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Abstract. With the rapid development of artificial intelligence technology, 

research on autonomous driving technology is becoming increasingly popular. In 
the autonomous driving panoramic imaging system, it is necessary to use image 

stitching technology to perform real-time stitching of image information collected 

by multiple cameras around the vehicle body. Therefore, requirements for image 
data processing include large data volume, high speed, and low power 

consumption. The parallel computing characteristics of Field Programmable Gate 

Array (FPGA) can accelerate key image stitching algorithms. This article focuses 
on hardware acceleration of the RANSAC (Random Sample Consensus) algorithm 

in image stitching. The algorithm is designed in parallel using high-level synthesis 

(HLS) technology and optimized accordingly to find a suitable method for 
algorithm optimization. Comparing the FPGA algorithm circuit with the Open CV 

algorithm program, the hardware running time of the algorithm is only 2.816ms, 

and the processing speed is 38 times faster than the latter. The RANSAC algorithm 
implemented by FPGA meets the requirements of real-time image processing and 

can be applied in real-time image stitching systems. 

Keywords. Image processing, hardware speedup, feature point matching, field 
programmable gate array; parallel optimization; embedded image processing 

1. Introduction 

In the process of automatic driving, when panoramic image system is collecting visual 

information, traditional single camera cannot meet the requirements of high quality and 

wide field of vision at the same time [1]. It is particularly important to use the high 

real-time image stitching technology to splice the images around the car body collected 

by multiple cameras in real time to obtain high-quality images with wide field of view. 

Therefore, real-time is the focus of image mosaic technology. Because of its unique 

parallel characteristics, FPGA can greatly improve the real-time performance of images, 

reaching the ability that is almost invisible to the human eye [2]. High level synthesis 

(HLS) technology is a method of converting high-level language code into hardware 

circuit, which can automatically convert C, C++functions into HDL code, thus greatly 
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reducing the threshold of FPGA design, improving development efficiency and 

reducing costs [3]. 

In recent years, the hardware acceleration of FPGA image mosaic algorithms 

based on HLS has become increasingly prevalent. Zhang [4] and colleagues utilized the 

parallel characteristics of programmable gate arrays to hardware accelerate the FAST 

corner detection algorithm and Sobel edge detection algorithm, employing HLS high-

level synthesis for design and optimization. Li [5] and colleagues developed the 

CLAHE image enhancement algorithm based on ZYNQ, capable of processing 

multiple sets of images and displaying them on HDMI monitors with minimal latency, 

thus demonstrating the real-time performance of image algorithm enhancement. Bouris 

[6] and colleagues leveraged FPAG to accelerate the implementation of the SURF 

feature detection algorithm, achieving a speed of 56 frames per second in standard 

video with 640  480 pixels. Furkan [7] and colleagues implemented the standard 

deviation module and main fusion module using HLS, achieving image fusion in 

hardware and combining two or more images through a color transformation process. 

When compared to other publications on image fusion, it is evident that utilizing HLS 

tools can reduce development time and enhance productivity. 

During the image mosaic process, the matching results from feature point 

extraction often include a significant number of incorrect matches, which can be 

effectively reduced using the RANSAC algorithm [8]. However, when dealing with 

large data volumes, high outlier rates, or complex models, the traditional RANSAC 

algorithm experiences a significant slowdown in computational speed, making it 

impractical for real-time image processing [9]. Therefore, it is necessary to accelerate 

the RANSAC algorithm using an FPGA platform. This paper employs a hardware-

software collaborative approach, leveraging the Vivado HLS development environment 

provided by Xilinx, to encapsulate the RANSAC algorithm IP (Intellectual Property) 

core within the image mosaic system. This approach facilitates FPGA hardware 

acceleration of the RANSAC algorithm, enhancing the real-time performance of image 

processing to meet the requirements of real-time image processing. 

2. RANSAC Algorithm Principle and IP Core Design 

2.1. Principles of RANSAC Algorithm 

The RANSAC algorithm [10], also known as the Random Sampling Consensus 

algorithm, employs an iterative approach to estimate the parameters of a mathematical 

model from a dataset that includes outliers. This algorithm can be used to filter 

coordinate data pairs corresponding to image feature matches, and by utilizing a 

randomly sampled set of matching coordinate pairs, it calculates a homography matrix 

that allows for the seamless merging of two images for the purpose of image 

transformation. 

2.2. RANSAC Algorithm IP Design 

Based on the principles of the RANSAC algorithm, it functions to precisely match 

image feature points and compute image transformation parameters in image mosaic. 

The hierarchical structure of RANSAC algorithm's functions is depicted in Figure 1. 
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In Figure 1, the RANSAC algorithm calls a total of six functional function 

modules, they are checkSubset function, getSubset function, Kernel function, 

findInliers function, computeReprojError function, and RANSACUpdateNumIters 

function. 

