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Abstract. In response to the growing importance of detecting maliciously altered 

images to mitigate their harmful effects, we propose a deep learning-based image 
tampering detection method that incorporates multiscale fusion and anomaly 

assessment. This approach addresses the limitations of existing methods that often 

struggle to detect diverse tampering types and exhibit suboptimal precision and 
localization performance. The proposed method employs a Channel-Spatial 

Attention module to enhance feature representations extracted from multiscale input 

images, thereby capitalizing on both spatial and channel-wise dependencies within 
the data. Furthermore, it uses a Z-score scoring mechanism and an LSTM-based 

mechanism to effectively capture and evaluate anomalous regions within the image. 

These components collectively contribute to a more robust identification of the 
manipulated content. For training supervision, we introduce a binary cross entropy 

loss, which jointly optimizes pixel-level classification and regression tasks, ensuring 

accurate tampering detection and localization. Experimental evaluations 
demonstrate that our method significantly outperforms prevailing tampering 

detection techniques, exhibiting an increase in AUC values ranging from 21% to 

62% and achieving up to a 99.8% improvement in the best F1 score. Specifically, 
on benchmark datasets CASIA1.0, Coverage, and NIST16, our method attains F1 

scores of 0.673, 0.714, and 0.981, respectively, underscoring its superior 

performance across diverse scenarios and tampering types. 
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1. Introduction 

Digital images serve as primary information carriers within communication platforms 

and are extensively acquired and disseminated by individuals[1]. The advent of image 

editing software and deep generative models such as Generative Adversarial Networks 

(GANs) has rendered the manipulation of images increasingly facile. However, 

malicious tampering and dissemination by ill-intentioned actors pose significant 

challenges to societal security and stability, engendering harmful effects. Consequently, 

the field of image forensics has garnered escalating attention. 

Digital image forensics is divided into two principal classes: active and passive 

forensics (also referred to as blind forensics).[2]. Active forensics involves the a priori 
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embedding of information, such as digital signatures and watermarks, into digital images, 

enabling their integrity to be assessed during detection to determine whether 

manipulation has occurred. In contrast, passive or blind forensics operates without 

reliance on prior knowledge, relying solely on the intrinsic properties of the image itself 

for analysis. 

Compared with the former, the latter approach offers broader applicability and lower 

costs, making digital image blind forensics the prevailing focus of current research 

endeavors. The methodology employed in this study is based on blind forensic 

techniques for image tamper detection[3-5]. 

 Image tampering techniques are currently categorized into three main categories: 

copy-move, splicing, and removal[6], as depicted in Figure 1. Currently, there is an 

escalating and sustained interest among researchers within the academic sphere, with 

tampering detection methods evolving into both traditional and deep learning-based 

methodologies. Traditional approaches primarily leverage local image attributes, such as 

color, edges, and texture for detection. Notable algorithms encompassing these strategies 

include Scale-Invariant Feature Transform (SIFT) [7], its enhanced version SURF 

(Speeded Up Robust Features) [8], Discrete Cosine Transform (DCT) [9], and Local 

Binary Patterns (LBP) [10], among others. 

 

Figure 1. Examples of prevalent manipulation methods. 

Although traditional tampering detection methods demonstrate commendable 

robustness against image noise and JPEG compression, they generally exhibit limitations 

in that they are often effective only in detecting tampering within scenarios involving 

single, uncomplicated objects. Among the current surge and maturation of deep learning 

frameworks, numerous methods have emerged that actively learn and extract tampering-

specific features using deep learning models. These methods exhibit superior 

performance in complex regions containing multiple objects and have consequently seen 

widespread adoption. 

