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Abstract. In recent years, the technology related to providing computing resources 
to ground users using Unmanned Aerial Vehicle (UAV) with Mobile Edge 
Computing (MEC) servers has received widespread attention. In edge computing 
scenarios with limited communication infrastructure, for the problem of difficulty 
in deploying conventional terrestrial base stations, this paper designs a UAV-based 
edge computing network (UAV-MEC) model. The network model adopts a partial 
offloading strategy, which enables the computational tasks of the ground devices 
(LD) to be partially executed on the local devices and partially offloaded to the edge 
computing servers of the auxiliary UAV. When facing computationally intensive 
and delay-sensitive computational tasks, LD and UAV have limited computational 
resources and energy, and how to optimize the offloading strategy becomes a key 
issue. In this paper, we propose an offloading optimization algorithm based on 
GPER-DDPG. The algorithm introduces the prioritized experience replay technique, 
adaptive action policy noise, and Actor network delay updating technique to 
improve the stability and convergence performance of the DDPG algorithm in 
complex environments. Experimental results show that the performance of the 
improved algorithm proposed in this paper improves about 10-12% over the 
performance of the DDPG algorithm. 

Keywords. Unmanned aerial vehicle, mobile edge computing, DDPG, prioritized 
experience replay, adaptive action policy 

1. Introduction 

In recent years, with the rapid development of virtual reality, Internet of Things (IoT), 

autonomous driving and other technologies, intelligent devices based on IoT devices 

have spread all over our lives. However, IoT devices are limited by factors such as size, 

computational resources, and production costs, making their computational capabilities 

unable to meet production demands, which greatly reduces the performance of 

computational tasks to process tasks on local devices [1,2]. 

Edge computing allows computing tasks to be migrated from traditional cloud 

computing centers to edge devices closer to data sources and end users [3] to reduce 

latency and improve system responsiveness, which largely solves the network congestion 

problem of traditional cloud computing due to centralized processing of tasks [4]. In 

addition, edge computing has shorter data transmission distance and time and less energy 
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consumption compared with cloud computing. In recent years, scholars at home and 

abroad have shown extensive attention to the computational offloading problem in edge 

computing scenarios: literature [5] designed a dynamic resource offer mechanism by 

applying a distributed game mechanism and combining it with the Liapunov 

optimization theory, successfully realizing the differentiated control of different business 

types as well as the elastic on-demand allocation of computational resources, and this 

method effectively reduces the average latency of the Internet of Things (IoT) system. 

Literature [6] proposed a deep reinforcement learning-based joint optimization approach 

for SWIPT (Simultaneous Wireless Information and Power Transfer) edge networks, 

focusing on solving the energy harvesting and computational task offloading problems 

in IoT. They proposed a joint optimization model that considers factors such as power 

allocation, CPU frequency, offloading weights, and energy harvesting weights. 

Literature [7] proposed a distributed task offloading and resource allocation algorithm 

based on deep reinforcement learning, which successfully solves the task offloading and 

resource allocation problems in vehicular edge computing. The algorithm has significant 

advantages in terms of latency, energy consumption, and task completion rate. Literature 
[8] considered different task attributes, user mobility, and time delay constraints by 

simulating a mobile edge scenario. Based on the user’s mobility trajectory, the objective 

is modeled as finding a MEC server optimization model that satisfies the time delay 

constraints and produces minimum energy consumption during the offloading process, 

and a minimum energy consumption offloading algorithm is proposed, which 

significantly reduces the energy consumption and delay of the task offloading process. 

However, the current traditional edge computing servers are generally fixed at the time 

of deployment, which sometimes fails to meet the user requirements. 

