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Abstract. An adequate mathematical model including all components of an 
automatic system is a prerequisite for the most cost-effective implementation of 

the device's potential capabilities. Such a strict nonlinear mathematical model must 

make it possibility to minimize the actuator drives number, reduce the 
measurement information amount (the number of measuring sensors) and analyze 

transient processes in actuator drives. The traditional application of Lagrange 

equations with constraint multipliers in dynamics models of non-free systems 
leads to an increase in their dimensionality. The variables of such models are all 

coordinates, all (including dependent) velocities and also constraint multipliers. 

The article develops the application of the theoretical mechanics rigorous methods 
non- free systems to minimize the dimensionality of nonlinear mathematical 

models of parallel manipulators as the systems with geometric constraints, taking 

into account the dynamics of actuator electric drives. The transition to equations in 
redundant coordinates, free from constraint multipliers, excludes from 

consideration not only multipliers, but also dependent velocities. The application 

of the proposed approach to modeling the stand Ball and Beam dynamics is 
considered. 

Keywords. Mathematical dynamics model, geometric constraints, linear-quadratic 

problem 

1. Introduction 

In modern industrial robotic equipment, robot manipulators with parallel kinematics are 

widely used. The presence of parallel kinematics chains provides higher rigidity and 

accuracy, less weight in comparison with manipulators with sequential kinematics [1-3]. 

However, the closure of parallel kinematics chains in certain manipulator nodes leads 

to some conditional relationships between the nodes coordinates and the distances 

between the nodes. From the point of view of mechanics, they should be considered as 

non-free mechanical systems with geometric constraints.   
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Analytical mechanics of systems with geometrical constraints is a rather narrow 

special section of theoretical mechanics with its own specific methods for the dynamics 

mathematical description of this systems class.   

The mathematical training level necessary for the fundamental principles full 

understanding of its methods goes far beyond the scope of standard engineering 

education. This rather complex mechanics section has never been included in the 

curriculum of standard engineering training, since until recently technical devices with 

geometric constraints were not widely used in technical practice.  

Therefore, in order to obtain a mathematical model necessary for the potential 

capabilities implementation of high-class automatic devices with developed 

information processing systems and actuator technology, specialists in technical 

practice use far from the most effective (obtained in the nineteenth century [4,5]) forms 

of equations with constraint multipliers [6-11].  

But in accordance with the logic of further development of this analytical 

mechanics direction, theoretical specialists continued to develop its new methods [12-

15]. At present, analytical mechanics of systems with geometrical connections offers 

specialists in technical practice a wide choice of various equation forms and variables 

types that best correspond to the nature of the problem under consideration.  

It is precisely such dynamics nonlinear mathematical models obtained by strict 

analytical methods that make it possible to most fully use the properties of the proper 

(without applying controls) object motions. With this approach, the application of the 

general optimal systems theory [16] allows for the greatest possible minimization the 

actuator number (the controls vector dimension) while reducing the volume of 

measurement information (the sensors number). 

However, in engineering practice, it is not only these results that do not find proper 

application. Modeling the dynamics of such systems requires a level of rigor that is so 

unusual for engineering practice that ignorance of long-known fundamentally 

important results often leads, when studying the specific devices dynamics, to 

performing operations that are not permissible in the systems with geometric 

constraints dynamics strict modeling.  

As an example, we will cite the situation with geometric constraints. As early as 

the beginning of the twentieth century, Routh [17] pointed out that for the correct 

allocation of the first approximation, in the equations of dynamics, it is necessary to 

take into account the second-order terms in the equations of geometric constraints 

(compare with [15 ]).  

The widely known Ball and Beam stand can be considered as an example of a 

manipulator with parallel kinematics. In node A, two cinematic chains are closed: a 

single-link chain OA and a two-link chain BAO1 (figure 1.):  

 

Figure 1. Scheme of the “Ball and Beam” stand. 
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In this system, the electric drive, due to the inclination of the chute OA, can roll the 

ball C to any predetermined position on the chute and stabilize this equilibrium. The 

chute is connected on one side at point O to a fixed supporting post, and on the other to 

a movable lever AB. The parameters of the system are such that at the angle � =0, and 

the lever AB is vertical (figure 2).  

 
Figure 2. Zero equilibrium position. 

