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Abstract. This paper presents the results of intelligent traffic light management
(TLM) which improves the traffic efficiency via optimally controlling the green
lights” time interval and selecting the traffic phases. As the control problem is
stochastic and difficult to be modeled accurately, model-free reinforcement learning
(RL) is applied in this work. To stabilize the training process and mitigate the
overestimation issue of conventional deep Q-learning based RL methods, we
developed an RL algorithm with double deep Q-network (DQN) and a clipping
function for the TLM problem with a discrete action space. The advantage of
this clipped version of double DQN over other Q-learning-based algorithms is
demonstrated in this work. Furthermore, the performance of RL-based TLM is
compared with both fixed-time and adaptive rule-based TLM by using PTV Vissim
which is a multi-modal traffic simulation software as the testing platform in this
work.

Keywords. Traffic Light Management (TLM), Reinforcement Learning (RL),
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1. INTRODUCTION

Traffic congestion at signalized intersections becomes an increasingly serious problem
in modern cities. Traffic light management (TLM) plays a pivotal role in managing
traffic flow at intersections. Two conventional methods for traffic signal control are fixed-
time control [1] and flow-rate-based control [2]. These methods are cycle-based, relying
mainly on statistical traffic information, which leads to sub-optimal performance in han-
dling real-time traffic dynamics. In recent decades, numerous advanced methods [3], [4],
[51, [6] have been developed for traffic signal management. With the growing availability
of infrastructure sensors, these methods enable an automatic adaptation of traffic signal
control according to the traffic status. Among these advanced methods, optimization-
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based [3], [7], [8] and machine learning (ML)-based [5], [9], [10] approaches are widely
utilized.

A big challenge in developing optimization-based TLM is to have a precise model to
accurately quantify the stochastic dynamics of the traffic system [11, 12]. Furthermore,
even though a nonlinear mathematical model, which is representative of the traffic
behavior, is built up in some previous work [3, 13], solving such optimization problem
for real-time implementation is in general still challenging. With the development of
artificial intelligence, intelligent TLM based on deep reinforcement learning (RL) has
been proposed in recent works, among which the deep Q-learning network (DQN)
stands out as the most frequently employed method due to its compatibility with
discrete control tasks such as traffic signal phase selection [5, 9, 14], as well as the
optimized decision variables including the extension or termination of traffic signal
duration [10, 15]. Furthermore, other RL methodologies for continuous control tasks,
such as deep deterministic policy gradients (DDPG), twin delayed DDPG (TD3), and
soft actor-critic (SAC) have also been applied in traffic signal control systems [14,16,17],
where the primary control variables involve the duration of a traffic signal phase within
a fixed predefined sequence.

In our work, since the control variable is discrete, we focuses on the RL with Q-
learning. Although it has been proven that the Q-learning-based algorithm converges to
the true optimal value in the tabular case [18], when the deep Q network (DQN), which
approximates the true Q value with a deep neural network, is applied, the convergence
in general can not be guaranteed in the training process. One typical issue of DQN
is overestimation bias [19], which is caused by using the function approximation and
bootstrapping together. As an effective approach to mitigate the issue connected to value
overestimation, double DQN has been proposed in [20]. Furthermore, a clipped double
Q-learning variant TD3 shows its advantages in the setting of actor-critic RL in [21].
In this paper, we adapt the clipped double Q-learning which was originally proposed
for solving a continuous control problem, to our traffic light management problem with
discrete control variables.

The rest of this paper is organized as follows. The general concept and development
environment for intelligent TLM are introduced in Section 2. Afterwards, the motivation
of using the new clipped double Q-learning algorithm for intelligent TLM is explained
in Section 3, as well as the performance comparison of different Q-learning algorithms.
Furthermore, the advantages of the intelligent TLM is demonstrated in Section 4 via a
comparison with other conventional TLM methods. Lastly, the conclusions and future
work of this paper are given in Section 5.