In their scholarly contribution, Fu et al. [11] proposed a novel methodology for 

identifying copy-move forgery in digital images that combines feature fusion with 

density-based clustering. This technique leverages the Density-Based Spatial Clustering 

of Applications with Noise (DBSCAN) algorithm to effectively filter out spurious 

correspondences, thus diminishing the incidence of false positive detections within the 

forgery identification procedure. Kwon et al. [12] presented an innovative end-to-end 
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architecture known as the Compressed Artifacts Network, which combines both RGB 

and DCT signal streams. This network concurrently learns the forensic attributes 

associated with compression artifacts across these dual domains, thereby addressing the 

challenge of accurately pinpointing altered areas within manipulated images. Zhang et 

al. [13] presented a multitask network, denoted SE-Network, tailored for splice 

localization. This network incorporates a squeeze-and-excitation attention module to 

facilitate the fusion of features. Wu et al. [14] proposed an Iid-net designed to detect image 

removal tampering. The network relies on NAS-driven feature extraction modules that 

are optimized to uncover subtle yet distinctive traces indicating image removal 

tampering. Bappy et al. [15] constructed a hybrid neural network that intertwines LSTM 

(Long Short-Term Memory) units within an encoder-decoder structure. Hu et al. [16] 

proposed a spatial pyramid attention network (SPAN) that, by integrating a spatial 

pyramid attention mechanism, enables a focus on various scales of detail within the 

image, thereby enhancing the accuracy in pinpointing manipulated areas. Guo et al. [17] 

introduced a hierarchical fine-grained Tampering Detection Localization Network 

(HiFiNet), which addresses image manipulation stemming from conventional image 

editing techniques and deep generative models such as GANs. These methods address 

specific tampering techniques and exhibit inaccurate localization when confronted with 

input images of varying scales. In response to the problems presented in the literature, 

this paper presents MFDA-Net (Multiscale Fusion and Anomaly Detection Networks), 

an approach grounded in multiscale fusion and anomaly detection. MFDA-Net employs 

High-Resolution Representation Network (HRNet), a lightweight network architecture, 

as its base model to enhance training efficiency, upon which further improvements are 

made. 

In the encoder component, the Convolutional Block Attention Module (CBAM) is 

integrated into the multiscale features of the image, thereby augmenting the network’s 

capacity to discern tampered regions. Within the decoder portion, a Z-score mechanism 

and an LSTM mechanism are employed to capture and assess anomalous region features, 

enabling the network to more effectively detect anomalous regions in images and identify 

diverse tampering methods. 

The contributions of this study can be summarized as follows: 

(1)The introduction of a multiscale approach to image tampering detection that is 

capable of addressing tampering in images of differing scale dimensions; 

(2) Use of the Z-score mechanism to recast the image tampering detection problem 

as anomaly detection, leveraging an LSTM network for evaluation, which permits the 

detection of images subjected to various tampering techniques; 

(3)The substantiation of the proposed method’s advanced nature and superiority 

through evaluations on multiple datasets, assessing the tampering detection performance 

of the model. 

2. MFDA-Net 

This study introduces an anomaly detection network based on multiscale fusion to 

address the limitations of existing methods that handle only finite-scale variations. The 

HRNet serves as the backbone encoder, facilitating information exchange via dense 

connections across different scales and effectively integrating features from diverse 

scales, thereby enabling a more comprehensive extraction of tampering characteristics in 

images. The architecture of the proposed network is shown in Figure 2. 

Y. Wang et al. / Detection of Image Tampering262



 
Figure 2. Architecture of the MFDA-Net model. 

MFDA-Net comprises three modules: feature extraction, feature enhancement, and 

anomaly detection. In the feature extraction module, the HRNet is utilized, processing 

the input raw image to generate four outputs of progressively decreasing resolution, 

namely downsampling to one-fourth, one-half, one-eighth, and maintaining the original 

image size. The dense interconnections between these scales not only tackle scale 

variability but also facilitate information exchange, ensuring that each feature contains 

ample information. 

The feature enhancement module employs a CBAM to further boost the extracted 

multiscale features by assigning spatial and channel weights, culminating in feature 

fusion through a concatenation operation. 

The anomaly detection module standardizes local anomaly features in the image 

using the Z-score technique and uses an LSTM network to derive the final detection 

outcome by aggregating information from feature maps at multiple resolutions. 

The anomaly detection module employs the Z-score method to normalize local 

anomaly features in the image and subsequently harnesses an LSTM network to assess 

and integrate the information derived from feature maps at multiple levels of resolution, 

thereby yielding the ultimate anomaly detection result. 

