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Abstract. The goal is to bring together an in-depth analysis of physics-based deep 

learning approaches in transportation domains and classify them according to their 
applicability. To carry out the systematic literature search, a Preferred Reporting 

Items for Systematic Reviews and Meta-Analysis flowchart is used with certain 

inclusion and exclusion criteria. Different keyword searches are carried out in the 
Scopus and Web of Science databases, followed by relevant references and citation 

analyses to find eligible papers subject to a full-text peer review. Finally, the 

classification and analysis of these papers take place based on their applicability. 
141 and 39 records were found by the initial database search and referencing and 

citation analysis respectively. A total of 65 documents were selected to carry out 

full-text reviews, and finally, 35 documents were included in the study. Based on 
the applications of physics-informed deep learning in transportation engineering, the 

authors classified the literature into three major categories: 1) safety assessment and 

safety analysis, 2) model preparation, and 3) prediction and estimation. Finally, this 
research also provides the challenges and future directions in this emerging field.  
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1. Introduction 

Traffic accidents are a major cause of death and serious injury around the world, 

negatively impacting the lives of citizens, the government, and the economy. There are 

nearly 1.35 million fatalities and disability resulting from traffic accidents each year, 

with an average of 3,700 fatalities occurring daily [1]. Moreover, about 40,000 people 

lost their lives in a traffic accident in 2020, and 2.1 million were admitted to emergency 

rooms because of traffic accidents in the U.S., resulting in an estimated $430 billion in 

total medical expenses, quality of life, and loss of life [2]. According to the World Health 

Organisation (WHO), road traffic fatalities account for about 3% of the Gross Domestic 

Product (GDP) in most countries [3]. Despite the financial losses and the potential for 

death or injury, there is still a lack of action to address this problem. In addition, due to 

economic growth, the number of people using motor vehicles has increased worldwide. 

However, the increased number of motor vehicles requires more roads and a higher 

demand for better measures of road safety, protection, and standards. Therefore, all these 
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imperatives highlight the risk mitigation and safety promotion efforts that must be 

disseminated globally. 

Transportation technology has advanced rapidly in the last few decades. New 

opportunities for monitoring driver behaviour, vehicle communication, vehicle 

surveillance, and incident detection in transportation are presented by different 

technologies used by drivers (e.g., smartphones) and the usage of advanced sensor 

devices (e.g., smartphones, cameras). The widespread adoption of these technologies is 

due to the numerous benefits they offer. This brings us to the era of Big Data (BD), where 

huge amounts of data from multiple sources are being collected, processed, and stored 

[4]. For instance, the number of connected vehicles is growing at an accelerating rate and 

it was estimated that by 2020, one-fifth of all vehicles on the road will have an Internet 

connection and that the total volume of vehicles on the road worldwide will reach 

300,000 Exabytes [5]. In addition, several studies have shown that these BD collection 

systems are effective and useful for safety assessment [6, 7]. 

However, the exploitation and management of large amounts of data is one of the 

biggest challenges of this new era. To extract valuable information, data must be 

thoroughly analysed. However, managing and analysing this data would appear chaotic 

if Artificial Intelligence (AI) was not available [4]. AI enables data analytics to be done 

efficiently, and this is the main reason AI is now attached to BD [8]. AI and Deep 

Learning (DL) can extract all data inputs and use them to develop new rules for analytics 

in the future. The ‘AI machine’ is fed with BD to transform it into an intelligent process. 

Therefore, it is possible now to reap vast benefits of BD in many areas through the 

application of AI techniques such as Natural Language Processing (NLP), Pattern 

Recognition (PR), and Machine Learning (ML) algorithms [9]. 

Transport systems involve many components and numerous stakeholders, each of 

which has its own set of objectives that differ widely from one another. When it comes 

to transportation safety challenges, the emphasis is on traffic crash monitoring and 

assessment, crash modelling, crash detection and prevention, traffic crash frequency 

analysis, crash severity mitigation, obstacle detection, driver or operator behaviour 

identification, human factors, etc., to reduce accidents among transportation users [10]. 

For this purpose, processing all data that can potentially be collected and deriving 

valuable insights is important. Therefore, to address above-mentioned problems and 

improve the efficiency and safety of transport systems, several applications of AI have 

emerged over time. In recent decades, as we move into an era of significantly higher 

computational power than the previous decades, interest in ML and AI has increased 

among researchers and practitioners in the field of transportation [11]. Most areas of 

transportation use AI, but there is still a lack of knowledge exchange in various cases. 