 
Figure 1. RANSAC function call hierarchy. 

Figure 2 is the program flow chart of RANSAC algorithm IP design. 

 
Figure 2. Procedure flow chart of RANSAC IP calculation design. 

The specific steps are as follows: 

Step 1: First input the image matching set R, randomly select four matching pairs 

to determine whether it is collinear. 
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Step 2: If collinear, return to randomly select four matching pairs; if it is not 

collinear, the homologous matrix H is calculated by selecting four pairs of matching 

coordinate points. 

Step 3: Using the parameters of matrix H, calculate the fitting error err of all input 

image matching pairs and H. 

Step 4: Use error err to judge the inner point proportion e, and then use the inner 

point proportion e and the last calculated cycle number Iters to calculate the next cycle 

number NIters. 

Step 5: Determine whether NIters is equal to 1, if not, return to randomly select 

four matching pairs to continue the calculation; If it is 1, the loop is no longer used, and 

the final homography matrix H parameter is output as the optimal image transformation 

parameter model. 

2.3. RANSAC Algorithm HLS Source Program Verification  

As shown in Figure 3, the coordinates of the feature matching pair in the figure are the 

test data of the error calculation function, which comes from the partial coordinate data 

filtered by RANSAC algorithm when OpenCV calculates image stitching. The function 

uses the output result of Kernel function as the model parameter to conduct model 

fitting test and comparison with the input data. The image feature matching pairs are 30 

in total. 

 
Figure 3. Error calculation function test data. 

The output results are shown in Figure 4. Figure 4 (a) shows the output results of 

OpenCV with 30 correct data input for this function, and Figure 4 (b) shows the output 

results of HLS with 30 correct data input for this function. As can be seen from the 

figure, the errors are very close to zero because they are internal point data after 

screening. However, there are also errors in the output results of OpenCV and HLS, so 

an obviously wrong data is added as shown in Figure 5, and it is observed whether the 

results calculated by the error calculation function of this data are consistent. 

As can be seen from Figure 5, when the error obtained when the error data is fitted 

with the homologous matrix model is greater than the threshold value, the data is the 

outer point and the inner point set is not included, and the error results are completely 

consistent, which proves that the HLS source program of the error calculation function 

is successfully designed. 
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(a) OpenCV output results                                (b) HLS output results 

Figure 4. Comparison of output results of error calculation functions 

                   

(a) OpenCV output results                        (b) HLS output results 

Figure 5. Comparison of results after adding error data. 

Figure 6 shows the comparison between the output results of RANSAC function 

in OpenCV and HLS. It can be seen from the figure that the homography matrix output 

by the HLS source program of RANSAC function is completely consistent with that of 

OpenCV, except that the HLS source program design of RANSAC is correct when 

some parameter in the matrix is close to zero. 

     
(a)OpenCV output results                                          (b) HLS output results 

Figure 6. RANSAC function output comparison. 

3. Method of algorithm optimization under Vivado HLS development 
environment 

The HLS tool contains various instructions that guide hardware synthesis to produce 

more efficient designs [11]. These instructions include loop pipelining and loop 

expansion, and array partitioning. Since most algorithms contain many loops and arrays 

of data, finding an optimal set of instruction Settings can be a difficult task [12]. 
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3.1. RANSAC algorithm optimization 

3.1.1. Loop optimization 

RANSAC algorithm is the processing of image data. In the IP design of the algorithm, 

the for loop is used in the code to complete the traversal operation of each coordinate 

pair, and the cycle calculation is completed in serial mode, which will greatly reduce 

the computing efficiency. Therefore, the algorithm designed in C/C++ style does not 

have high parallelism when directly transplanted to FPGA environment [13]. In an 

FPGA environment, cycles can be accelerated in a variety of ways. Vivado HLS 

provides a variety of parallel optimization methods, including PIPELINE. 

PIPELINE is the most commonly used method for loop instructions [14]. The 

specific principle is shown in Figure 7. Pipelining allows the for loop to execute 

operations in parallel: the second read operation does not need to wait for the compute 

and write operations to complete before execution begins. It can be compared that the 

cycle after the PIPELINE is reduced to 4 clock cycles. 

 

Figure 7. Pipeline instruction optimization diagram. 

The core loop of RANSAC algorithm is optimized and compared in this design. 

Now we optimize the findliers_labe1 loop for finding the number of inside points. As 

shown in Figure 8 (b), the cycle does not reach the ideal state, and the cycle interval of 

8 is larger. 

 

(a) Before loop optimization 

 

(b) After cycle optimization 

Figure 8. Comprehensive report before and after pipeline optimization. 

As shown in Figure 9 (a), there is a dependency within the findliers_labe1 loop 

that prevents PIPELINE optimization. The loop dependency is due to the presence of 

the good Count variable. Since each iteration operation needs to write the result of the 

array _mask sum into this variable, and each iteration also reads this register value. 