2.1. CBAM 

In the realm of deep learning, CBAM [18] functions as an attention module implemented 

for tasks including, but not limited to, image classification and object localization. It 

endeavors to augment the model’s inherent ability to discriminate and emphasize salient 

features throughout the visual task processing pipeline. Embedded within a 

convolutional neural network, CBAM comprises a two-step process featuring a Channel 

Attention Module (CAM) followed by a Spatial Attention Module (SAM). Both CAM 

and SAM compute separate attention coefficients along the channel and spatial 

dimensions, respectively, which are then pointwise multiplied with the incoming feature 

maps to refine and enhance their quality. This strategic refinement process significantly 

elevates the precision and effectiveness of the model. Figure 3 shows the structure of the 

CBAM module. 
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Figure 3. Structure of the CBAM module 

The CAM utilizes global average pooling and fully connected layers to assess the 

significance of each individual channel within the input data. Based on these 

computations, it dynamically adjusts the weightings of the channels, thus applying a 

learned reweighting scheme to the input accordingly. Conversely, the SAM uses 

convolutional and pooling operations to assess the significance of each spatial location 

and applies multiplicative adjustments at those positions in the input. 

In this study, for convolutional blocks within the feature extraction module, 

convolutional operations yield extracted features F, which are then subjected to CAM to 

obtain channel-wise attended features Mc. Subsequently, a tensor multiplication 

operation combines Mc with the original features F, yielding optimized features F'. This 

process is followed by a similar operation involving F' and features that have undergone 

spatial attention optimization, ultimately producing the final optimized feature map F''. 

The computational procedure is as follows: 

�� � ����� 	 �

��� � ������ 	 ��

                                                                                                   (1) 

where 	 denotes the tensor multiplication operation. 

Through these steps, the CBAM module adaptively selects and attends to the most 

salient channels and positions within the feature map, conditioned on the specific input 

and task at hand. Compared with other attention mechanism modules, CBAM exhibits 

heightened explainability and flexibility, making it suitable for various visual tasks. The 

CBAM module has demonstrated its ability to significantly enhance model performance 

in many tasks. 

2.2. Z-score 

Z-score normalization, also referred to as standard score normalization, is a statistical 

technique that transforms raw data into a standardized form characterized by a zero mean 

and unit standard deviation, thereby enabling comparability among distinct datasets or 

among different features within the same dataset. 

The calculation formula for the Z-score is as follows: 

� � �

�
� ��
��� ��� � ���                                                                                     (2) 
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where σ represents the standard deviation, μ denotes the mean, and x signifies the 

value of an individual feature. 

In this study, the Z-score is used to compute anomaly scores for input data or 

intermediate features. Given that the Z-score quantifies the degree of deviation of each 

feature relative to a reference region—namely, the region where the feature is situated—

it is imperative that this reference region be sufficiently large to avoid misclassifying 

features as anomalies, yet not so extensive as to encompass anomalous regions and 

thereby mistakenly label normal features.  

To address this balance, a multi-resolution approach is adopted, with the reference 

region defined as four distinct regions of varying resolutions: 7×7, 15×15, 31×31, and 

the original feature size. By calculating the Z-score, i.e., the deviation of each feature 

from its respective regional (or global) mean and standard deviation, saliently deviant 

features are effectively highlighted while minimizing the propensity for false positive 

detections. This, in consequence, facilitates the model’s accurate focus on potential 

anomaly regions or critical features of interest.  

2.3. LSTM 

LSTM networks, constituting a variant of neural networks, employ gating mechanisms 

to retain long-range dependency information, frequently proving instrumental in 

addressing distant correlations within sequential data. Such capabilities are particularly 

advantageous for discerning intricate and multifaceted semantic content within images 

and determining whether they have been tampered with. Bunk et al. [19] were the first to 

introduce LSTM to the realm of image forensic analysis for tamper detection, feeding 

resampling-based image features into an LSTM to derive a feature vector used for 

assessing the presence of image manipulation. 

