
Optimization and FPGA Implementation of

RANSAC Algorithm Based on HLS

Chenglong LIANa, Yanbing XUEb, Xiaojie LIa, Panshi HUa and Chong FENGc,1
aSchool of computer and communication engineering, Dalian Jiaotong University,

Dalian 116028, China
bCollege of automation and electrical engineering, Dalian Jiaotong University, Dalian

116028, China
cSchool of information and communication engineering, Dalian Minzu University,

Dalian 116600, China

Abstract. With the rapid development of artificial intelligence technology,

research on autonomous driving technology is becoming increasingly popular. In
the autonomous driving panoramic imaging system, it is necessary to use image

stitching technology to perform real-time stitching of image information collected

by multiple cameras around the vehicle body. Therefore, requirements for image
data processing include large data volume, high speed, and low power

consumption. The parallel computing characteristics of Field Programmable Gate

Array (FPGA) can accelerate key image stitching algorithms. This article focuses
on hardware acceleration of the RANSAC (Random Sample Consensus) algorithm

in image stitching. The algorithm is designed in parallel using high-level synthesis

(HLS) technology and optimized accordingly to find a suitable method for
algorithm optimization. Comparing the FPGA algorithm circuit with the Open CV

algorithm program, the hardware running time of the algorithm is only 2.816ms,

and the processing speed is 38 times faster than the latter. The RANSAC algorithm
implemented by FPGA meets the requirements of real-time image processing and

can be applied in real-time image stitching systems.

Keywords. Image processing, hardware speedup, feature point matching, field
programmable gate array; parallel optimization; embedded image processing

1. Introduction

In the process of automatic driving, when panoramic image system is collecting visual

information, traditional single camera cannot meet the requirements of high quality and

wide field of vision at the same time [1]. It is particularly important to use the high

real-time image stitching technology to splice the images around the car body collected

by multiple cameras in real time to obtain high-quality images with wide field of view.

Therefore, real-time is the focus of image mosaic technology. Because of its unique

parallel characteristics, FPGA can greatly improve the real-time performance of images,

reaching the ability that is almost invisible to the human eye [2]. High level synthesis

(HLS) technology is a method of converting high-level language code into hardware

circuit, which can automatically convert C, C++functions into HDL code, thus greatly

1 Corresponding Author: Chong FENG, fengchong@dlnu.edu.cn.

Image Processing, Electronics and Computers
L. Trajkovic et al. (Eds.)
© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/ATDE240473

223

reducing the threshold of FPGA design, improving development efficiency and

reducing costs [3].

In recent years, the hardware acceleration of FPGA image mosaic algorithms

based on HLS has become increasingly prevalent. Zhang [4] and colleagues utilized the

parallel characteristics of programmable gate arrays to hardware accelerate the FAST

corner detection algorithm and Sobel edge detection algorithm, employing HLS high-

level synthesis for design and optimization. Li [5] and colleagues developed the

CLAHE image enhancement algorithm based on ZYNQ, capable of processing

multiple sets of images and displaying them on HDMI monitors with minimal latency,

thus demonstrating the real-time performance of image algorithm enhancement. Bouris

[6] and colleagues leveraged FPAG to accelerate the implementation of the SURF

feature detection algorithm, achieving a speed of 56 frames per second in standard

video with 640 480 pixels. Furkan [7] and colleagues implemented the standard

deviation module and main fusion module using HLS, achieving image fusion in

hardware and combining two or more images through a color transformation process.

When compared to other publications on image fusion, it is evident that utilizing HLS

tools can reduce development time and enhance productivity.

During the image mosaic process, the matching results from feature point

extraction often include a significant number of incorrect matches, which can be

effectively reduced using the RANSAC algorithm [8]. However, when dealing with

large data volumes, high outlier rates, or complex models, the traditional RANSAC

algorithm experiences a significant slowdown in computational speed, making it

impractical for real-time image processing [9]. Therefore, it is necessary to accelerate

the RANSAC algorithm using an FPGA platform. This paper employs a hardware-

software collaborative approach, leveraging the Vivado HLS development environment

provided by Xilinx, to encapsulate the RANSAC algorithm IP (Intellectual Property)

core within the image mosaic system. This approach facilitates FPGA hardware

acceleration of the RANSAC algorithm, enhancing the real-time performance of image

processing to meet the requirements of real-time image processing.

