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Abstract. I-beams with corrugated webs have higher torsional stiffness than that of 
flat web beams. Furthermore, the geometrical dimensions of the beam and the web 
corrugation heavily influence the precision of the currently used traditional pen-and-
paper methods for determining the elastic lateral-torsional buckling moment. This 
study aims to suggest several machine learning models with the intention of 
predicting the elastic lateral-torsional buckling moment of corrugated web beams. 
Multiple machine learning models, including Random Forests, Gradient Boosting, 
Categorical Boosting, and Deep Neural Networks, were deployed to develop and 
train models to predict the elastic critical lateral-torsional buckling moments of I-
beams with corrugated web. The database used for training the different models was 
compiled through linear bifurcation analyses conducted on shell finite element 
models. The study evaluates the precision of the various machine learning models 
by examining their performance against statistical parameters derived from both 
predicted and test data. The findings from the parametric evaluation highlight the 
surprisingly high performance and accuracy of the machine learning models. 
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1. Introduction 

Using corrugated sheets as a web enables the application of thin plates without the need 
for web stiffeners, which leads to a more economical solution in contrast with flat web 
beams. The most frequently used profiles for corrugations are sinusoidal and trapezoidal 
but other periodic shapes like zigzags or triangles can also be found in structural 
engineering practice. Corrugated web I-beams have higher shear resistance and better 
fatigue behaviour than traditional flat web I-beams [1].  
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The most common failure modes of corrugated web beams include global shear
buckling of the web, local buckling of the compressed flange, lateral-torsional buckling 
(LTB) and the interaction between the local and global buckling modes [2]. In the 
Eurocode 1993-1-1 standard [3], the reduction factor for the LTB moment of a steel beam 
is based on the non-dimensional slenderness of the member. The main parameter to 
determine the non-dimensional slenderness is the elastic LTB moment of the member.
The traditional pen-and-paper methods to calculate the elastic LTB moments of 
corrugated web beams can be separated into three ways: 1) increasing the warping 
constant of the flat web section [4-7], using equivalent thickness [8]; or using equivalent 
orthotropic plate with uniform thickness [2]. According to Bärnkopf et al. [9], there is no 
widely accepted analytical formula for the elastic critical LTB moment of a corrugated 
web beam. The reason for this is that the out-of-plane behavior of the corrugated beam 
is different compared to the conventional flat web beam. Hajdú and Papp [10] 
demonstrated that the accuracy of the traditional hand-calculation methods is highly 
influenced by the geometrical dimensions of the beam and the corrugation. 

This study aims to show the reliability of several machine learning models for 
calculating the elastic LTB moment of the corrugated web girders. A comprehensive 
overview of applied machine learning (ML) models for various structural engineering 
tasks is available in [11]. Mukherjee et al. [12] proposed the first machine learning 
algorithm for column buckling problems in 1996. Since then, several researchers worked
on the application of ML models for predicting the elastic global and local buckling 
capacity of steel members [13-15].

2. Creating the database

2.1. Finite element model

By using a larger number of samples for the training of an ML model, the accuracy of 
the algorithm can be improved. In this study, the required target values were obtained
using shell finite element models. Linear Bifurcation Analyses (LBA) of the different 
beams were run in the Abaqus CAE simulation software [16]. The numerical models 
were discretized using the four-noded shell finite elements (S4). This finite element is 
suitable for thin-walled shell structures. The mesh size depended on the length of the 
beam in order to keep the elements’ width/length ratio close to 1. The flanges and the 
web equally contain 16 shell elements. Linear multi-point constraints (Equation) were 
used at the beams’ ends to model the fork support boundary conditions. The end moments 
were applied as nodal forces on the finite element nodes of the flanges. The material 
model is linear elastic where Young’s modulus is 210000 N/mm2. The left side of Fig. 1
shows the LTB mode. The validation of the used finite element model and the
convergence study were presented in [2].