In this study, Z-score deviations obtained after Z-score normalization across various 

resolutions are sequentially fed into LSTM units. This process yields predicted results 

regarding the tampered regions (anomalies) within the image. 

2.4. Loss Function 

The binary cross entropy loss function, denoted as LBCE, is employed to supervise the 

detection and localization losses associated with the manipulated regions within the 

network. The standard mask is partitioned into four distinct scales corresponding to its 

original size, half-size, quarter-size, and eighth-size, labeled G1, G2, G3, and G4. Each 

of these scale-specific masks is subjected to loss computation against the corresponding 

generated prediction masks M1–M4. Subsequently, the final prediction mask Mp is 

paired with the ground truth mask GT for a separate loss calculation.  

The overall loss function Ltotal can thus be represented as follows: 

�total � �BCE �� 
 !"# $
�

%
� �%
&�� ��BCE ��&
 !&�#        (4) 
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3. Experiments 

3.1. Datasets 

To evaluate the performance of the proposed model, we conducted experiments using 

the CASIA[20], Coverage[21], and NIST16 datasets[22]. The division of the datasets is 

presented in Table 1. 

Table 1. Dataset partitioning 

Datasets CASIA1.0 Coverage NIST16 
Training 1377 161 900 

Testing 343 39 224 

Total 1720 200 1124 

The CASIA1.0 dataset comprises two categories of data: genuine and tampered 

images. Genuine images were sourced from the Corel image database, which offers a 

rich diversity of natural scenes. The tampered images, amounting to 921 in total, are 

generated through splicing operations applied to genuine images, thereby emulating 

prevalent splicing forgery practices encountered in actual image manipulation scenarios. 

The dataset’s variety and complexity render it a crucial benchmark for research within 

the relevant domain. 

The Coverage dataset comprises 100 spliced images, each constructed by 

incorporating at least one or more additional elements into an existing image containing 

one or multiple elements within the same scene. Notably, all spliced images in this 

dataset undergo specialized post-processing treatments. 

The NIST16 dataset includes three types of tampering techniques: copy-move, 

splicing, and image inpainting, encompassing 564 manipulated images. Tampering 

operations within the dataset were post-processed to obscure visible artifacts, and 

tampered region masks were used for model assessment. 

3.2. Experimental Settings and Evaluation Metrics 

The proposed model uses the PyTorch deep learning framework and adopts an end-to-

end training approach. All input images are consistently transformed into uniform 

dimensions of 256×256 pixels. Furthermore, the start of the learning rate parameter is 

set to 0.00001. The Adam optimizer was employed, and the graphics card used was an 

NVIDIA GeForce RTX 4060. As the backbone feature extraction network, the pre-

trained hrnetv2_w32 model provided by HRNet official on ImageNet is used, retaining 

its original parameter configuration. 

Tamper detection is classified as a classification problem because tampered regions 

typically constitute a portion of the entire forged image, necessitating the identification 

of whether each pixel in the image belongs to a tampered area. Consequently, the 

distribution of positive and negative samples is highly imbalanced. Thus, this study 

employs the F1-score and AUC (Area Under Curve) metrics to assess the performance 

of the proposed model. The F1 score serves as a pixel-level evaluation metric in image 

detection and is defined as follows: 

'� �
�()*

�()*+,*+,�
            (5) 
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In Equation (5), TP represents the number of correctly classified pixels within the 

tampered region, FP denotes the number of incorrectly classified pixels from the 

authentic region, and FN signifies the number of incorrectly classified pixels within the 

tampered region. The F1 score is a composite measure that considers both precision and 

recall, and it is the harmonic average of the two, with values ranging from 0 to 1, where 

1 indicates the best performance. 

AUC corresponds to the area under the ROC (Receiver Operating Characteristic) 

curve, serving as a rating for binary classification models, generally ranging from 0.5 to 

1. Higher values of both the F1 score and AUC indicate superior localization 

performance of the model. 