For example, despite their impressive empirical results and some initial successes, most 

ML techniques are currently unable to extract meaningful knowledge and information 

from this huge volume of data [12]. In addition, data-based models may be highly 

consistent with observations, but predictions may be physically contradictory or 

inconsistent because of extrapolation or observational bias that may result in poor 

generalisation performance [13]. For this reason, there is an urgent need to integrate basic 

physical laws and domain understanding by ‘training’ ML models on governing physical 

rules that can provide strong theoretical limits and inductive biases on top of 

observational constraints. Therefore, it is necessary to engage in a process of physics-

informed learning by which prior knowledge deriving from our observations, empirical 

data, physical data, or mathematical knowledge can be used to enhance a learning 

algorithm’s performance. 
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Many engineering areas like earth systems, climate science, turbulence modeling, 

material discovery, quantum chemistry, biological sciences, hydrology, etc., can benefit 

from advances in physics-based deep learning [13]. Especially, in transportation 

engineering, physics-informed deep learning is useful to practitioners and has been 

widely adopted in projects dealing with object detection, autonomous driving, or system 

condition estimations [14-17]. However, it is crucial to undertake a comprehensive 

analysis of the physics-informed deep learning techniques employed in transportation 

engineering. Some reviews have provided a partial overview of physics-informed deep-

learning techniques utilised in different areas of engineering and science [18-20]. 

According to the literature, there is currently no review that systematically categorises 

the extensive application range of physics-informed deep learning techniques. Therefore, 

this paper aims to present a series of research papers on the latest developments in this 

emerging field and discuss the issues and future directions we, as the research community, 

need to focus on to make the most of the advanced physics-based deep-learning 

technologies for transportation engineering applications. 

To achieve this objective, this review serves as a valuable addition to the current 

literature, providing a full review and understanding of physics-informed deep-learning 

techniques in studies involving the areas of transportation engineering. In doing so, this 

contribution expands upon existing literature in various aspects. Firstly, this paper 

proposes a novel classification system that can be employed to categorise the 

applications of physics-informed deep learning techniques employed in transportation 

areas. Secondly, this paper provides an in-depth analysis of physics-informed deep 

learning studies, particularly employed in transportation areas. Finally, it deliberates on 

the advantages and disadvantages of physics-informed deep learning technologies in 

transportation areas and offers future potential applications in transportation areas. 

The paper follows this structure. Section 2 outlines the review methodology and 

introduces the taxonomy employed for literature classification. Section 3 presents the 

literature review results focused on the applications of physics-informed deep learning 

technologies in transportation engineering. Section 4 provides a comprehensive analysis 

and discussion of the identified literature. Finally, the conclusion section specifies 

potential future applications of physics-informed deep learning technologies in 

transportation areas. 

2. Methodology 

To carry out the systematic literature search, the authors employed Preferred Reporting 

Items for Systematic Reviews and Meta-Analysis (PRISMA) [21]. The authors set some 

inclusion criteria for a study in this review, such as the authors’ consideration of peer-

reviewed journals, conference proceedings, or dissertations; the study was written in 

English, was not an extended publication, and was not published before the year 2020. 

In addition, the search was limited to areas of transportation science and technology 

consistent with the objectives of this review. From two databases, including the Web of 

Science and Scopus, the final literature search was carried out on 31 January 2024. The 

authors chose these two databases because of their large amount of scientific data and 

relevant journals [22]. They also contain valuable information from a variety of sources, 

including journal articles, books, series of books, reports, conference papers, and 

editorials [23]. During the database search, the authors used a limited set of keywords, 

which were specifically employed in the title, abstract, and keywords. Therefore, 
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“physics-informed”, “physics-guided”, “physics-aware”, “physics-integrated”, 

“physics-based”, “physics-constrained”, “deep learning”, “artificial intelligence”, 

“neural network”, “traffic safety”, “road safety”, “transportation”, “road user safety”, 

were the keywords used to search the literature. Furthermore, some records have been 

added based on relevant references and citation analysis. To select a record: first, the 

authors looked at the data from the study and focused on factors like publication date, 

type, and former version; second, the authors examined each paper's title and abstracts 

to analyse its contents. The selected papers were reviewed to confirm that the paper uses 

machine learning and governing physical equations in the field of transportation. In 

addition, the studies had to be in English as a requirement. Only a study that met all the 

above-mentioned inclusion criteria was considered for inclusion. However, the 

categorisation of the studies to be analysed is a key issue in this review paper. To achieve 

this objective, the authors divided the collected studies into three main groups, based on 

the application areas of transportation, such as safety assessment and safety analysis, 

model preparation, and prediction and estimation. 