Therefore, a read and write dependency is formed in the iterative operation. For the 

dependencies of the loop, conditional statements are used to separate the relationship 
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between good Count variable and _mask array, and the variable good Count does not 

depend on _mask array. Continue to optimize the cycle PIPELINE. The optimization 

results are shown in Figure 9(c), and the cycle interval reaches the ideal state of 1. 

After optimization, the total cycle delay is 114 clock cycles, compared with 1568 clock 

cycles before optimization, PIPELINE instruction optimization greatly reduces the 

delay. 

               
 (a) Pre-optimization code                                         (b) Optimized code 

 

(c) Optimization results reporting 

Figure 9. Loop dependent pipeline optimization. 

3.1.2. Array optimization 

After the array is synthesized in HLS, it is rendered as memory (RAM, ROM, or FIFO). 

In order to improve the parallelism of array data access and the parallel execution 

ability of the program, the continuous data can be transformed into block or ring 

storage by changing the storage mode of array data. 

As shown in Figure 10, for the RANSAC function structure array m1, m2 also 

uses the ARRAY_PARTITION instruction complete partition mode, and uses dual-port 

ram to improve the read speed. 

 
Figure 10. Complete split array instruction code in RANSAC. 

3.1.3. Interface optimization 

The main function RANSAC interface consists of four data flow interfaces. The 

interface can be configured as the s_axi interface protocol to obtain the maximum 

transfer speed. Figure 11 shows the port of the RTL configured as the s_axi interface 

protocol. 
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Figure 11. RTL port configured as s_axi interface protocol. 

3.2. RANSAC Algorithm Optimization Results Analysis 

This paper balances resource utilization and speed, and pays more attention to 

acceleration algorithm. The final optimization results of RANSAC algorithm are shown 

in Table 1. In the optimized RANSAC1 solution, BRAM_18K occupies 184 resources, 

and the resources occupied by LUT lookup table and FF are 86012 and 76849, 

respectively. Compared with the pre-optimized RANSAC0 solution, the hardware 

resources are slightly increased. Table 1 also shows the delay comparison of IP cores. 

Compared with the non-optimized scheme, the minimum clock cycle is reduced by 

6.19% and the maximum clock cycle is reduced by 13%. The optimization method can 

improve the efficiency of the image Mosaic system without increasing the hardware 

resources. 

Table 1. Comparison of resources and clock cycles before and after optimization 

 
Required resources 
LUT FF RAM(bit) 

Latency 
(min) 

Latency 
(max) 

RANSAC0 77299 71399 174 8051 2113477 

RANSAC1 86012 76849 184 7552 1828347 

4. System Implementation and Analysis 

4.1. System Construction 

After Vivado HLS generates the RANSAC algorithm IP core, it is added to Vivado's 

Block Design and connected to other modules. The system structure block diagram of 

RANSAC algorithm is shown in Figure 12. 
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Figure 12. RANSAC algorithm verification system structure. 

Create the IP core of the ZYNQ system, configure the DDR, UART0, and lead out 

the 50MHz PL clock and a reset signal. The whole system is connected through AXI 

Interconnect IP to realize data communication between PS and PL. Finally, the driver is 

written using SDK platform. The PS part is configured in the SDK environment, which 

includes configuring the IP of the algorithm, as well as configuring the input and output 

of the data. After the program is burned, the data can be output in the SDK platform to 

verify the correctness of the algorithm. 

4.2. System Test and Analysis 

Figure 13 shows the output result of hardware operation. 112 pairs of input coordinate 

data are double type data, which is converted into hexadecimal data and written into the 

sorted register address first, as shown in Figure 13 (a). The data results calculated by 

RANSAC algorithm are shown in Figure 13 (b), which is converted into double data 

output as shown in Figure 13 (c). It can be seen that the hardware operation results are 

consistent with the HLS simulation results, which proves that the hardware functions 

are correct. 

 

(a) Write register data 

             
(b) Homography Matrix Results                   (c) Convert to double data output result 

Figure 13. Hardware operation output. 
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The unified input parameters of RANSAC algorithm in OpenCV and HLS are 112 

pairs of image coordinates obtained after rough matching with ORB algorithm. The 

data in Table 2 are the IP check ratio results of OpenCV and RANSAC algorithm. It 

can be seen that the obtained 8 parameter data are not exactly the same. Since the 

parameters of the homologous transformation matrix calculated by the RANSAC 

algorithm IP kernel are not exactly the same as OpenCV, the two-dimensional 

correlation coefficient corr2 function of MATLAB is used to calculate the similarity of 

the matrix.

The formula for calculating the two-dimensional correlation coefficient between 

matrices is as follows:

(4.1)

Where M and N are the number of rows and columns of the matrix, are the 

average value of all elements of matrix A, are the average value of all elements of 

matrix B, and r is the correlation coefficient of matrix A and B.