Figure 1. First global buckling mode and geometrical notations.
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2.2. Dataset 

The samples in the dataset were created using the finite element model mentioned in the 
preceding section. Based on the geometrical dimensions of the beams each sample is 
defined by seven features. Table 1 contains the lowest and the highest values for each 
feature. The geometrical dimensions of the tested members were compiled to include a 
broad range of practical cases. In total, the dataset includes 216 samples for sinusoidal 
and 216 samples for trapezoidal corrugation, with three distinct beam heights (h), five 
distinct flange widths (b), three distinct web thicknesses (tw), five individual corrugation 
amplitudes (aw), and five different wavelengths (2w). The transformation technique 
proposed in [3] was applied to turn the sinusoidal curve into an equivalent trapezoidal 
geometry. The following geometrical parameters are necessary for trapezoidal 
corrugation: a1= 0.1·2w and a4 = 2w/2- a1. Fig. 2 shows the correlation matrix between 
the input and output parameters. 
Table 1. Minimum and maximum values of the different features 

Input values Minimum [mm] Maximum [mm] 
L 3840.0 21 000.0 
h 500.0 1000.0 
b 200.0 300.0 
tw 2.5 4.0 
tf 18.0 25.0 

aw 30.0 46.0 
2w 120.0 155.0 

 
Figure 2. Correlation matrices a) for sinusoidal and b) for trapezoidal corrugation. 

3. Applied machine learning models 

In this part, the applied ML models and the used hyper-parameters are presented. The 
used algorithms are the following: random forest (RF), gradient boosting (GB), gradient 
boosting with categorical variables (CatBoost) and deep neural network (DNN). In 
structural engineering, these supervised ML methods are often applied [17].  

Breiman [18] introduced Random Forest, an ensemble-learning method that 
employs decision trees as its weak learners. The core concept involves building a forest 
of decision trees by randomly selecting features and aggregating the predictions of each 
tree, typically by averaging, in regression problems. Leveraging decision trees as weak 
learners mitigates the likelihood of overfitting. The optimized hyper-parameters for the 
used RF models are the following: the complexity parameter is 0.0, the function of the 

a) b) 
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split quality is poisson/squared_error, the maximum depth of the three is 10/None, the 
minimum number of the samples is 1, with the required split number 2, the weight 
fraction is 0.0, with the number of folds where k=9 for sinusoidal and trapezoidal 
corrugations. 

Friedman [19] developed the boosting algorithm, which is an ensemble method that 
combines multiple individual models to enhance predictive accuracy. Similar to Random 
Forest, the Gradient Boosting algorithm also employs decision trees as its weak learners. 
During the training phase, GB minimizes the loss function of each weak learner through 
a general optimization technique, typically gradient descent. Additionally, it incorporates 
the residual loss from previous trees to inform the training of subsequent trees. The 
optimized hyper-parameters for the GB models are: the quality of the split is 
friedman_mse, the contribution of the trees is 0.3, the depth of the regression estimators 
is 3 and 4, the number of features is None, the minimum number of the samples is 5, the 
tolerence is 0.0001, with the number of folds where k=10 for sinusoidal and k=9 for 
trapezoidal corrugations, respectively. 

CatBoost was originally designed to speed up GB’s training time, but it concentrates 
on categorical variables. However, it can be seamlessly applied to various data types, 
including numerical and text features, eliminating the need for data conversion during 
pre-processing. Prokhorenkova et al. [20] introduced a permutation-driven boosting 
approach within CatBoost to optimize prediction accuracy shifts. By leveraging minimal 
variance sampling techniques, the algorithm enhances split scoring accuracy, which is 
particularly beneficial in scenarios with limited data, effectively curbing overfitting. The 
optimized hyper-parameters for the CatBoost models are: the fraction of the features is 
0.8 and 0.9, the tree depth is 4, the number of trees is 300, the L2 regularization term on 
weights is 0.1, the learning rate is 0.1, the fraction of samples is  0.9 and 0.7, with the 
number of folds where k=8 and 10 for sinusoidal and trapezoidal corrugations, 
respectively. 

