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Abstract. The article describes how to effectively dispatch hundreds of thousands 

of ride requests per hour, with thousands of cabs. Not only which cab should pick 
up which passenger, but which passengers should share a ride and what is the best 

pick-up and drop-off order. An automatic dispatching process has been implemented 
to verify feasibility of such cab sharing solution, simulation was used to check 

quality of routes. Performance of different programming tools and frameworks has 

been tested. Thousands of passengers per minute could be dispatched with basic 

algorithms and simple hardware and they can be dispatched in a cab sharing scheme 
very effectively, at least 11 passengers per cab per hour. The spotlight is on practical 

aspects, not well-known theory. The goal is to verify feasibility of a large-scale 

dispatcher and to give its benchmark. Implementation of algorithms including a 
dispatcher and simulation environment is available as open source on GitHub. 
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1. Introduction 

At least a dozen companies have been working on vehicle autonomous driving with the 

intention to make urban collective transportation more appealing to car commuters. Taxi 

services are too expensive, line buses are either uncomfortable or slow. But self-driving 

capability, albeit most scientifically challenging, is not the only software component we 

need – we need to assign passengers to cabs or minibuses (later referred to as ‘buses’), 

and, if feasible, we need to assign many passengers to one bus in such a way that 

passengers’ time expectations are met.  

There have been numerous studies covering optimization of taxi services, an 
extensive overview is given by [1-3]. The approach described below is not a classic 

Vehicle Routing Problem with Time Windows [4] as buses do not have to return to a 

central depot. It is sometimes called dynamic vehicle routing problem or dynamic ride-

matching problem with time windows (DVRP or RMPTW respectively, [5]). 

Furthermore, most research papers present solutions that “are limited to solve instances 

of small to medium-sized VRPTW” [2] and “there is no large-scale benchmark for 

dynamic vehicle routing” [6]. This benchmark is given below – hundred thousand 

passengers per hour, sixteen thousand buses. Such volume will be needed if city transport 

is to be more personalized, better suited for real demand, especially when self-driving 

small capsule-like buses will overtake current timetables.  
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To serve such a volume a different computational approach had to be used – no 

model solver like Gurobi, starting with simpler assignment model instead solved by 

Munkres method (aka Kuhn-Munkres, Hungarian [7]), supplemented by dynamic 

programming executed in multithreaded environment. The purpose is to check feasibility 

of this approach and compare performance indicators with values reported by other 

researchers. The use of assignment model is justified by industry standards – low-cost 

method (called also nearest vehicle dispatch, see [5]) is still the most common dispatch 

strategy.  

Randomized data, both trip requests and bus locations, were used in simulations as 

data from the field with such scale were unavailable to the author. There are at least two 

premises of such approach – the current taxi movement pattern, which could be described 
as “occasional”, will most likely not apply to a massive ride sharing system serving as 

the main last-mile transport. Secondly, randomized data with no repetitions is a much-

needed challenge for ride-sharing dispatchers. Randomized data can be stored in a file 

so that simulations are repeatable with different parameter values and different stages 

being activated (e.g. skipping pool extender). As results are stored in a database, SQL 

scripts are available to calculate performance indicators and other statistics. While 

random requests get automatically assigned it is possible to submit a request manually 

and observe its consequences both for the passenger, the assigned bus and even stops 

involved. 

What most other studies overlook is the meta-optimization part – how the time of 

finding the optimal or suboptimal solution affects performance indicators. To verify this 

a real-life infrastructure has been built, with clients calling RestAPI, the state of all 

objects is stored in a database. Because it has been implemented using open-source tools 

and is published as open-source with manuals on GitHub2 it has one more advantage 

over most other studies – results are easily reproducible. 

2. Assignment problem 

This classic assignment problem [8] seems to be a challenge at first glance – the complete 

decision set is a permutation, which implies n! size in a balanced transportation scenario, 
n*n variables and 2*n constraints. It is a binary integer linear problem with a cost matrix 

and supply and demand constraints. The expected solution is a plan, buses assigned to 

requests, that minimizes the total distance/cost to pick up a passenger. We can think of 

other goal functions e.g. minimizing the total time which customers have to wait or total 

distance to go. The last one could be reasonable under heavy load to support multimodal 

urban transport. The cost matrix is constructed based on information about distances 

between pick-up points and current location of all buses, in kilometers or time it would 

take to transfer. In advanced scenarios average travel time can depend on the time of day, 

it can vary due to rush hours. 