2. PROBLEM FORMULATION OF INTELLIGENT TRAFFIC LIGHT
MANAGEMENT

2.1. Development Environment in Simulation

In this work, the microscopic traffic simulation at a three-lane signalized intersection
is built up with PTV Vissim, as illustrated in Fig. 1. The reinforcement learning (RL)
algorithms are developed with Python, which has the access to control the traffic signals
at the simulated intersection through the component object model (COM) interface
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provided by PTV Vissim. Two detectors are located at the entrance and exit of each
lane respectively, through which the information about the number of vehicles that are
driving in the same direction, as well as the number of vehicles that have passed through
the intersection, can be obtained and sent to the RL-based controller. Eight traffic signal
phases are used in this work, as shown in Fig. 2. To enable non-conflicting vehicular
movements, the traffic lights are not allowed to become green for two or more phases
at the same time. Different from the traditional fixed-time TLM, which often uses a
pre-determined sequence and a fixed duration of the phases, RL-based TLM optimally
chooses the phase and decides its duration based on the received information about the
traffic status.
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Figure 1. Platform of simulating the intelligent TLM
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Figure 2. Design of either traffic phases

2.2. Formulation of Reinforcement Learning for Traffic Light Management

To design the TLM, the state, action and the reward function designed for RL algorithms
in this work are explained in this subsection.

2.2.1. State

In this paper, the traffic state at the intersection consists of two components: instan-
taneous and average traffic information. The instantaneous information is represented
as a vector with 8 elements: N = [nj,na,...,ng|, corresponding to the number of
vehicles driving in each phase at every time instant. The statistical traffic information is
characterized by a vector with 4 elements M = [m,,,ms,m,,m,], indicating the average
hourly traffic flow rates from 4 incoming directions. Hence, the total state space at time
step ¢ can be represented as a set of . = {N;, M, }.
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2.2.2. Action

To get higher flexibility of optimizing the traffic efficiency, the RL-based intelligent
TLM designed in this work is not based on cycles, which means that the phases can
be switched arbitrarily. For this purpose, the discrete decision variable ® encoding
the phases 1 to 8 is introduced. In contrast, with the cycle-based TLM the phases are
switched periodically from the first to the last phase, providing no flexibility to adjust
the phase’s selection according to the dynamic traffic status. In addition, the duration
of the green traffic light that is set for the selected phase controlled by another discrete
variable W. In this work, based on empirical testing experience, we designed 8 values
for ¥, i.e., ¥ = {6sec,8sec,...,20sec}. As the selection and duration of the phases are
optimized together, the dimension of discrete action space dim[.%] at time step ¢ equals
to dim[®,] - dim[¥,] = 64.

2.2.3. Reward Function

The reward function is designed to guide the agent to learn a better control policy by
providing an immediate feedback on the performance of the selected action at time step
t. In our work, the main goal is to increase the traffic efficiency by encouraging more
vehicles to pass through the intersection and simultaneously minimizing the waiting time
of halting vehicles. Therefore, the reward function is designed as:

r = oINf™ — o (1

where NP is defined as the total number of vehicles that will drive through the
intersection after one action a, is taken at time ¢ and before the next action a, is applied.
The second item T,* in (1) is the total waiting time of the vehicles from all driving
directions between two actions a, and a;, as some vehicles have to halt when the green
light is assigned to one specific phase. It needs to be pointed out that the time interval
between taking a; and a; is varying as it is decided by ¥ in this work. With our empirical
experience, having the first item of N**** in (1) is important. If 7, were only related to
7" RL would be encouraged to take the action with the smallest value of ¥, because
the observed 7,4 within a shorter time interval tends to be also smaller, while our real
goal is to reduce the average waiting time in a longer entire simulation period.

3. CLIPPED DOUBLE Q-LEARNING FOR INTELLIGENT TRAFFIC LIGHT
MANAGEMENT

For the vanilla version of Q-learning-based RL, the parameterized state-action value
function Qg (s,a) is learned by updating the parameter 6 as

041 =6+ a(y — Qe (s1,a1)) Ve, Qp, (s1,ar) 2)

where a is the learning rate and y®* is named target which is defined as

¥ =1+ vQe, (s;, argmaxQg, (st.ay)) ®)

a
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where r, is the immediate reward by taking the a, at state s, s} and a, are the state and
action at the next time step respectively.