2. RANSAC Algorithm Principle and IP Core Design

2.1. Principles of RANSAC Algorithm

The RANSAC algorithm [10], also known as the Random Sampling Consensus

algorithm, employs an iterative approach to estimate the parameters of a mathematical

model from a dataset that includes outliers. This algorithm can be used to filter

coordinate data pairs corresponding to image feature matches, and by utilizing a

randomly sampled set of matching coordinate pairs, it calculates a homography matrix

that allows for the seamless merging of two images for the purpose of image

transformation.

2.2. RANSAC Algorithm IP Design

Based on the principles of the RANSAC algorithm, it functions to precisely match

image feature points and compute image transformation parameters in image mosaic.

The hierarchical structure of RANSAC algorithm's functions is depicted in Figure 1.

C. Lian et al. / Optimization and FPGA Implementation of RANSAC Algorithm Based on HLS224

In Figure 1, the RANSAC algorithm calls a total of six functional function

modules, they are checkSubset function, getSubset function, Kernel function,

findInliers function, computeReprojError function, and RANSACUpdateNumIters

function.

Figure 1. RANSAC function call hierarchy.

Figure 2 is the program flow chart of RANSAC algorithm IP design.

Figure 2. Procedure flow chart of RANSAC IP calculation design.

The specific steps are as follows:

Step 1: First input the image matching set R, randomly select four matching pairs

to determine whether it is collinear.

C. Lian et al. / Optimization and FPGA Implementation of RANSAC Algorithm Based on HLS 225

Step 2: If collinear, return to randomly select four matching pairs; if it is not

collinear, the homologous matrix H is calculated by selecting four pairs of matching

coordinate points.

Step 3: Using the parameters of matrix H, calculate the fitting error err of all input

image matching pairs and H.

Step 4: Use error err to judge the inner point proportion e, and then use the inner

point proportion e and the last calculated cycle number Iters to calculate the next cycle

number NIters.

Step 5: Determine whether NIters is equal to 1, if not, return to randomly select

four matching pairs to continue the calculation; If it is 1, the loop is no longer used, and

the final homography matrix H parameter is output as the optimal image transformation

parameter model.

2.3. RANSAC Algorithm HLS Source Program Verification

As shown in Figure 3, the coordinates of the feature matching pair in the figure are the

test data of the error calculation function, which comes from the partial coordinate data

filtered by RANSAC algorithm when OpenCV calculates image stitching. The function

uses the output result of Kernel function as the model parameter to conduct model

fitting test and comparison with the input data. The image feature matching pairs are 30

in total.

Figure 3. Error calculation function test data.

The output results are shown in Figure 4. Figure 4 (a) shows the output results of

OpenCV with 30 correct data input for this function, and Figure 4 (b) shows the output

results of HLS with 30 correct data input for this function. As can be seen from the

figure, the errors are very close to zero because they are internal point data after

screening. However, there are also errors in the output results of OpenCV and HLS, so

an obviously wrong data is added as shown in Figure 5, and it is observed whether the

results calculated by the error calculation function of this data are consistent.

As can be seen from Figure 5, when the error obtained when the error data is fitted

with the homologous matrix model is greater than the threshold value, the data is the

outer point and the inner point set is not included, and the error results are completely

consistent, which proves that the HLS source program of the error calculation function

is successfully designed.

C. Lian et al. / Optimization and FPGA Implementation of RANSAC Algorithm Based on HLS226

(a) OpenCV output results (b) HLS output results

Figure 4. Comparison of output results of error calculation functions

(a) OpenCV output results (b) HLS output results

Figure 5. Comparison of results after adding error data.

Figure 6 shows the comparison between the output results of RANSAC function

in OpenCV and HLS. It can be seen from the figure that the homography matrix output

by the HLS source program of RANSAC function is completely consistent with that of

OpenCV, except that the HLS source program design of RANSAC is correct when

some parameter in the matrix is close to zero.