The motion of the lever is controlled by a DC motor. A nonlinear geometric 

relationship is imposed on the system: the distance between points A(xA, xB) and B(xB, 
yB) is constant: 

��(���� − 1) + �(1 − ���	)
� + (���� + � − ���	)� = ��;           (1) 

(L=OA − length of the trough, l=AB − length of the lever, d − radius of the output 

drive wheel). 

In most studies on the dynamics of the Ball and Beam stand with a geometric 

constraint [18-22] (except [21]), when constructing a mathematical model, immediately, 

starting with [18], a transition to a linear dependence is made, which is completely 

unjustified (see [22] with an extensive bibliography).the dependent coordinates are 

excluded from the linearized geometrical constraints equations � ≈ �
� 	. 

Due to the obvious condition 0�� for the equilibrium of the ball, from this 

relation (1) for the rotation angle � of the drive wheel only the value � =0 is obtained, 

and a non-zero equilibrium position (figure 3) could not be obtained 	 ∗=
2 ����� � �

�������; and, accordingly, was not considered until 2014 [23]. 

 

Figure 3. New equilibrium position. 
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Moreover, the linearization procedure of the constraints equations has been used in 

modeling the Ball and Beam stand dynamics of until very recently [24,25], despite the 

publications [26] on modeling the dynamics of the stand with full consideration of 

nonlinear geometric constraints (and the authors [24,25] refer in their work to the 

studies of [26]). 

Moreover, attempts to apply control algorithms to a real technical device, found by 

using a variety of methods of mathematical control theory for considering inadequate 

mathematical models led to its behavior, which did not correspond at all to the model. 

Therefore, a rigorous consideration of the dynamics of the Ball and Beam stand 

was required, taking into account the complete nonlinear constraint (1) from the 

standpoint of analytical mechanics of systems with geometric constraints [12-15], 

nonlinear stability theory [27-29] and mathematical control theory [30]. The basis of 

the consideration is the general methods of analytical mechanics of non-free systems 

with geometric constraints. 

2. General Method for Modeling the Non-Free Systems Dynamics  

Let us consider the algorithm for compiling Lagrange equations with constraint 

multipliers for a system with coordinates  mnqq �,,1 �   and geometrical constraints  

     �(�) = 0;    ��(�) = ���(�), … , ��(�)
;                             (2) 

det !"�#$(%),…,#&(%)

"(%'*$,…,%'*&) ! ≠ 0;                                     (3) 

with kinetic energy of the most general form 

   .(�, �̇) = 1 23 �45(�)�6̇�5̇ + �4(�)�̇4 + .7;                          (4) 

and conditions 

  894(�):�4 = 0; 894 = "#<"%>   ;  ? = 1, @AAAAAA;  � = 1,  + @AAAAAAAAAAA;                   (5) 

imposed on the variations of coordinates due to the presence of constraints (2) (here 

and below, summation is performed over repeating indices) on which the forces related 

to the coordinates (potential and non-potential) act.  

From the d'Alembert-Lagrange principle one can obtain [12,13] the equations of 

motion with constraints multipliers 

                  
�

�B
"C
"%̇> − "C

"%> = D4 + E9894;   ? = 1, @AAAAAA;  � = 1,  + @AAAAAAAAAAA;                (6) 

The variables of the model are 

�4, �̇4,  EG � = 1,  + @;  ? = 1, @; 
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In the general case, using rigorous methods of analytical mechanics, a complete 

nonlinear mathematical dynamics model for a system with geometric constraints is 

obtained, including n+m second-order differential equations (6) and m nonlinear 

algebraic equations of geometric constraints (2). When passing to normal form, we 

obtain 2(n+m) first-order differential equations and m algebraic equations of 

constraints to determine all n+m coordinates, all n+m velocities and m constraint 

multipliers, so that the total dimension of the model is equal to 2(n+m)+m=2n+3m.  

This approach leads to high-dimensional models, since the mechanical component 

model of the mechatronical system includes all coordinates, all (including those 

dependent due to connections) velocities, and it is also necessary to take into account 

the relations (2) for determining the Lagrange multipliers. Therefore, there are 

practically no mathematical dynamics models for mechatronic systems with geometric 

connections, including models of actuators. The use of methods of analytical 

mechanics of non-free systems [12-15] reduces the dimension of the model due to the 

transition to equations in redundant coordinates [14,15] by excluding dependent 

velocities from consideration using differentiated equations of geometric connections 

and the expression for Lagrange multipliers found in the general case. 