3. Results 

141 and 39 records were found by the initial database search and referencing and citation 

analysis; as a result, the authors found a total of 180 records with duplicate entries after 

the preliminary search. To screen the records received, the authors used exclusion criteria 

derived from the scope review methodology to eliminate duplicate records. In the first 

phase, all retrieved records were subject to a title screening to identify and remove 

records that did not meet the study goals. In the second phase, abstracts were carefully 

examined based on inclusion/exclusion criteria. As a result, the remaining 65 articles 

were examined to confirm their eligibility. The rest of the articles were subject to an in-

depth review of the complete articles to ensure eligibility. To calculate the exact number 

of articles, the authors carefully analysed the articles by considering the year of 

publication (last five years), the language format, the type of document, and the design 

criteria of the study. Between 2020 and 2024, 35 articles have been found, each 

employing physics-guided artificial intelligence in transportation areas. To explain the 

methodology used in this study, Figure 1 provides a PRISMA flowchart. 

Records identification through 

searching databases

(n = 141)

Records after removing duplication 

 (n = 119)

Identification 

Screening

Eligibility

Included

Records identification through other 

sources

(n = 39)

Records screened

 (n = 97)

Full-text article assessed for eligibility 

 (n = 65)

Studies included

(n = 35)

Records excluded 

(n = 32 )

-Irrelevant goal of study

-Wrong study design

-Conference presentation 

Full-text articles excluded 

(n = 30 )

-Publication year: 2020 to 2024

-Language: English

-Documentation type

 

Figure 1. Employed methodology in this study. 
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4. Discussion 

The goal of this research is to identify and explore the literature on applications of 

physics-based deep learning in the transportation field. During the investigation, various 

applications related to physics-informed deep learning were revealed, showing their 

evolutionary path toward increasing complexity over time. The authors found different 

types of applications for physics-informed deep learning in transportation areas. 

However, the authors divided the obtained literature into three major categories, 

including safety assessment and safety analysis, model preparation, and prediction and 

estimation. For the category of safety assessment and safety analysis, the authors discuss 

all aspects related to safety analysis and safety assessment such as crash risk and severity 

analysis, estimating traffic variables, driver behaviour assessment, and safety-related 

performance analysis and safety assessment. For model preparation, the authors discuss 

all literature related to different model preparations by using physics-informed deep 

learning. Finally, for prediction and estimation, the authors discuss all literature related 

to estimating or predicting different aspects of transportation areas like traffic flow, 

traffic state, vehicle trajectory, etc., by using a physics-informed deep learning technique. 

4.1. Literature Related to Safety Analysis and Safety Assessment 

One study used the Physics of electromagnetic fields to determine the risk and severity 

of crashes by modelling the safety-aware interactions of various road users by analysing 

traffic movement videos through artificial intelligence [24]. A further study proposed a 

physics-based deep reinforcement learning model that leverages physics-based 

knowledge and the equilibrium and consensus principles of control theory to regulate the 

2D car-following performance of connected automated vehicles both in terms of 

stability-related longitudinal control performance and in terms of precise lateral track-

tracking performance [25]. In another study, an adaptive physics-based trajectory 

reconstruction framework was proposed that identifies the optimal filtering magnitude, 

minimizes local acceleration variance in stable conditions, and is compatible with 

realistic vehicle acceleration dynamics and typical driver behaviour [26]. To enhance the 

safety of adaptive cruise control vehicles, Machine Learning and physical knowledge 

were used to automatically determine the optimal longitudinal distance from ego- to 

leading-vehicle for a safer solution [27]. Moreover, PIAug, a physics-based data 

augmentation method, was introduced to illustrate the use case of PIAug by modelling 

high-speed, aggressive motion predictions on a low-speed dataset [28]. In addition, a 

research paper introduced a physics-driven distributed longitudinal control strategy 

based on deep reinforcement learning under communication failure to stabilise traffic 

oscillations for connected and automated vehicles [29]. In another study, a physics-based 

machine learning framework was developed to identify and estimate traffic flow from 

small-scale observations made by probe vehicles [16]. In another paper, they introduced 

a new approach based on deep learning using physics to quickly identify vehicle 

cornering a key parameter in the vehicle stability control model and control algorithms 

called stiffness coefficient [30]. TrafficFlowGAN, a physics-related flow based 

generative adversarial network, was used to quantify the uncertainty of dynamic systems 

using partially observed data to estimate traffic variables such as traffic density and 

velocity [31]. 
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4.2. Literature Related to Model Preparation 