The model has the following form: 

� � ������
�
��	

�
��	 
� �
� (1) 

 
2 https://github.com/boguszjelinski/kern 

B. Jelinski / Dispatching Taxi Cabs with Ridesharing 3



� ��� � �
���
� � ��� � �
�
��	  (2) 

� ��� � �
���
� � ��� � �
�
��	  (3) 

��� 
 � �����
���
�� � � ��� � � (4) 

3. GLPK solver, Munkres and LCM  

Three tools to solve this model have been tested – GLPK solver, Munkres and the least 

cost method [9]. GLPK solver can give the flexibility to extend constraints and it helped 

in verification of Munkres algorithm implementations. GLPK program executes 

surprisingly fast – with n=500 there are about 101134 possible assignments while the 

number of atoms in observable universe is estimated at 1082, but it takes only about 15 

seconds with 4th generation Intel i7 processor to find the optimal assignment. The trouble 

is there can be thousands of buses available, the time gets doubled with every hundred 

buses, see Table 1. So, we need a faster method, Munkres comes to the rescue, an open-

source implementation needs less than two seconds with n=500 (balanced model). Two 

different implementations have been tested, one implemented in C and one in Rust. 

 

Table 1. Solver execution, balanced models (time in seconds) 

n GLPK Munkres/C Munkres/Rust 
100 0.2 0.0 0.0 

200 0.8 0.3 0.1 
300 2.9 1.1 0.7 

400 8.2 2.9 1.3 

500 15.5 5.9 2.0 

 

 

Rust language is considered to be slower than C, but interestingly Rust 

implementation is faster. LCM is the fastest method, but the speed comes at a price – 

300 simulations with n=200 (buses and passengers randomly scattered in Budapest) 

showed that simple LCM gives at least 30% bigger assignment “cost”, 45% on average, 
which is huge. Both fuel and customers’ wait time can be saved with a solver, potentially. 

This is in line with other research, which states that “optimal solutions to the offline taxi 

routing problem are usually significantly superior to the output of common local-

improvement and greedy routing algorithms” [6].  

Worth noticing is that most of taxi dispatching software only uses LCM, new greedy 

algorithms are being developed [10]. We still would need LCM in two cases – models 

too big to be given to Munkres, they need to be squeezed by LCM “presolver”, and we 

need LCM in pool finder (see chapter below). When requests are dispatched immediately 

on arrival, this is also a LCM scenario.  

Pool finder and route extender described below are two steps prior to solver stage, 

which can significantly reduce the size of the assignment model. In fact, during 

simulations the demand side of the model was small (below 100), but 16000 buses were 

available, models were highly unbalanced. It has been found that not all Munkres 

implementations give optimal solution in such case. All modules have been implemented 

in Rust. 
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4. Route extender 

The very first thing we can do with an incoming transportation request is to try to allocate 

it to an existing route if matching perfectly or non-perfectly. This operation is sometimes 

called “insertion” [11]. If it does not match perfectly (one or two stops must be added) 

we have to check constraints of all other co-passengers. There might be more than one 

pool that this request could fit in, we can have different goal functions here, for example: 

� minimum detour (often used in different implementations – see [12]) 

� minimum negative impact on duration of the whole pool (this one was used in 

simulations) 

� minimum total detour of all passengers 

A full-scan method has been implemented with multi-threading, which is fast 

enough to dispatch hundreds of thousands requests per hour on a laptop, see Table 5. 