3. Some Method for Reducing the Dimension of the Mathematical Model in 
Modeling the Non-free Systems Dynamics 

When considering the specific systems dynamics, the study complexity is of great 

importance, and, as a rule, there is no need to determine the reactions of the constraints. 

In this case, it becomes possible to simplify the mathematical model by excluding as 

many variables as possible from consideration, with the excluded variables traditionally 

being the constraints multipliers.  

Historically, the algorithm for this procedure was first proposed by A.M. 

Lyapunov (pp. 354-357 [4]). This is not a general theoretical method, but the following 

extremely labor-intensive and cumbersome algorithm for studying the dynamics of a 

specific system includes the following operations: 

1.  From the motion equations with constraints multipliers compiled in the form (6), 

express the all accelerations  �6̈. 
2. Having differentiated the equations of geometric constraints (1) twice in time, 

obtain a system of linear relations regarding accelerations. 

3. Substituting the acceleration expressions from the motion equations into these 

relations, we will have a system of linear inhomogeneous algebraic equations for the 

constraint multipliers E9with a non-singular matrix of coefficients. 

4. By resolving these equations with respect to the constraint multipliers E9  , 

obtain expressions for them as functions of all coordinates and velocities E9(�, �̇). 

5. By substituting the obtained expressions for the constraint multipliers into the 

original equations of motion (6), we obtain a mathematical model of the dynamics of 

the system with geometric constraint (2). 

Despite the obvious extreme complexity of this method, this is how the dynamics 

of the Delta robot are still being studied [6]. As a result, the mathematical model, even 

without including a description of the dynamics of the drives, turns out to be so 

cumbersome that one has to limit oneself to only computer simulation. 

In essence, the algorithm of A.M. Lyapunov was used without references to it. 

Moreover, in our opinion, in modern studies of the robotic devices dynamics, the 
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behavior analysis of the mechanical robot component from the analytical mechanics 

standpoint is not carried out at all, but a transition is immediately made to computer 

simulation. And the conclusion about the model adequacy built using modern 

information technologies is made on the basis of the closeness of the model behavior 

and the real object dynamics which is completely unfounded: computer simulation 

shows the dynamics of the model only under very specific initial conditions. 

It is not legitimate to draw a global conclusion about the general solution of the 

differential equations systems based on an analysis of the particular solution behavior. 

4. Some General Methods for Reducing the Dimension of the Mathematical Model 
in Modeling the Non-free Systems Dynamics    

G. K. Suslov (pp. 320-331 [13]), A. I. Lurye (pp. 320-331 [12]), M. F. Shulgin [14] 

developed general methods for such an exclusion, associated with a single or double 

differentiation with respect to time of the equation of geometric constraints (2).  

In our opinion, the most effective way to reduce the dimensionality of the model is 

an alternative method of excluding from consideration the multipliers and dependent 

velocities by switching to differentiated equations of constraints and resolving taking 

into account (3) relatively dependent velocities: 

8G4(�)�̇4 = 0; 8G4(�) = J�GJ�4 ;  � = 1, @;  � = 1,  + @; 
�̇9 = K9L(�)�̇L;  ? = 1, @;  M = 1, ;                              (7) 

NK9L(�)N = − O J(��, … , ��)J(�P��, … , �P��)OQ� OJ(��, … , ��)J(��, … , �P)O ;
 

Denoting the result of eliminating dependent velocities using (7) from the kinetic 

energy (4) through   .∗(��, … , �P��, �̇�, … , �̇P) , and from the acting forces through  D4∗, 

determining [12,14]) the Lagrange multipliers from  

E9 = ��R J.J�̇9 − J.J�9 − D9;  ? =  + 1,  + @; 
��R J.J�̇4 − J.J�4 = D4 + E9894;  ? = 1, @;  � = 1,  + @;  

We can obtain a mathematical model of the system dynamics in the form of M.F. 