As a flexible mobile computing platform, UAV can be used to provide computing 

resources and data transmission services. Currently, UAV have been applied in some 

resource-constrained scenarios, such as harsh environment monitoring, mine exploration, 

and seismic evaluation [9]. Deploying edge computing servers to UAV, combined with 

the advantages of UAV communication technology, can largely make up for the short 

board of poor flexibility of traditional MEC, and greatly improve the performance of 

MEC task processing. Literature [10] proposes a deployment optimization and 

computation offloading model for air-air-heaven integrated mobile edges, using UAV as 

edge computing servers and near-Earth satellites as cloud servers, and a two-layer 

algorithm to solve the deployment and offloading problems respectively. Although there 

have been some works on UAV-assisted edge computing, most of them only consider 

the scenarios in which the UAV is used as a base station, and do not study the flight state 

of the UAV, which can not be directly applied to real-world scenarios. 

Aiming at the problem of difficulty in deploying ground base stations and seeking 

the optimal offloading decision of the system, this paper combines two technologies, 

edge computing and UAV, and proposes a UAV-assisted edge computing network, 

which is optimized for the maximum processing delay of the system using the GPER-

DDPG algorithm. Compared to traditional MEC networks, the performance of MEC 

networks integrated with UAV communication technology is improved. UAV are 

characterized by excellent flexibility and ease of deployment, and thus are able to provide 

communication services to a designated area without being restricted by the terrain on 

the ground. In addition, UAV, with their unique mobility, are able to flexibly adjust their 

deployment position to be closer to the area required for providing computing services, 

depending on the demand situation of the service recipients. The GPER-DDPG algorithm 

introduces a prioritized experience playback technique, an adaptive action policy noise, 
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and an Actor network latency updating technique based on the DDPG, and the algorithm 

learns the user scheduling from the experience, UAV’s flight state, and task offloading 

ratio, which greatly reduces the computational complexity. By comparing the existing 

algorithms, the experimental results show that the performance of the improved 

algorithm proposed in this paper is about 10~12% higher than that of the DDPG 

algorithm. 

2. Network Model and Problem Definition 

2.1.  Network Model Description 

For a multi-user UAV-assisted edge computing system, the system model diagram is 

shown in Figure 1. The system consists of multiple ground-local device LDs and a UAV 

equipped with a MEC server, and each LD in this system follows a partial offloading 

policy. The system divides the entire time period equally into k time periods of length T 
[11-13]. In each time period T, there are N moving LDs randomly distributed in the working 

area of the system, and the ith local device is denoted as LDi, i ( i∈ {1, 2, ..., N }) , 

whose 3D coordinates are ��(�) = [xi(k),yi(k),0], i∈ {1, 2,..., N },Each LD is equipped 

with a data transmission device and a local server in order to transmit data or process 

computational tasks. 

The UAV’s position remains fixed during the time period T and communicates with 

one of the ground devices in association with it, and the ground device LDi with which 

it communicates can offload part of the task to the MEC server carried by the UAV for 

processing, and the remaining computational tasks are processed at the local server [14]. 

The position coordinates of the UAV at the beginning of the time period are 

z(k)=[x(k),y(k),H], and the end coordinates are z(k+1)=[x(k+1),y(k+1),H], where H is the fixed 

flight altitude of the UAV, which is kept constant in the paper. In this paper, it is assumed 

that the task computational power of the edge computing server carried on the UAV is 

much larger than the computational power of each LD and the results processed by the 

edge server are small, and its return delay is negligible. 

...

LD
i

UAV

Flight angle

v

v



  Flight speed  

Figure 1. System model diagram. 

S. Yu et al. / GPER-DDPG-Based Offloading Optimization for UAV-Assisted Mobile Edge Computing 645



2.2.  Computational Model 

In this paper, the communication channel between UAV and ground equipment LDi 

is modeled as a line-of-sight channel link model, and the wireless channel gain can be 

quantified as 
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where ℎ�is the size of the channel gain per unit distance (d=1m).��(�) is the distance 

to the LDi in the kth time slot, the magnitude of which is derived from the Euclidean 

distance formula in three-dimensional space. 