When A and B are not correlated, that is, A and B are independent; The closer r is 

to 1, the more correlated A and B are. Until then, A and B are linearly correlated, that 

is, A and B are linearly proportional.

Table 2. Comparison of results of RANSAC algorithm

Group Name
The H parameter of OpenCV

( 133 �h ) Hardware output H parameter( 133 �h ) matrix
Similarity

C

1.025155704749668

0.001839434873948079
-408.5725443207193

-0.02256456101563815

1.00035943978395
7.94349623216679

-2.124402347316837e-05

1.228399338248041e-05

0.982399

-0.00370534
-387.159

-0.0262459

0.970867
10.4707

-6.09826e-005

2.18133e-006

1.0000

D

0.9635532197542308

0.007343239790621947

-178.7862994757098
-0.007145752763137457

0.9835752885501619 

1.588615779543054
-9.285904610154091e-05 

5.125834220430886e-05

1.01896   

0.00868041 

-190.507 
0.00140368 

1.01832 

-0.622146
3.48255e-005  

7.5353e-005 

0.9999

The correlation coefficient between the homography matrix parameters and 

OpenCV obtained by RANSAC algorithm HLS source program is calculated. The 

closer to 1, the more correct the designed algorithm is proved. If the error is not large, 

it can be applied to the real test graph group to view the output homography matrix 

results and picture stitching effects, and judge the practical application results of the 

RANSAC algorithm.

In Table 2, it is calculated that the similarity of the two matrices in group C is 1, 

and the similarity of the two matrices in group D is 0.9999. Therefore, the IP core of 

the RANSAC algorithm designed in this paper can be considered effective, and the 

algorithm can be applied in the image stitching system instead of the original algorithm 

to test its practical application effect.
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By setting the timing function in the program, you can calculate the data transfer 

and RANSAC algorithm calculation processing time. OpenCV running time is 

110.698ms, RANSAC algorithm in hardware running time is 2.816ms, hardware time 

is about 1/39 of the software time, it can be seen that the use of FPGA hardware to 

accelerate RANSAC algorithm is more efficient. 

Table 3 compares this article to hardware implementations of other RANSAC 

algorithms. In terms of resources, the RANSAC algorithm IP designed in this paper 

consumes far less resources in LUT and RAM than other research results in the table, 

while the FF resource consumption increases. In terms of speed, the algorithm time of 

literature [15] and literature [16] is 26.8ms and 2.063ms, which is much lower than this 

design. Literature [17] and literature [18] have the same purpose as the RANSAC 

algorithm IP designed in this paper, which is used to optimize image feature point 

matching. The processing speed designed in this paper is much higher than that in the 

literature [17]. Although reference [18] is slightly higher than the design in this paper, 

it only supports a fixed number of 128 matching pairs. The feature point screening of 

arbitrary matching pairs is designed in this paper. 

Table 3. Hardware circuit performance comparison of RANSAC algorithm 

5. Conclusions 

This paper employs Vivado to accomplish the IP encapsulation design for the 

RANSAC refinement algorithm, and identifies an optimization method apt for the 

RANSAC algorithm. Upon completion of the design, a RANSAC algorithm system 

based on FPGA was constructed, underwent hardware verification, design performance 

evaluation, and a comparison of software and hardware. The results indicate that the 

FPGA achieves low power consumption and consumes fewer resources. By utilizing a 

hardware-accelerated RANSAC algorithm IP core, the hardware execution time for 

image processing is shortened to 2.816ms, a significant reduction to 2.54% of the 

software execution time, ensuring the algorithm's real-time performance. 

The research work of this paper is relatively limited, and it is only a beginning 

work, which needs to be further improved and deepened. The work that deserves 

further study mainly includes: 

(1) The part of image acquisition by camera is not designed in this paper, and the 

part of image acquisition by camera can be added to the image stitching algorithm in 

the future. 

(2) The input and output part of the RANSAC algorithm source program is 

designed to use a coordinate array, not an image array, and the input and output of the 

algorithm can be improved later, so that the algorithm becomes a complete middle part 

of the image stitching processing. 

 
Clock rate 

(MHz) 

Required resources 

LUT    FF     RAM 

Processing 

quantity 

Processing 

time(ms) 

Mao [15]  100 —      —      — — 26.8 

Jiang [16]  100 91870   66750   — 1400 2.063 

Vourvoulakis [17]  15 98980   11438   5632 128 22.87 

Vourvoulakis [18]  15 90326   11430   2448 128 0.5458 

Proposed 100 88789   79298   184 112 2.816 
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(3) This paper only completes the hardware acceleration of some algorithms in 

image stitching, and the hardware acceleration of the whole image stitching algorithm 

can be realized later. 
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