A quantile-regression car-following model was designed by combining the principles of 

physics with stochasticity and deep learning to fully capture the genuine regularities of 

car-following behaviours [17]. In addition, another paper re-introduced vehicle-related 

inputs such as velocity to enhance the precision based on previous models by combining 

the idea of the fusion model with the concept of physics-based deep learning to develop 

a new model with higher precision [32]. Furthermore, PICGAN (physics-informed 

conditional generative adversarial network) was developed to improve multi-step car-

following models in mixed traffic flow conditions to leverage the power of physics and 

deep learning [33]. In another study, they combined the traditional traffic flow model 

and the machine learning approach to develop and test a new model called physics-

guided machine learning using the neural network framework [14]. DoubleGAN, a 

physics-informed deep learning model, was proposed to embed stochastic properties into 

a deep learning structure based on physics to capture the uncertainty from the vehicle 

trajectory data and introduce a stochastic car following model to provide the generator 

with previous physics data [34]. Another study developed a neural network-based car-

following model based on physics-based models that combine the benefits of physics-

based models (data-efficient and easy to interpret) with deep learning-based models 

(being generalizable) [35]. 

4.3. Literature Related to Prediction and Estimation 

One study suggested a physics-informed multi-step real-time conflict-based model for 

vehicle safety prediction by combining physics (e.g. traffic shockwave property) and 

data-driven properties extracted from deep learning techniques to enhance road safety 

and prediction performance [36]. One thesis introduced a physics-based deep learning 

model for traffic state prediction by embedding deep learning neural networks with the 

power of the underlying physical laws of traffic flow to improve traffic condition 

predictions based on partial and limited sensing measurements [37]. In addition, STDEN 

is a physics-based deep learning model, also known as Spatio-Temporal Differential 

Equation Network, proposed in another study that integrates the physical dynamics of 

traffic flow into the framework of deep neural networks [38]. In addition, a recent study 

proposed a new hybrid traffic state estimation methodology called Observer-Informed 

Deep Learning, which combines an observer using a Partial Differential Equation and a 

deep learning paradigm to predict spatial and temporal traffic states using boundary 

sensing data [39]. A further study provided an overview of the architecture design of 

physics-based deep learning computational graph models and how these models are 

optimised for traffic state prediction [40]. In that study, by looking at the data, problem 

types, and goals as they changed, the authors showed possible architectures for physics-

based deep learning graph models and compared them using the same data set from the 

real world. In another study, a physics-aware learning-based trajectory prediction model 

for congested traffic was proposed based on the capture of shockwaves in an 

interconnected vehicle environment [41]. Combining physics-driven and data-driven 

models, a new Social Force- constrained Gated Recurrence Unit model was designed to 

predict vehicle trajectory [15]. That model is derived from the Gated Recurrent Unit 

Encoder–Decoder framework and includes social force limitations to improve and 

complement the model input derived from vehicle time series trajectory data that 

describes driving and interactive vehicle behaviour while driving as well as interactions 
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between adjacent vehicles and the environment. In addition, the transformer neural 

network with self-awareness as physics-uninformed neural network and intelligent driver 

model as physical model were used to develop the physics-informed transformer-

intelligent driver model as a Physics-Informed Deep Learning framework to predict 

vehicle trajectory [42]. As an integrated framework, a non-linear programming model 

was developed to predict the physics-based joint traffic status and queue profile using 

traffic flow models and observations from the corridor level and local segment level 

using heterogeneous data sources [43]. In another study, a physics-based deep learning 

framework was introduced to combine second order traffic flow models with neural 

networks to solve traffic state estimation problems, which encoded traffic flow models 

into deep neural networks to standardise the learning process for improved data 

throughput and estimation accuracy [44]. In addition, a paper introduced a physics-based 

deep learning framework that incorporates data-driven and model-driven elements to 

perform efficient highway traffic state estimates with obtained data from loop detectors 

utilising traffic density as traffic variables [45]. In another study, a traffic state estimation 

model was proposed combining the computational graph and physics-based deep 

learning techniques [46]. In that study, the authors used the computational graph 

approach to achieve the traffic fundamental diagram parameters. Then, they used the 

physics-based deep learning approach to determine accurate traffic state estimates. In 

addition, a traffic flow theory and a deep learning neural network were used to develop 

a physics-informed deep learning technique to solve the problem of data sparseness and 

sensor noise in traffic state estimation [47, 48]. Similarly, another paper incorporated 

data-driven and model-driven components to introduce a physics information-based 

neural network framework to merge the benefits of both methods and to overcome their 

weaknesses that can utilise speed data to determine traffic state estimations for a traffic 

network [49]. By using spatiotemporal graph convolution neural network and traffic flow 

models and maintaining the law of traffic flow, a study proposed a framework named 