5. Pool finder 

A pool finder is a method here to find unassigned trip requests that can share a bus. A 

pool is a shared route which satisfies passengers expectations – wait time and trip 

duration (see also [13]). A route with three passengers can have from two to six stops, 

two extreme examples: 

1 in, 2 in, 3 in  1 out, 2 out, 3 out 

1 in  2 in  1 out  3 in  3 out  2 out 

 

An effective way to search through such trees is dynamic programming [14]. In 

short you do not recurse over nodes all over again, but you divide search in stages starting 

from the leaves. At the root level all feasible pools are sorted by total time travel (one of 

many possible goal functions), repeats are removed. By repeats I mean plans that have a 

participant which appears in a better plan. The next step would be to assign the first “in” 
passenger to a bus by the solver, but the assignment must meet requirements of all pool 

participants, not just the first one in pool’s sequence. The assignment must be done in 

the “pool finder” method, in the loop where repeats are removed. LCM must be used as 

this is not a simple assignment problem and the model would be huge. Unassigned buses 

and unassigned customers are given to the next dispatching phase, see below the 

sequence. 

One assumption needs to be emphasized, distances between bus stops must be 

known in advance, this database can be initialized with geographical distance and 

updated later with real data from the field.  

Performance of this approach is satisfactory – a solution for 200 requests with four 

seats (passengers in a route, up to 8 stops), which means a tree with 1019 paths/leaves, 

is found after 50 seconds with and Intel i7 class processor (4 threads). Table 2 shows 

performance of pool finder implemented in C – three and four passengers, wait time 

10min, acceptable pool loss 90% of a lone trip (detour). 
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Table 2. Impact of number of requests and seats in the bus on performance of pool finder, in seconds 

Number of requests Three seats Four seats 
100 0 2 
200 1 50 

300 3 - 
400 9 - 

500 20 - 

 

Because of the calculation time growing exponentially there are some limits in the 

dispatcher. Limits are customizable depending on the hardware performance, they are 

intended to protect against requests piling up while the dispatcher is working. The most 

important limit is how many trip requests can be sent to pool finder, which was executed 

four times per minute. There are different limits for scenarios with four, three or two 

passengers as they perform differently. During simulations the limit for four passengers 

was 120, 440 for three passengers, 800 for two. 

If executed several times per minute this pool finder followed by two-step solver 

stack (LCM presolver supplemented by Munkres, responsible for assignment of trip 

requests which cannot be shared in a pool) can assign at least one hundred thousand 

requests per hour while executed in a modern desktop-class processor.   

With this step the total dispatching process looks like this: 

 
Route extender (full scan) 

 

Pool finder (dynamic programming & LCM) 

 

Presolver (LCM) 

 

Solver (Munkres) 

6. Quality of routes 

Simple time constraints can lead to strange routes. A bus will omit a stop to pick-up a 

passenger with wait time running out and come back to a previous one and then maybe 

again go to the same next one to drop-off the second passenger, who does not have tight 

wait requirements. One solution that has been tested is to promote more straight routes 

for nearby stops, with stop bearings. Regardless of how routes are constructed we should 

measure the quality of routes, which could help compare different dispatchers and 

monitor real systems ([3] p. 21, [15] p. 10, [2] p. 13). One can think of metrics presented 

in Table 3. Of course, passengers and taxi operators have different perspectives and 

might have different view on a particular metric – more passengers in a pool means more 

income but a longer and less comfortable trip. 

Table 3. Route quality metrics 

Metric Rationale 
average wait (pick-up) time Customers can choose competitors if too long 

average trip duration Affected by detour and quality of dispatcher 
average pool size (passengers per route) The bigger the pool the fewer buses are needed 

average passenger count per route’s leg How many seats do buses need to have? 

average number of legs How fragmented are routes? Stops cost time 
average detour   How much do customers lose on ride sharing 
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7. Simulations 

There might be different dispatching algorithms, goal functions and constraints. They 

might be implemented using different tools and frameworks. There might be different 

ideas about communication protocols, application programming interfaces (API or REST 

API) and service flows, charging models that could impact total revenue. Therefore, it is 

desirable to have a simulation environment where behavior of all counterparts and 

system performance could be tested. Such environment has been implemented – 

simulators of customers, buses and stops (see Figure 1), supplemented by API and 

database storage. Two environments actually – one with API and one with direct access 

to the database for dispatcher tests only. Have a look at Tables 4 and 5 how route extender, 

pool finder and number of requests have affected results. Results are divided in three 

sections – how many buses were needed (two first rows), quality of routes (next seven 

rows) and dispatcher’s performance (last four). 