From Shannon’s theorem, the data transfer rate of the task offloading process can be 

expressed as 
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where B is the channel width, �� is the channel noise interference, �� is the data 

transmission power of LDi , and ℎ��(�) denotes the transmission loss, which acts as an 

indicator of the loss when the communication between the UAV and the ground 

equipment is obstructed. 

The computational delay of the system is mainly composed of two parts, one is the 

local computational delay and the other is the offloading computational delay, which is 

further divided into the task transmission delay and the task processing delay, the specific 

model is as follows 

(1) Local computing: In local computing mode, the total delay incurred by local 

computing is: 

 i i
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f
            (3) 

Where, ��(�)is the total number of computation tasks of the LDi, ��(�)is the task 

offloading ratio,	�� is the CPU computation frequency of each ground device LD, the 

total number of local tasks to be computed can be computed as (1-��(�))��(�), and S is 

the computational complexity i.e., the CPU cycles required to process each unit byte. 

(2) Offloading computation: In the case of edge computing, the delay generated by 

the processing task consists of two parts, i.e., the delay of transmitting the task to be 

processed to the UAV and the delay of processing the task on the UAV, and the return 

delay is ignored. According to the above analysis, combined with equations (1) and (2), 

the task transmission delay and processing delay can be expressed as respectively: 
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� in Eq. (5) is the edge server CPU computation frequency on the UAV. the 

computational energy consumption of the MEC server can be expressed as: 
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where   is the CPU energy consumption factor of the MEC server.  

Considering the position change of the UAV in the kth time slot T, the flight energy 

consumption of the UAV is expressed as: 

2

,( )UAV k k
E v              (8) 

where 
 denotes the energy consumption coefficient, which is a fixed value [15]. 

2.3.  Definition of the Problem 

Considering that the system proposed in this paper contains multiple ground devices, the 

scheduling of users and UAV as well as the offloading rate of tasks need to be jointly 

optimized to minimize the maximum processing delay of the system, and the 

optimization problem of joint scheduling and computational offloading can be 

formulated as follows. 
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Where C1 and C2 denote that there is one and only one ground device selected to be 

associated with the UAV in the kth time slot, 1 if selected, and 0 otherwise; C3 is the 

task offloading ratio limitation interval; C4 denotes the total energy consumption 
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limitation; and C5 and C6 denote that the total computational tasks need to be processed 

within the total time. 

3. Algorithm Design 

3.1.  Definition of the Problem 

DDPG (Deep Deterministic Policy Gradient) is a deep deterministic policy gradient 

algorithm that combines the policy gradient method and Q-learning method for solving 

reinforcement learning problems in continuous action space, which is mainly used to 

solve reinforcement learning problems in continuous action space, such as robot control, 

continuous motion control etc. Unlike discrete action space, there are infinite number of 

action choices in continuous action space, DDPG algorithm overcomes the problem 

under continuous action space by introducing deterministic policy and value function 

based approach. 

In this section, the problem of 2.3 is described as a Markov Decision Process (MDP) 

and solved using the GPRE-DDPG algorithm, which assigns mission offloading ratios 

to the UAV’s flight state in continuous space and dynamically adjusts the ground 

equipment scheduling. 

According to the properties of Markov decision making, the intelligent body selects 

an action to interact with the environment based on the current input state and obtains a 

reward as feedback used to adjust the next action. Markov decision making defines 
��� ,� ,�� , ����, where ��is the set of current possible states, �is the action selected by 

the intelligent body, ��is the reward received after interacting with the environment, and 

���is the next moment state [16]. 

To solve the optimization problem presented in Section 2.3, the state space, action 

space, and reward function of the system are represented as follows: 

(1) State space: Contains the set of all possible states of the system. In this paper, 

the model state space is defined as 

 
res res 

z(k),w (k), ( ), ( ), ( ), ( )
k i i si
S I k h k E k I k         (10) 

where ��(�), ��(�), ℎ��(�)denotes the 3D coordinates of the ith ground device in 

time slot k, the total number of tasks generated, and the channel masking index, 

respectively, and ����(�)is the amount of power remaining, and ����(�)  is the total 

number of tasks remaining. 