PSTGCN (physics-informed spatiotemporal graph convolution neural network) based on 

physics-informed deep learning theories to estimate the traffic state [50]. Another study 

looked at the performance of a physics-informed neural network strategy for traffic state 

prediction and model parameter identification under real-world conditions by applying a 

first-order macro-scale traffic flow model with two physical parameters: traffic density 

and traffic flow [51]. Another paper introduced a better paradigm by combining model-

driven components with data-driven components called physics-based deep learning 

with a fundamental diagram learner, which incorporates machine learning terms into 

model-driven components to learn a functional version of a fundamental diagram, for 

example, a map from traffic density to traffic flow or velocity [52]. In addition, a recent 

study proposed a way to combine Eulerian observations with Lagrangian observations 

using physics-based deep learning that leverages the Lighthill-Whitham-Richards model 

and two basic traffic diagrams to predict traffic states at observations-free locations, 

particularly to estimate traffic density [53]. 

4.4. Challenges and Future Applications 

Although there are many benefits to using physics-informed deep learning in 

transportation applications, this approach has limitations and challenges. Recently, one 

study presented the limitations and challenges in training physics-informed deep learning 

architecture of traffic flow models [54]. In addition, the availability of data is a 

fundamental premise of physics-based deep learning. The era of Big Data (BD) has 
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resulted in more data being available, but that data may not be up-to-date and may be 

irrelevant or in new formats [18]. However, this new data might not be usable in its 

current form or generate noisy datasets that are hard to work with in training programs 

while applying PIDL techniques. In addition, these new sources of information must be 

verified. Finally, the increase in data can also provide data sources that are highly 

complex or highly variable in format and type. Variable data can be extremely 

challenging to process and format, resulting in slow processing times and poor user 

experience. Furthermore, PIDL model selection is the process of selecting one final 

model from a set of candidate models (i.e., Gaussian model or neural networks) and 

different strategies (i.e. physics-based loss function, hybrid model, or architecture) to 

solve any predictive modelling problem. The model complexity, efficiency, performance, 

and available resource properties must be considered during model selection. Although 

the model selection is well-developed and well-investigated in PIDL, there still needs to 

be general model selection guidelines [55]. Recent PIDL studies raise another potential 

problem in identifying the appropriate weights. When several equations are included in 

the model’s loss function, the weights of each physical penalty term for each equation 

are typically pre-defined by the user, triggering the learning process in PIDL models. 

There is no general approach to the determination of the right weight to estimate a model 

parameter, and its value is subject to difficulty. 

To accelerate the development of PIDL, further research is needed to develop new 

adaptive sampling strategies. Furthermore, labelling is expensive and may require 

domain-specific expertise in several transport applications. As a result, a new avenue of 

research and practical applications is opened by developing hybrid models that learn with 

fewer labels. In selecting models, it is necessary to establish a well-defined set of 

guidelines on selecting PIML models concerning various model types and integration 

strategies to enhance their performance and extend their scope of use. In addition, there 

is a need for further attention to the strategy of tuning and optimizing model parameters 

for setting the right weight. 

5. Conclusion 

This paper presented a literature review of physical-informed deep learning techniques 

for applications in transportation areas. The study also categorises the reviewed articles 

according to their similarity and application area. Moreover, the challenges of applying 

physics-informed deep learning methods to address practical transportation problems 

and future research needs have also been discussed. To exploit the full potential of 

advanced physics-informed deep learning techniques for applications in transportation, 

the authors intend to compile a collection of research articles presenting the latest 

developments in this emerging field and to provide an overview of the challenges and 

future directions to be pursued by the research community. 

Limitations 

One of the main areas of improvement was that some of the full texts, databases, and 

grey literature were missing from the review. Furthermore, only the English language 

studies were included. Critical non-English language studies may, therefore, be excluded 

from the scope of the study. 
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