 

Table 4. Comparison of performance with and without route extender and pool finder, 20k requests, 4k buses 

Metric No 
sharing 

Extender 
only 

Pool 
only 

Ext. & 
pool 

total buses used (assigned at least once) 3729 1854 3571 1883 
max total buses assigned at a time (peak) 2310 1810 2640 1863 
km driven in total 55123 39195 58528 40191 
average wait (pick-up) time – min:secs 1:27 10:39 6:56 10:49 
average trip duration– min:secs 3:58 4:54 4:05 4:46 
average number of passengers per route 1 10.8 2.3 10.6 
average passenger count per route’s leg 0.57 1.07 0.69 1.05 
average number of legs per route 1.76 19.9 4.28 19.5 

average detour.    0% 21% 1% 18% 
max dispatcher time (seconds) 3 0 17 11 
average dispatcher time (seconds) 0 0 3 0 
average pool finder input size (demand) 0 0 98 21 
average solver input size (demand) 379 31 19 5 

 

Table 5. Comparison of performance with and without route extender, 100k requests, 16k buses 

Metric No 
sharing 

Extender 
only 

total buses used (assigned at least once) 14763 9028 
max total buses assigned at a time (peak) 10095 9026 
km driven in total 220722 160224 
average wait (pick-up) time – min:secs 1:26 10:53 
average trip duration– min:secs 4:01 5:44 
average number of passengers per route 1 11.07 
average passenger count per route’s leg 0.66 1.38 
average number of legs per route 1.5 17.9 

average detour.    0% 42% 
max dispatcher time (seconds) 21 14 
average dispatcher time (seconds) 2 6 
average pool finder input size (demand) 411 46 
average solver input size (demand) 14763 9028 

 
Table 4 concerns twenty thousand requests per hour served by four thousand buses. 

Table 5 shows results with one hundred thousand passengers served by sixteen thousand 

buses. In all scenarios requests were sent for 60 minutes, distributed evenly over time 

and randomly over all stops, there were no two identical requests, in terms of from-to 

stands. “No sharing” means no root extender or pool finder. “Extender only” means that 

the pool finder step was skipped during simulation. Pool finder was skipped in the bigger 
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scenario not only due to lack of required computing power – pool finder showed little 

gain in the smaller scenario.  

All requests had the same requirements (although the dispatcher handles individual 

constraints – each customer can set their own requirements) - maximum waiting time 

15min, as in [5], maximum detour 70% ([5] chose 100%), maximum duration of trip 

without detour 4 min, which should be long enough for last-mile commute. Buses were 

traveling at 30km/h, there were 5193 stops. Additional logic of the extender and its 

execution time, which was negligible in any scenario below 50000 requests per hour, 

decreased total dispatcher execution time significantly, as the size of subsequent, time-

consuming steps decreased.  

Dispatcher was run every 15 seconds. Some implementations execute dispatcher at 
every trip request (first-come first-served, see [5]), some do it twice per minute ([6], [16]).  

The most eye-catching outcome is that pool finder gives worse results than solver-

only solution with no ridesharing. That might be attributed to LCM used in pool finder 

and the fact, that pool finder gives a lot of empty pick-up legs (with no passenger; a leg 

is a travel from stop to stop). However, route extender utilizes buses more efficiently. 

One bus transported 11 passengers per hour on average, and the value can be bigger by 

limiting the length of requested distance and with the less random nature of commuters’ 

streams. This result, ratio request per bus, is more than twice as good as achieved e.g. by 

[15], which was 6. 

Pool finder without extender gave better wait and detour time than with extender 

but needed a lot more buses. The reason was the choice of goal function in extender, 

which was minimizing negative impact on duration of the whole route being extended, 

not detour of the particular passenger. The same goal was chosen by [15] (p. 3).  

Number of legs of a route generated by extender is significantly larger than in pool 

finder scenario due to the nature of how legs are added to a route, which is not as 

important as number of passengers per leg. It does not mean degradation of passenger’s 

satisfaction, there was a limit of active legs (10). Route is just a technical aspect of the 

simulation, a database artefact. 
Table 6 shows that extender’s efficient bus usage was accomplished more by 

proper constructing of routes than by occupying many seats at a time (nearly one 

passenger per leg on average). In the scenario with twenty thousand requests and no pool 

finder there was nearly no need for three seats or more, two seats were occupied in 

roughly every fourth leg.  It is worth noting that the implementation allows each bus to 

have its own individual seat constraint. 

