whether the collision happened.

This work show an attractive use of DT for ADS testing. It proves that what
DT contributes to ADS is valuable and that there are use cases where high fidelity
is not the most important thing. However, there is still room for automation in
setting up DT, as DT is usually created manually, uses a virtual environment that
only resembles a real environment, or uses virtual models that do not correspond
to the real vehicles under test.

3. Digital twin generator

In this section, we briefly introduce our digital twin (DT) generator for automated
driving systems (ADS)9. The generator produces the SDFormat10 file that can
be loaded into the Gazebo Classic, Gazebo, and o3de simulators, all providing
first-class support for the Robot Operating System (ROS). Thus, the generator’s
output enables ADS development and testing in DT fashion by setting up the
simulator with (i) virtual entities, i.e., the environment and the models, and
(ii) the interface to communicate with the entities via the ROS. We begin with
reflections on the choices in developing the generator, showcase the generator
output, and outline future work.

Our decisions are influenced by the fact that we strive to reflect the real world,
consider DT with limited fidelity, and aim for simple DT creation.

9https://git.sr.ht/~qeef/gen-sdf
10http://sdformat.org/
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Figure 2. Diagram of the steps required to use OpenStreetMap data and vehicle parameters
(boxes in the top row) in different simulators (boxes in the bottom row). The solid lines represent
automatic conversions and the loading and saving of files in different formats (rounded boxes).
The boxes for the Unreal Engine editor and the Unity editor represent non-trivial manual work.
The dashed lines represent our generator.

To automatically create the virtual environment, we use OpenStreetMap11,
which provides detailed open map data for the whole world. In Fig. 2, we can
see that there are tools for automatic conversion from OpenStreetMap data into
OpenDRIVE [18], CommonRoad [19] or Lanelet2 [20] formats. However, the re-
sults of the conversions must be revised manually, as the conversion of detailed
OpenStreetMap data to other formats involves many corner cases. We limit cor-
ner cases by limiting the number of parameters we use to create the virtual envi-
ronment.

To automatically create virtual models of the vehicles, we are left with the
SDFormat and the Gazebo simulator. In Fig. 2, we can see that adding a new
vehicle model to CARLA or AWSIM requires manual work in the Unreal Engine
or Unity editors; the dashed lines indicate the automatic conversions performed
by our generator.

Our generator is a single-file Python 3 script that depends only on the stan-
dard library packages; this approach increases usability in different environments.
We set the virtual environment’s bounding box in the script file. The environment
consists of buildings (coordinates and height estimation) and roads (coordinates
of centerline between two lanes with fixed width).

We also set the vehicle names and types in the script file, where the type
is twin for the vehicle model based on [21] with GPS sensor and Ackermann
steering capable of bi-directional data exchange with the real vehicle, shadow for
the model that only listens to the GPS position from the real vehicle, and ghost
for a shadow that does not collide with the other models.

From our experience with CARLA, adding OpenStreetMap data is trivial
manual work and about half an hour of processing with a dubious result. Adding
a custom vehicle model is non-trivial manual work and hours of compiling. Com-
pared to our generator, the generator always uses OpenStreetMap data and the
bounding box can be changed in the script file. Adding a custom vehicle model
requires familiarity with SDFormat and more elaborate changes in the script file.

11https://www.openstreetmap.org/about
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With the default bounding box, the script finishes under a second and the result
can be loaded into the simulator.

We tested the generated SDFormat file in the Gazebo Classic simulator by
replaying the data recorded in ROS bag files: replaying GPS positions12 and also
vehicle control messages13.

Future work is to use our generator in the situations described in Section 4.
We also want to increase the fidelity of our generator; we plan to support more
features of OpenStreetMap, such as traffic lights, to introduce bi-directional data
exchange to the environment. Finally, we plan to predefine more vehicle sensors
and manage vehicle parameters more comfortably.

4. Digital twin use cases

In this section, we present situations related to the development and testing of au-
tomated driving systems (ADS), where limited fidelity is not a major concern, but
the automatic generation of components related to digital twin (DT) technology,
i.e., virtual environments and vehicle models, is highly appreciated. Fig. 3 shows
an example of generated virtual entities that communicate via Robot Operating
System (ROS) messages.

When we start working on a real vehicle, we must first determine its parame-
ters. If the parameters are already available, they may be incorrect, so we have to
adjust them. The identification and tuning of the model is covered in Section 4.1.
When the vehicle model is known, we can observe the reality gap. In Section 4.2,
we discuss the deviation between the parameter values observed in the reality
and simulation. When the reality gap is known, we want to evaluate various ADS
algorithms for trajectory planning, decision-making, and vehicle control for re-
search problems in the field of automated driving, such as parking in the city,
highway overtaking, racing, or crossing intersections, as outlined in Section 4.3.