3.3. Contrastive Experiments 

To demonstrate the performance of the proposed model in this work, it is compared with 

several prevailing mainstream tamper detection models, namely PSCC [23], ManTraNet 
[24], HiFiNet [17], and HRNet[25], using the NIST16 dataset. Corresponding AUC and F1 

scores are computed for each model, as presented in Table 2. 

Table 2. Comparative Results of Different Models on the NIST16 Dataset. 

 Methods AUC F1 
PSCC 0.654 0.676 

ManTraNet 0.493 0.980 

HiFi-Net 0.628 0.491 

HRNet 0.662 0.963 
Ours 0.798 0.981 

To assess the generalizability of the proposed model, experiments are conducted on 

three distinct datasets: CASIA1.0, Coverage, and NIST16. The corresponding AUC and 

F1 scores for the model’s performance on each dataset are calculated and tabulated in 

Table 3. 

Table 3. Performance of the Proposed Model Across Various Datasets 

Methods AUC F1 
CASIA1.0 0.602 0.673 
Coverage 0.592 0.714 

NIST16 0.798 0.981 

An examination of Tables 2 and 3 reveals that the model presented in this study 

exhibits substantial improvement over various leading mainstream models, attaining the 

highest overall performance with respective AUC and F1 scores of 0.798 and 0.981. 

These results substantiate the notion that the methodologies adopted in this study have 

significant advantages over those employed in comparable existing studies. 

The model demonstrates a slight variation in performance across different datasets. 

Specifically, the lowest F1 value is observed on the CASIA1.0 dataset, which is 

attributed to the fact that this dataset predominantly comprises small-sized images, 

thereby impeding precise tamper localization. Conversely, the model achieves its lowest 

AUC value on the Coverage dataset, likely due to the relatively fewer number of images 

contained therein, which may lead to insufficient learning of the specific characteristics 

inherent in the Coverage dataset, hence the lower AUC score. 
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3.4. Ablation Analysis 

To evaluate the necessity of individual modules within the proposed model, an ablation 

study is conducted on the NIST16 dataset. Using AUC and F1 as evaluation metrics, the 

experimental outcomes are summarized in Table 4. 

Table 4. Ablation Experiment Results 

 Methods AUC F1 
HRNet 0.662 0.963 

HRNet + CBAM 0.689 0.980 

HRNet + SE[26] 0.548 0.979 

HRNet + SK[27] 0.634 0.977 
Ours 0.798 0.981 

This study conducts five sets of experiments comprising the following 

configurations: the original HRNet backbone network, the addition of a CBAM attention 

mechanism, the integration of an SE attention mechanism, the inclusion of an SK 

attention mechanism, and the complete proposed model. 

The experimental results reveal that the proposed model exhibits a marked 

enhancement compared with the bare HRNet backbone network. In the NIST16 dataset, 

the AUC and F1 scores escalated from 0.662 to 0.798 and from 0.963 to 0.981, 

respectively. In the comparative analysis of attention mechanisms, it is evident that the 

model incorporating the CBAM attention mechanism outperforms the others, exhibiting 

an AUC improvement of 26% over the model with the SE attention mechanism and a 

9% increase in AUC relative to the model with the SK attention mechanism. 

With respect to the incorporation of anomaly detection, the proposed model, when 

contrasted against the one solely augmented with the CBAM attention mechanism, 

registers a 16% boost in AUC. This substantiates the effectiveness of the anomaly 

detection module. 

4. Conclusion 

This paper presents an image tampering detection network based on multiscale fusion 

and anomaly assessment. Employing HRNet as the backbone architecture for the 

proposed model, the input images undergo feature extraction and enhancement through 

HRNet’s multi-resolution processing, which selectively emphasizes critical channel-

wise and spatial features. Subsequently, the extracted features are subjected to Z-score 

normalization and further aggregation via an LSTM in the anomaly detection module, 

culminating in the determination of the presence of tampering. Experimental findings 

demonstrate that, when compared against other prevailing approaches on the NIST16 

dataset, as well as across evaluations on three public benchmark datasets—CASIA1.0, 

Coverage, and NIST16—this novel tampering detection method consistently exhibits 

substantial improvements, affirming its efficacy. 
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