In order to ensure that the influence of each state feature on the model training is 

relatively balanced, so that different features have similar value ranges, and to avoid 

slowing down the training speed due to the large differences in the feature values during 

the gradient update, a linear feature scaling mechanism is introduced, i.e., the original 

state value is divided by the difference between the maximum value and the minimum 

value of the corresponding feature, in order to scale the state value to within the range of 

[0, 1]. Where the difference between the maximum and minimum values of a feature is 

defined as the scaling factor �. 

(2) Action space: Contains the set of all actions that can be taken by an intelligent 

body. The central controller decides the actions that the intelligent body should take 

based on ��. The action space is defined as 
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Where ��,�� together determine the flight state of the UAV, and the equation for 

the movement of the UAV is as follows 

( ) ( ) 0
k fly k k fly k

z k +1 = z k + v t cos ,v t sin ,            (12) 

Where ���� is the flight time. 

Since the DDPG algorithm is a continuous action space algorithm, its output is 

usually a continuous value domain, but denotes the serial number of the ground device 

that is selected to communicate with the UAV, it is necessary to quantize the action 

output by the intelligent body. In this paper, a threshold quantization method is designed, 

and the quantization thresholds are respectively 


�
、

�

�
、. . .、

��

�
.For example, when N 

is 4, the thresholds are 0.25, 0.5, and 0.75, which are quantized as 0 when 0 ≤ �(�) ≤

0.25, i.e., the 1st ground device is selected, and 1 when 0.25 ≤ �(�) ≤ 0.5, and so on. 

(3) Reward function: The reward or punishment obtained by an intelligent body 

after taking a certain action in a specific state. In this paper, considering that the 

optimization objective is to minimize the maximum time delay of the system, it is 

designed that when the time delay is larger, the reward is smaller; the smaller the time 

delay is, the larger the reward is. Therefore, the reward function is defined as 

 ( ) ( ) ( ))( ( )
N
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R = -t k = - i k max t ,t + t        (13) 

The GPER-DDPG algorithm adds the priority experience replay (PER) to the DDPG 

algorithm, the traditional experience replay mechanism usually samples from the 

experience pool using a uniform distribution, but in practice, this way is not efficient, for 

neural networks, the priority of the experience samples has some differences, so the 

higher priority experience samples are given larger sampling weights to increase the 

probability of being sampled. The priority g of the empirical samples is denoted as: 

| |g TD              (14) 

where |TD| is the absolute error value of the most recent sample and � is a non-zero 

bias, if � is 0, it is uniform sampling. The sampling probability and learning rate are 

defined as respectively: 
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where the hyperparameter 
 is the importance increment, increasing in the interval 

[0,1], and   is the total number of samples in the empirical pool. 
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In addition, the GPER-DDPG algorithm introduces adaptive action strategy noise. 

In this paper, an adaptive mechanism is introduced to dynamically adjust the strength of 

the action strategy noise so that it is more exploratory in the early stage of training and 

more focused on utilizing the learned strategies in the later stage of training. The adaptive 

process uses a linear descent method for adjusting the variance of the Gaussian noise, 

and the adaptive variance adjustment process is as follows 

_

initial
decay rate Episode            (17) 

where Episode is the training step, the attenuation factor �����_����  is set to 

0.0002, and �������� is the initial value of the Gaussian noise variance, which is set to 

0.12. In the training process of the target network, the delayed updating method is used 

to update the target network by delaying the target network by a certain number of 

training steps in the middle and late stages of the training process, so as to reduce the 

frequency of the update of the target network, to reduce the oscillations during the 

training process, and to improve the algorithm’s Stability. The interval training step is 

denoted by ∁ . 