Shulgin [14] in redundant coordinates a result 

��R J.∗
J�̇L − J.∗

J�L = DL∗ + K9L(�) �J.∗
J�9 + D9∗ � ; 

�̇9 = K9L(�)�̇L;  ? =  + 1,  + @;  M = 1, ;                          (8)  
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This method in general case significantly reduces the mathematical dynamics 

model (8) dimensionality of systems with geometrical constraints: in addition to the 

multipliers, the velocities of coordinates dependent on the constraints are also excluded 

from consideration. The total model dimensionality in normal form includes 2n+m 

first-order differential equations, i.e. it is reduced by 2 m compared to dimension 

2n+3m (2) and (6). 

The general theoretical algorithm for obtaining the mathematical model (8) 

includes the following operations: 

1. Differentiate the geometric constraints equations (2) once with respect to time. 

2. Obtain expressions for dependent velocities from this linear algebraic system. 

3. Substitute these expressions into the kinetic energy (3) and force to exclude 

dependent velocities from consideration. 

4. Create a mathematical model (8) of the dynamics of systems in redundant 

coordinates. 

For the practical application of this method for dynamics mathematical modeling 

of systems with geometric constraints, mathematical training in the standard 

engineering education amount is quite sufficient. 

In the general case, let us present a mathematical model of the dynamics of 

systems with geometric constraints as the Shulgin equation (7) in explicit scalar form 

[15]: 

��S�̈S + J��SJ�L �̇S�̇L + J��SJ�T KTL�̇��̇L − 12 J��LJ�� �̇S�̇L − 
− �

�
"UVW"%X KT��̇S�̇L + �"�Y"%V − "�V"%Y + KT� "�Y"%V − KT� "�V"%X� �̇S +                       (9) 
+ JZJ�� + KT� JZJ�T = D� + KT�DT; �̇9 = K9L(�)�̇L;   

[, ? =  + 1,  + @;   �, M, � = 1, ; 
Here Z(�) = \(�) − .7(�)  is the changed (reduced) potential energy, \(�)  - 

potential energy, D�, DTand now denotes the non-potential forces corresponding to the 

coordinates ��, �Twhen they are introduced in excess.  

The first problem, the which study required the development of a comprehensive 

application of not only the above-mentioned use the rigorous analytical mechanics 

methods for non-free systems [12-15], but also nonlinear stability theory [27-29] and 

mathematical control theory [30] to real modern technical devices, was a complete 

solution to the problem of stabilizing a given position in a ball in the "Ball and Beam" 

stand.  

As a stabilizing control, an additional voltage on the armature winding of the 

actuator drive's commutator motor was considered, the which coefficients were 

determined [31] from the solution of the linear-quadratic stabilization problem by N.N. 

Krasovskii's method [30]. To conclude about the asymptotic (despite the presence of a 

zero root of the characteristic equation) stability in a complete nonlinear system closed 

by the found control, a proof of the general theorem [23] was required. 
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5. Application of the Developed Mathematical Model to the Stabilization Problem 
for Ball and Beam Stand  

The kinetic and potential energies of the system are as follows: 

. = �
� @�̇� + �

� @(��̇)� + �
� ] ^S

_`̇ � + �
� ]7	̇�;   Π = @b� ���;                 (10) 

Here m and J, respectively, the mass and moment of inertia of the ball, R its radius. ]7 is the moment of inertia reduced to the axis of rotation of the actuator. From the 

time-differentiated equation of the connection (1) for the dependent velocity we have 

�̇ = �[(�Q�) fgh i��G4P (iQj)��klG i]
�[Q(�Q�) fgh jQ�G4P(iQj)�� nof j] 	; ̇                                  (11) 

After eliminating the dependent velocity using (11), the kinetic energy (10) will be 

transformed in 

.∗ =
�
� @�̇� + �

� p@ ^� ��(�Q�) fgh i��G4P (iQj)�� klGi 

�(Q(�Q�) fgh jQ�G4P(iQj)�� nof j)`� + ]7q 	̇� +

               + �
� ] ^Ṡ

_`� ;   Π = @b� sin �;               (12) 

As a mathematical model (8) for the mechanical part of the stand, we obtain the 

equations 

�@ + ]v�� �̈ − @� ��� 	̇�� + @b�� ��� 	� = 0; 
�]7 + @ ^� �

�`�� 	̈+2mr^�
�`� �̇	̇ + @b� �

� ��� ^�
� 	` = −87	̇ + w��U;            (13) 

To take into account the dynamics of the drive, we will add a mathematical model 

of the actuator motor anchor chain 

   �U �4x�B + vU�U + w� �i
�B = yz;                                    (14) 

�U is the induction of the anchor winding, vU is its resistance, w� is the coefficient 

of back-EMF, w� is the electromechanical constant of the engine, �U  is the current in 

the winding, yz is the voltage supplied to the winding. 