3.1. Motivation of Using Clipped Double Q-learning

As proven in [19,22], assuming that we have an estimator y; which gives an unbiased
estimate for the true expected value of a random variable X;, i.e., E[w] = E[Xi],
the maximal estimator max; y; is an overestimation of max; E[X;], i.e., E[max;(u;)] >
max; E[X;]. This indicates that the argmax operation in (3) would also result in an
overestimation issue, even if the approximation error of using the network Qg has a
mean of zero. Overestimation of the true value function can cause a serious issue for
Q-learning-based RL, which uses deep neural networks for the function approximation.
What makes the training process worse is that updating the parameterized Q function
is done via bootstrapping, i.e., the Q value is in part used to update the Q value itself,
due to which the overestimated value can be propagated through the Bellman equation.
The detrimental impact of having a function overestimation on the performance of Q-
learning-based RL is demonstrated via testing of games in [20].

To mitigate the overestimation issue, the double deep Q-network (DQN) has been
proposed in [20]. The key idea of double DQN is to decouple the action selection and
value evaluation steps by using two neural networks Qg and Qg with two sets of weights
6 and 6. For each update, the greedy action is selected based on one network, while its
state-action value is evaluated by another network . The new approach of calculating the
target for updating 6 is given as

yiar =TI + YQ67 (S;7 al"gr}laXQe (S; ’ a;)) (4)

a

where the action @’ is selected by the greedy policy based on the network Qg and the
value of taking this action at state s is evaluated by the other network Q- . Intuitively,
the motivation of using two neural networks is that we hope that the approximation errors
of two independent networks can be compensated by each other, assuming that the error
of each network has a mean of zero.

The theoretical proof that using double estimators under specific conditions can
change overestimation to underestimation of the true maximal expected value has
been given in [19]. To further greedily reduce overestimation caused by function
approximation, a clipped version of double DQN for actor-critic RL with continuous
control variables is proposed in [21]. The clipping function takes the minimum value of
two neural networks as

y;"‘r =r,+7Y- min {Qe.‘ (5;7 argmaxQg, (S;v az,))} ©)
je{1,2} 7 a

The main purpose of using this clipping function is to ensure that the minimum value of
two approximation functions is taken to make the target update.

In this paper, we extend the clipped version of double DNQ, which was originally
developed for actor-critic RL to Q-learning-based RL, because the control variables for
the application problem in this work are discrete. The pseudo-code of the clipped version
double DQN algorithm with discrete control space is shown in Algorithm 1.
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PseudoCode 1: Clipped Double Deep Q-Network for intelligent TLM with
Discrete Control Variables

1 Initialize replay buffer B
2 Initialize policy networks Qg , Qp, with random parameters 6, 6,
3 Initialize target networks Qef, Qe; with parameters 6, = 0, 6, = 6

4 Set exploration rate € and decay schedule, set discount factor ¥, set learning
rate o, set soft update parameter T
5 for episode =1 to M do

6 Initialize state s
7 for timestept =1to T do
8 Select action a; with e-greedy policy and observe reward 7, and next
state s
9 Store transition (s;,ay,r7,s,) in B
10 Sample mini-batch of N transitions (s;,a;,r;,s;) from B randomly
11 Compute target:
2| | yi=ri+y min Oy (s argmax, Qg (sha}))
je{1,2} 7 i
13 Update policy networks’ parameters 0;, 6, by minimizing the loss
ey
14 9j<—9j—oc deJ , .
15 where L(0;) = Vi,—‘ Y (ng (si,a;) —y,-)
16 Update target networks’ parameters 8, , 6, by using soft update
(j e {1.2}):
17 0, « (1-1)6; +16;
18 end
19 end

3.2. Testing Results of Different Q-learning-based RL

In order to test the robustness of different RL methods, we deliberately increase the
challenge in looking for the real optimal solution through adding an artificial Gaussian
noise 0 to the original Q function at each training step before doing the arg max operation
during the learning process:

O (s ) = Qo (', ar) + & )

where the additive noise is sampled from a normal distribution, i.e., & ~ .4#°(0, oy ). The
standard deviation of oy is defined as:

GkZﬁ\/;i(Qe(S’»ak)—Qe(S’))z (6)
i=k

where 7 is the size of the discrete action space, Qg (s', ay) is the approximated Q value for
an specific action ay, Qg (s’) is the mean of Q values of all discrete actions at one specific
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state s and 3 is a factor. After adding the noise, the € greedy action a* is selected based
on Q"™ during the training process, i.e., a* = argmax,(Qy " (s',a’)) with probability
of 1 —&.

To visualize the benefit of the clipped version of double DQN with added training
noise, we compared its performance with other Q-learning methods by testing them for

the traffic light management problem, which is shown in Fig. 3.
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Figure 3. Comparison of the approximated Q values and observed average performance by using different
Q-learning-based algorithms for TLM. The diamond markers displays the average performance of TLM, which
is evaluated by the average waiting time of all vehicles at the intersection in five simulation tests and each lasts
for one hour in simulation. The traffic density is set to 2200 vehicle/hour for these tests.

Figure 3 illustrates the overestimation issue of Q-learning, where the estimated Q
value of the standard DQN increases steadily from the training step 3000 to 6000, while
its actual performanc6ormance of DQN, results of three simulation tests with different
random seeds, in which DQN is applied after it has been trained for 3000 steps, are shown
in Fig. 4. The reward trajectories plotted in this figure are the observed values according
to (1). It is noticeable that the observed rewards have large negative values in two tests
as the vehicles suffered from longer waiting time in these tests, which again explains the
poorer performance of DQN shown in Fig 3.

Based on the performance comparison, the clipped DDQN is selected and bench-
marked with other traditional TLM methods in the next section.

4. TESTING RESULTS OF INTELLIGENT TRAFFIC LIGHT MANAGEMENT
4.1. Brief Introduction of The Baseline

Two types of TLM are used as the baseline for testing the performance of RL-based
TLM. One is the fixed-time TLM. Its working principle is illustrated in Fig. 5. With the
fixed-time TLM, each phase is selected sequentially and the green light can be applied to
two phases at the same time. The only adjustable parameter is the duration of the green
light for each phase. It needs to noted that the traffic light must be red for 6 sec before
the green light is switched so that the vehicles from one phase have enough time to pass
the intersection.

The other type of TLM used as the baseline is adaptive rule-based TLM. The detailed
explanations on this TLM is given in our previous work [23]. The main idea of this
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Figure 4. Observed reward trajectories of the DQN-based TLM after it has been trained by 3000 steps in three
random simulation tests. The length of each simulation test is one hour.
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Figure 5. Working principle of the fixed-time TLM

method is to assign the green light to the phase which has the largest priority value,
which is calculated by taking different traffic information (number of vehicles, waiting
time of the cars in front of the intersection, vehicle speed, etc.) into account, as shown in
the equation below,

.o Nyen. j N, de. i fwait. i
Priority =wy x ——L ypy x PSS 0o WAL
Nimax NmaxQueue ImaxWait o
Vi ldelay,
+wy X A ws X _delay,j
Vmax ImaxDelay

where w, is the weight for each item, j here is the index of vehicles driving in the same
phase. Both selection of phases and the duration of the green lights are adjustable with
this adaptive rule-based TLM. A simplified flowchart is shown in Fig. 6. The calibratable
threshold mingeeen is the minimum time interval of being green. For instance, when this
value is 10 sec, it means that the phase is not allowed to be changed before the current
phase has lasted for at least 10 sec.
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Figure 6. Simplified flowchart of the adaptive rule-based TLM
4.2. Performance Analysis of Different TLM Approaches

Figure 7 demonstrates the progress in training the clipped version of DDQN for
intelligent TLM. It can be seen that the average reward of the last 100 steps, which is
plotted with the red line in the figure, increases gradually and converges to a quasi-steady
point after around 2000 training steps.
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Figure 7. Training process of clipped version of DDQN for the intelligent TLM.