3.2.  Implementation of GPER-DDPG 

The GPER-DDPG algorithm implementation process is mainly divided into three 

processes: sampling, training, and parameter update: 

(1) Sampling: Randomly select the state as ��, feature scale the state of the selection 

and input it into the Actor online network, Actor online network selects the action 

according to the state and adaptive Gaussian noise, input the action into the environment 

to get the reward and the next state, feature scale the next state, generate the quintet to 

be stored into the prioritized experience playback pool and assign the priority, and the 

number of data in the experience playback pool reaches the threshold value Start training, 

otherwise continue sampling. 

(2) Training: L data from the empirical playback pool are taken out and fed to 

Critic’s online network and target network to get the action values and calculate the loss 

separately. 

(3) Parameter update: A delayed update is used, where the soft update of the target 

network is performed only after half of the training process, by delaying the training step 

∁ . 
Algorithms  GPER-DDPG 

1:Initialize Actor and Critic online network parameters �� and ��, copy online network parameters to target network（��� ← ��,��� ← ��） 

2:Initialize replay buffer D and priority buffer P with a capacity of n 

3:for episode = 1 to M do 

4:Get the initial state of the observed state �� 
5: for � = 1 to � do 

6:   State feature scaling for state �� 

7:    Use actor network  θ�  to select actions based on the current state with some Gaussian exploration noise   �� = ���	(
��� +
�,   �	
�,   ����) ,Noise variance adaptive adjustment � = ����	 − �����_���� × �	����� 

8:   Execute an action  ��，Get rewarded R� and next state ���� 
9:   State feature scaling for state ���� 
10:  Store the normalized ���,   ��,��, ���� in the replay buffer D and assign a priority ɡ 

11:  Sample a conversion mini-batch from the priority buffer P as L 

12:  Calculation of � = � + ��′����,
′����|���|��� 
13:  Calculate the TD error and update the priority in the priority buffer P 

14:  Minimize the loss function of the cubic network update the parameters of the cubic network � =
�

�
∑�� − ���,� ∣ ���

�
 

15:  if  � mod ∁ and episode ≥ 
���
�����

�
 then 

16:    Updating the parameters of the actor network using the sampled policy gradient ���� ≈
�

�
∑�����, � ∣ �����
�� ∣ �� 

17:   Update the parameters of the target network using the soft update method ��
�

←  �� + �1 −  ��
�
,��

�
←  �� + �1 −  ��

�
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18:   end  if 

19: end  for 

20:end  for 

4. Simulation and Result Analysis 

In order to verify the effectiveness and feasibility of the algorithm proposed in this paper, 

a simulation environment is constructed through Python language based on the setup 

parameters proposed in this chapter. The feasibility of the proposed algorithm is 

illustrated based on the effect of different parameters on the proposed algorithm, and the 

effectiveness of the algorithm in this paper is illustrated by comparing it with other 

existing algorithms. 

4.1.  Parameter Settings 

In our experiments, we consider a 100 × 100 rectangular area where the server CPU 

carried by the ground devices distributed in the area have a computing frequency of 0.2 

GHz,  the complexity of the computational task is set to 1000 cycles/bit, with a total time 

������ of 400 and k of 40[17-19]. The CPU computing frequency of the MEC server of the 

UAV is 1.12 GHz , the maximum flight speed of the UAV is 50 m/s , ℎ� is -50 dB,B is 1 

MHz, the channel noise interference �� is -95 dBm, the transmission power ��is set to 

0.1 W, and the total amount of batteries at the initial time is 500000 J, the specific 

parameters are shown in Table 1. 