During the process, more parameters may need to be added, some adjusted,
and others invalidated, so the cycle of identification, tuning, validation, and eval-
uation starts over again. However, from the perspective of DT, the above steps
are the same. Using DT in development and testing means that we can constantly
monitor the reality gap and immediately fix bugs that are discovered at any stage
of the development and testing cycle.

4.1. Online identification and tuning

The goal of vehicle model identification and tuning is to determine or adjust the
parameters of the vehicle model based on the ground truth data from the real
vehicle. This is important when ADS development starts with a new vehicle or
when something happens to the vehicle that may affect the parameters, such as a
tire change. An example of parameters that need to be determined and adjusted is
the mapping between the steering wheel angle and the corresponding front wheel
angle at a certain speed.

12https://libre.video/videos/watch/e15b96af-9c2c-4b72-adf8-234148d6044c
13https://libre.video/videos/watch/b2e90dd6-ef61-4756-822f-a915aa2aa23a
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Figure 3. The screenshot of the Gazebo Classic simulator with automatically generated virtual
entities reflecting the test track in Weissach, Germany, and the ADS-equipped vehicle under
test. Buildings and roads © OpenStreetMap contributors.

Using DT helps to determine the parameters by requiring bi-directional real-
time data exchange that presumes a compatible interface between the real vehicle
and vehicle model. The real-time nature of the communication enables instant
estimation and adjustment of the vehicle model parameter values, either by hand
or using optimization techniques.

4.2. Observing the reality gap

There is no ground truth when observing the reality gap; we want to indicate
whether the mismatch is caused by the real vehicle or the vehicle model.

If the control works for the virtual model but fails for the real vehicle, we
call the situation real vehicle bias. An example is the algorithm producing the
steering angle request in degrees instead of radians. This type of error is caused
by lacking knowledge of the vehicle interface and is often observed in the initial
phase of the experimentation.

If the control works for the real vehicle but fails for the vehicle model, we
call the situation vehicle model bias. An example is a set of incorrect parameters
of the vehicle model such as a smaller maximum steering radius than that of the
real vehicle. This type of error could be caused by incorrect parameter tuning of
the vehicle model.

We must understand the reality gap before validating and evaluating ADS
algorithms; when we know its limits, we can make conclusions about the ADS
algorithm under the test. DT is a great tool for this because the reality gap can
be observed in real time.

J. Vlasak et al. / Low Fidelity Digital Twin for Automated Driving Systems 325



4.3. Driving through an intersection

Finally, we want to know whether an ADS algorithm developed in the simulation
works in the real vehicle and how it performs. The reality gap is known from
previous experiments, and so is the deviation of the parameter values.

As a simple example, we study the validation and evaluation of a trajectory
planning algorithm for roundabout intersection traversal. While approaching the
intersection, we can generate a virtual replica of the roundabout from real-world
OpenStreetMap data and the vehicle model representing the ADS-equipped ve-
hicle under the test.

Then, we can use a mixed-reality approach and simulate other road partici-
pants to test different scenarios in the real vehicle. In parallel, we can run mul-
tiple simulations testing similar scenarios based on reality (sensor messages from
the real vehicle) but representing different situations. We observe the differences
between trajectories planned in the simulation with the trajectories planned in
reality in real time. We observe the vehicle behavior in the simulation and reality
in real time.

Using the DT generator, we can easily test the algorithms on multiple inter-
sections during a single real-vehicle test drive. Moreover, we can simulate multiple
scenarios at each of the intersections at the same time.

5. Conclusion

We look at automated driving systems, digital twin technology, and simulators
from the perspective of development and testing with Robot Operating System.
We argue in favor of digital twins with limited fidelity and their appropriate
use in the development and testing of automated driving systems. We advocate
automation in the creation of digital twins and show the benefits of this approach
on an ADS for roundabout intersection traversal.

We present a generator for low fidelity digital twins and situations where it
is advantageous to favor automated generation over high fidelity simulation. We
successfully tested the output of the generator in the Gazebo Classic simulator.

Future work with digital twin technology will focus on the investigation of
non-reproducible or poorly reproducible events such as traffic accidents or crashes.
Realistic testing of these events is not possible on a large scale due to safety,
financial, and other constraints; nevertheless, these events will certainly occur.
Automated driving systems should be verified and validated to deal with these
situations properly. Digital twin technology with the mixed reality approach is
perfect for this.

Another future research direction is reinforcement learning for control sys-
tems, in which data from the real vehicle and several vehicle models are combined
to increase learning performance.
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