The concept of neural networks traces back to the 1940s, with foundational work by 
McCulloch and Pitts [21], followed by advancements from Hebb [22], and further 
elaborated by Minsky and Papert [23]. Originating from the logical representation of 
signal transmission among individual neurons in biological nervous systems, deep 
learning techniques have evolved significantly and are now extensively utilized across 
diverse fields such as architecture, engineering, and construction. This surge in adoption 
is propelled by factors like the availability of large datasets, the accessibility of graphics 
processing units, advancements in algorithms, and easier entry into the machine learning 
domain through high-level libraries and APIs compared to previous decades. 

Deep Neural Networks (DNNs), also known as Deep Nets, are neural networks 
characterized by their complexity. They are essentially stacked neural networks, 
comprising multiple layers - typically two or more - including output, input, and 
minimum one hidden layer in between. DNNs are commonly applied to handle unlabeled 
and unstructured data. Presently, these sophisticated neural networks have become the 
go-to solution for addressing a wide range of computer vision tasks. The optimized 
hyper-parameters for the DNN models are: number of hidden layers is 4, the activation 
function is ReLU, the adaptive optimizer is Adam, the learning rate is low with 0.0005, 
the number of epochs is 6000, the used batch size is 128 for sinusoidal and trapezoidal 
corrugations, respectively. 
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4. Results

The findings of this investigation for various supervised ML models are presented in this 
section. Scikit-learn and TensorFlow are two open-source Python libraries that were used 
for the implementation of ML algorithms. The k-fold cross-validation method was 
applied for the optimization, validation and testing of the different models. An 80/20 
ratio was used to randomly split the dataset into training and test sets. Table 2 
summarizes the different statistical parameters of the ratio of the test (Mcr,Abaqus) and the 
predicted (Mcr,ML) critical moments. As can be seen, the mean values of the 
Mcr,Abaqus/Mcr,ML ratios are 1.00 or very close to 1.00 in every case. The CatBoost
algorithm has the highest scatter for both corrugation geometry and the DNN is the most 
stable. The maximum deviation is between 1-6%. However, the precision of the distinct
ML models is acceptable and these algorithms can be used to predict the elastic LTB 
moment of corrugated web beam. The scatter plots of the different methods are in Fig. 3 
and Fig. 4. As Table 2 indicates, the standard deviation is small in all cases. A similar 
conclusion was drawn in [24].
Table 2. Statistical parameters of the different algorithms (Mcr,Abaqus/Mcr,ML)

RF 
(sin)

RF 
(trap)

GB 
(sin)

GB 
(trap)

CatBoost 
(sin)

CatBoost 
(trap)

DNN 
(sin)

DNN 
(trap)

Mean 1.00 1.00 0.97 1.00 0.97 1.00 1.00 1.00
Std. 0.01 0.02 0.01 0.02 0.02 0.02 0.00 0.00

C.o.V. 1.19 1.47 1.21 1.49 2.04 1.51 0.13 0.23
Min. 0.99 0.99 0.99 0.99 0.94 0.99 0.99 0.99
Max. 1.05 1.06 1.05 1.06 1.04 1.06 1.00 1.01

Figure 3. Scatter plots for sinusoidal corrugation.
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Figure 4. Scatter plots for trapezoidal corrugation.

5. Conclusions

This study explores various supervised machine learning methods to determine the 
elastic critical LTB moment of I-beams with corrugated webs. The out-of-plane buckling 
behavior of corrugated web beams differs from that of flat web beams. Past research 
indicates that the accuracy of existing pen-and-paper methods significantly relies on the 
geometrical dimensions of the beam and web corrugation. In order to calculate the elastic 
critical LTB moment of a corrugated web beam the most precise way is to apply a full 
shell finite element model. However, the model-creating process requires a significant 
amount of time, particularly when the web involves numerous corrugations.

Given these challenges, employing an ML approach could offer a robust method for 
determining the elastic critical LTB moment. The safety evaluation of various machine 
learning models demonstrates promising overall performance. Through detailed 
statistical analysis, the DNN algorithm emerges as the most precise in determining the 
elastic LTB moment of sinusoidal and trapezoidal corrugated web girders. In the 
examined cases, GB algorithm has the largest scatter, which is 2.04. The maximum 
deviation 6% that is still acceptable.

In the future, this research can be extended for the plastic buckling behavior and the 
ML models can be combined with a hand-calculation method to improve its accuracy.
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