Table 1. Parameter setting table 

System  parameters Value 

N 4 

!�� 0.2GHz 

� 1000 cycles/bit 

"�
��	 320 

!��� 1.12GHz 

ℎ
 -50dB 

B 1MHz 

#� -95dBm 

	 0.1W 

E 500000J 

k 40 

H 100m 

$� ! 9400g 

�����_���� 0.0002 

����	 0.12 

∁ 2 

% 4700 

�"	# 1 


 10-27 

4.2.  Analysis of Results 

Figure 2 depicts the convergence performance of the reward function of the GPER-

DDPG algorithm, from which it can be found that the value of the reward function rises 

sharply in Episode for 300 times, and then basically reaches a stable value within 600 

times. This is mainly because the actions performed by the intelligent agent in the early 

stage of training have a significant impact on the reward value, so the reward function 

will rise sharply. Finally, as the number of training times increases, the neural network 

parameters learned by the intelligent body gradually converge to the optimal value, and 

the reward value then converges to the optimal value. 
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Figure 2. GPER-DDPG reward value curve. 

Figures 3(a) and (b) show the comparison of the convergence performance of the 

three algorithms.3(a) and (b) show the comparison of the convergence performance of 

each algorithm when ��� is 0.2 GHz and 0.4 GHz, respectively. 

From Figure 3(a), it can be found that at the beginning of training, the reward values 

of the three algorithms are basically the same; however, at the late stage of training, the 

optimal reward value of the ordinary DDPG algorithm gradually converges to a 

suboptimal solution; in the comparison between the PER-DDPG and GPER-DDPG 

algorithms, it can be found that, although the two algorithms converge to a similar result, 

the convergence speed of the GPER-DDPG algorithm is significantly better than that of 

the former. This is mainly due to the fact that the GPER-DDPG algorithm introduces 

adaptive action strategy noise, which gradually reduces the action noise during the 

training process and smoothes the convergence process. The convergence performance 

of the improved GPER-DDPG algorithm is 12% better than the normal DDPG algorithm. 

In Figure 3(b), it can be found that the performance of GPER-DDPG algorithm and PER-

DDPG does not have any obvious change, and it can still converge to the optimal 

solution, but the convergence speed of DDPG algorithm decreases obviously, and the 

fluctuation of the convergence process is large. The convergence performance of the 

improved GPER-DDPG algorithm is about 10% higher than that of the ordinary DDPG 

algorithm, and the convergence performance is significantly improved. By comparing 

Figure 3 (a) and (b), it can be found that the maximum rewards of the three algorithms 

are higher than the maximum rewards when ��� is 0.4 than when ��� is 0.2. 

 

(a). ���=0.2GHz 

 

(b). ���=0.4GHz 

Figure 3. Algorithm convergence performance comparison. 

Figure 4 depicts the effect of the number of ground users on the total system delay 

under the five algorithms, from which it can be found that the delay obtained from the 

processing of each algorithm does not change significantly as the number of users 

increases. The improved GPER-DDPG algorithm still obtains the lowest delay, proving 

that it can obtain the optimal control decision in the case of user changes. 
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Figure 4. Impact of the number of users on the total delay. 

Combining the above analysis, the GPER-DDPG algorithm obtains lower maximum 

system delay than both PER-DDPG and DDPG algorithms for different ��� and number 

of users, and the convergence speed is significantly improved. 

5. Conclusion 

In this paper, a UAV-assisted edge computing network model is proposed by combining 

the two technologies of edge computing and UAV, and the GPER-DDPG algorithm is 

used to optimize for the maximum processing delay of the system. The algorithm can 

learn user scheduling, UAV’s flight state, and task offloading ratio from experience to 

optimize the maximum processing delay of the system as the optimization goal. By 

comparing several existing baseline algorithms, the experimental results show that the 

performance of the improved algorithm proposed in this paper improves the performance 

of the DDPG algorithm by about 10~12% compared to the DDPG algorithm. Future 

research will consider the new variables of the system with the energy model 

improvement, synthesize the computational cost, and apply it to new smart connected 

scenarios. 
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