 

Table 6. Number of occupied seats in routes’ legs – extender only scenario, 20k requests 

Number of 
passengers 

Number of legs 

0 8045 

1 18646 
2 10030 

3 302 

4 2 

 

The above results were achieved on a laptop with i9-9880 mobile processor and 

dispatcher running on ten threads, sharing computing power with the database. Today’s 

processors have twice as fast cores, and twice as many cores. Several hundred thousand 

trip requests per hour could easily be served. The only limiting factor in simulation in 
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extender-only scenario was the performance of the database running on the same 

hardware. 

 

Figure 1. Visualization of traffic at a stop during simulation (Budapest) 

8. Even more passengers 

There are some techniques and functionalities that may help put more passengers into a 

bus. These techniques do not load the dispatcher. Firstly, passengers can be allowed to 

take co-passengers - one trip request for more than one passenger. Secondly one could 

join an already defined route at the bus stop - commuters can see details of the route 

displayed on the approaching bus, on the route tables at the stops or on their own smart 

phones (“show coming buses”), they approach the bus, authenticate and choose one of 

the available stops in the route.  

It is imaginable that combination of these ideas could lead to a software solution 

that would be able to dispatch several hundred thousand passengers per hour. How many 

buses would be needed depends on many factors – among others the allowed travel time 

and speed of the buses. Twenty passengers per bus per hour seems to be a restrained 

assessment of an average bus usage. 

9. Technology stack 

The choice of proper tools turned out to be vital to achieve large-scale results. At the 

beginning all modules were written in Java (backend) and TypeScript (frontend 

applications). Pool finder is now also implemented in Rust, C# and C. Java and C#, 

including multithreading, are at least three times slower than C. C is still faster than Rust, 

all simulation results presented here have been achieved with pool finder implemented 

in C. Surprisingly the executable produced by MinGW/MSYS2 gcc compiler v. 11.2.0 

runs about two times faster than the same version from Cygwin environment. Java is 

memory intensive while running thousands of threads, routines simulating customers and 

buses have been rewritten in Golang (API client) and Rust (direct database access). Java 

is not the fastest API backend framework either, Rust is used now. Python is used for 

support scripts, but Rust and MySQL database are the only required components to run 

simulations, other languages are optional. 
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10. A comment on driverless buses 

We will probably not be able to get rid of the bus driver in near future because: 

� most legislatures will not allow for self-driving buses. 

� or will limit their speed to a ridiculous level. 

� we might need someone in place to reduce fraud, misuse (going in without an 

order or with an unregistered co-passenger, ordering a shorter trip but staying 

in for a longer one), vandalism or sabotage, like the one done with traffic cones 

against Cruise and Waymo. 

� driver’s presence can improve passengers’ comfort and security. Most of us are 

still afraid of the lack of a driver or can feel discomfort originating from 

personal issues [13] e.g. “some male passengers ‘interfering’ with female 
passengers” [17]. 

� assistance might be needed to support disabled, inexperienced or digitally weak 

customers. 

11. Summary 

It has been shown that it is feasible to dispatch one hundred thousand trip requests using 

an aged laptop. There is no technology enabler missing, it does not require massive 

computing power. But the choice of technologies used to implement algorithms must be 

careful, there is a vast difference in performance, garbage-collecting languages have their 

overhead. A benchmark with widely used constraints and performance indicators is given 

for further studies on large-scale scenarios. With automatic dispatch algorithms we can 

significantly increase efficiency of bus service, bus usage ratio (passengers transported 

within an hour by one bus) can be 10-20, not 3-4 like in New York without ride sharing. 

Result achieved during simulations are about twice as good as presented by other 

researchers and they were achieved under unfavorable conditions - with randomly 

scattered demand without duplicated requests. But passengers' streams are more 

concentrated around some main routes and transport hubs, especially during rush hours, 

which means we can achieve much better results in real life. 
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