For a given equilibrium position � = �7 ≠ 0 of the ball with 	 = 0 to exist, the 

following conditions must be met: 

� = �U7 = ���R ≠ 0;   	 = 	7 = 0;   � =  �7 = ���R ≠ 0;  yz = yz7 = ���R ≠ 0; (15) 
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�U7 = @b�7 ��w� ;  yz7 = vU�U7w� =  vU@b�7 ��w�w�  ;    
Let us introduce perturbations for the model variables � = �7 + {�; �̇ = {�;  	 = {|; 	̇ = {}; �U = �U~ + {�; � = {�; yz = yz~ + �;  
Equations of perturbed motion with a distinguished first approximation 

{�̇ = {�;      
                                                     {�̇ = − ��

�� ��� {�;     
{|̇ = {};    

                            {}̇ = − �����$Q���&�V~Y (���Q���)Q�~���5���
�~��^V~�� `� ;                           (16) 

{�̇ = � − vU{� − w�{}�U ;   {�̇ = �{}� ; 
General Aizerman-Gantmacher [31] replacement from analytical mechanics of 

systems with differential constraints 

{� = � + �
� {|;                                              (17) 

to isolate the critical variable �, it changes the coefficients of the first approximation 

{�̇ = {�; 

{�̇ = − @b ��
@ + ]v�

{| − @b
@ + ]v�

�; 

{|̇ = {};    
  {}̇ = − �����$����&�V~Y �Q�~���5���

�~��^V~�� `� ;                                    (18) 

{�̇ = � − vU{� − w�{}�U ; 
{�̇ = 0; 
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Stability in the complete system is possible only in the critical case of one zero 

root corresponding to the variable f. By virtue of the theorem [23] proved on the basis 

Kamenkov's  theorem [29], asymptotic stability takes place in the complete system if 

the real parts for all nonzero roots of the characteristic equation in the first 

approximation system are negative. To ensure the specified arrangement of the roots, it 

is necessary to determine the stabilizing control from the solution by the method of 

N.N. Krasovskii [30] of the linear-quadratic problem for the linear controlled 

subsystem: 

{̇ = �{ + D�;                                                    (19) 

� =

⎝
⎜⎜
⎜⎜
⎜⎛

 0                     1                    0                          0                0   
  0                      1      − ������ ���                       0               0     
0                    0                  0                            1              0  
− ����

�~��^V~�� `�   0                  0          − ������ ���       − 5�
�� ���   

                    0                  0                 0                   Q5��x                 Q_x�x                 ⎠
⎟⎟
⎟⎟
⎟⎞

   ; 

D� = ^0 0 0 0 �
�x`. 

For the controlled subsystem (19) the controllability condition 

��wZ = ��w(D �D ��D �|D �}D)=5;                       (20) 

is satisfied. The stabilizing control as a linear function of the variables of only the 

controlled subsystem is determined from the solution of the corresponding Lyapunov-

Bellman-Riccati equation.  

A full detailed study of this problem is given in [26], and graphs of the transition 

processes are also given taking into account the dynamics of the actuator. Further, on 

the basis of the results obtained for Ball and Beam, a general algorithm for reducing the 

dimensionality of the control problem during stabilization of steady-state motions of 

systems with geometric connections is developed.  

By applying the developed method to the Delta robot, an analytical, rigorous, 

nonlinear mathematical model of its dynamics was obtained [32] with the inclusion of 

transient processes in three actuators. 

6. Conclusion 

The full strict rationale for the proposed modeling method cannot be presented at a 

level understandable to a person with standard engineering training. However, the 

practical application of the method does not require an understanding of the general 

theoretical results used in it. The simplicity of the algorithm, the use of which ensures 

reliable obtaining of results justified in the method, is demonstrated by the complete 

A.Y. Krasinskiy / On a General Method for Modeling the Controlled Dynamics of Manipulators 653



solution of the problems of stabilization of a given configuration of the Ball and Beam 

stand. 
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