The performance of RL-based TLM is compared with fixed-time TLM, as demon-
strated in Fig. 8. To check the performance of TLM in different traffic conditions, the
traffic simulation is made with 5 traffic densities in Vissim, ranging from 1000 to 2600
vehicles per hour. It is noticeable that the fixed-time TLM with shortest time interval
for the green light, has very poor performance when vehicle density is higher than 2200
vehicles per hour, behind which the main reasons are:

a) setting a shorter time interval for green traffic lights means more frequent switches
between different phases, which results in more frequent deceleration and acceler-
ation of the vehicles at the intersection and reduced traffic efficiency;

b) between the switches of the phases, the traffic lights are set to red for 6 sec for
all driving directions for safety reasons. Therefore, the more switches means the
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greater ratio between the total time interval of red lights and the total simulation
time.

90
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Figure 8. Performance comparison in terms of average waiting time of all vehicles within one hour simulation
time between RL-based TLM and fixed-time TLM with different settings of the green light’s interval.

In contrast, when the green traffic light interval is set to a bigger value, the
performance of the fixed-time TLM is better when the traffic is dense, while its
performance is unsatisfying when the traffic density is lower. This is because when the
green light lasts unnecessarily for too long time for one phase, the vehicles from other
driving directions which have a conflict with this phase have to stop for waiting.

In addition to being compared with fixed-time TLM, RL-based TLM is bench-
marked with adaptive rule-based TLM as shown in Fig. 9.

With the adaptive rule-based TLM, intuitively, we expect to observe higher per-
formance when a smaller threshold mingeen in Fig. 6 is applied, because all possible
actions, which can be taken with an arbitrary threshold, are also allowed to be taken when
this threshold is smaller, but not vice versa. Therefore, Fig. 9 shows the trend that the
average waiting time decreases with smaller ming.een When the traffic density is below
2600 vehicles per hour. However, the performance of this adaptive rule-based TLM with
the smallest threshold (i.e., when mingeen=10 sec) suddenly deteriorates when the traffic
density reaches 2600 vehicles per hour. This behavior seems to be counter-intuitive. The
root reason behind this phenomenon is that the adaptive rule-based TLM behaves in a
greedy way, i.e., the green light is set to the phase that has the largest priority value
calculated with (7). Since (7) represents only the instantaneous status of each phase and
it does not include the impact of current action on the traffic’s future status into account,
with a smaller value of the threshold mingeen, this adaptive TLM is allowed to switch the
phases more frequently in a greedy way. For instance, instead of keeping the traffic light
being green for a longer time in one phase, the green light is switched to another phase
whose priority value is slightly higher. This switch seems reasonable for one control
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Figure 9. Performance comparison in terms of average waiting time of all vehicles within one hour simulation
time between RL-based TLM and adaptive rule-based TLM with different settings of the minimum green
light’s interval.

step, but in fact it can be harmful for the traffic efficiency in the long term. In contrast,
RL-based TLM has an intrinsic ability to make an optimal decision by considering not
only the immediate reward at the current step, but also the expected total rewards in
future. Therefore, in Fig. 9, we can see that RL-based TLM performs better than rule-
based TLM in all different vehicle density conditions.

5. Conclusion

To sum up, a clipped version of double DQN is applied in this work for reducing the
overestimation issue of Q-learning based reinforcement learning (RL) and its advantage
over other Q-learning methods is demonstrated. The new RL algorithm enables the
intelligent traffic light management (TLM) to achieve higher performance in terms of
traffic efficiency, compared to both fixed-time and adaptive rule-based TLM.

Regarding the future work, we are considering two research directions. One direc-
tion is to get a similar control performance but with reduced interactions between the
agent and environment, when the network that has been trained at one intersection is
then used in a similar but new intersection. The other direction is the development of
multi-agent RL for extending the application target from an isolated intersection to multi-
intersection traffic signal control tasks.
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