(a)OpenCV output results (b) HLS output results

Figure 6. RANSAC function output comparison.

3. Method of algorithm optimization under Vivado HLS development
environment

The HLS tool contains various instructions that guide hardware synthesis to produce

more efficient designs [11]. These instructions include loop pipelining and loop

expansion, and array partitioning. Since most algorithms contain many loops and arrays

of data, finding an optimal set of instruction Settings can be a difficult task [12].

C. Lian et al. / Optimization and FPGA Implementation of RANSAC Algorithm Based on HLS 227

3.1. RANSAC algorithm optimization

3.1.1. Loop optimization

RANSAC algorithm is the processing of image data. In the IP design of the algorithm,

the for loop is used in the code to complete the traversal operation of each coordinate

pair, and the cycle calculation is completed in serial mode, which will greatly reduce

the computing efficiency. Therefore, the algorithm designed in C/C++ style does not

have high parallelism when directly transplanted to FPGA environment [13]. In an

FPGA environment, cycles can be accelerated in a variety of ways. Vivado HLS

provides a variety of parallel optimization methods, including PIPELINE.

PIPELINE is the most commonly used method for loop instructions [14]. The

specific principle is shown in Figure 7. Pipelining allows the for loop to execute

operations in parallel: the second read operation does not need to wait for the compute

and write operations to complete before execution begins. It can be compared that the

cycle after the PIPELINE is reduced to 4 clock cycles.

Figure 7. Pipeline instruction optimization diagram.

The core loop of RANSAC algorithm is optimized and compared in this design.

Now we optimize the findliers_labe1 loop for finding the number of inside points. As

shown in Figure 8 (b), the cycle does not reach the ideal state, and the cycle interval of

8 is larger.

(a) Before loop optimization

(b) After cycle optimization

Figure 8. Comprehensive report before and after pipeline optimization.

As shown in Figure 9 (a), there is a dependency within the findliers_labe1 loop

that prevents PIPELINE optimization. The loop dependency is due to the presence of

the good Count variable. Since each iteration operation needs to write the result of the

array _mask sum into this variable, and each iteration also reads this register value.

Therefore, a read and write dependency is formed in the iterative operation. For the

dependencies of the loop, conditional statements are used to separate the relationship

C. Lian et al. / Optimization and FPGA Implementation of RANSAC Algorithm Based on HLS228

between good Count variable and _mask array, and the variable good Count does not

depend on _mask array. Continue to optimize the cycle PIPELINE. The optimization

results are shown in Figure 9(c), and the cycle interval reaches the ideal state of 1.

After optimization, the total cycle delay is 114 clock cycles, compared with 1568 clock

cycles before optimization, PIPELINE instruction optimization greatly reduces the

delay.

 (a) Pre-optimization code (b) Optimized code

(c) Optimization results reporting

Figure 9. Loop dependent pipeline optimization.

3.1.2. Array optimization

After the array is synthesized in HLS, it is rendered as memory (RAM, ROM, or FIFO).

In order to improve the parallelism of array data access and the parallel execution

ability of the program, the continuous data can be transformed into block or ring

storage by changing the storage mode of array data.

As shown in Figure 10, for the RANSAC function structure array m1, m2 also

uses the ARRAY_PARTITION instruction complete partition mode, and uses dual-port

ram to improve the read speed.

Figure 10. Complete split array instruction code in RANSAC.

3.1.3. Interface optimization

The main function RANSAC interface consists of four data flow interfaces. The

interface can be configured as the s_axi interface protocol to obtain the maximum

transfer speed. Figure 11 shows the port of the RTL configured as the s_axi interface

protocol.

C. Lian et al. / Optimization and FPGA Implementation of RANSAC Algorithm Based on HLS 229

Figure 11. RTL port configured as s_axi interface protocol.

3.2. RANSAC Algorithm Optimization Results Analysis

This paper balances resource utilization and speed, and pays more attention to

acceleration algorithm. The final optimization results of RANSAC algorithm are shown

in Table 1. In the optimized RANSAC1 solution, BRAM_18K occupies 184 resources,

and the resources occupied by LUT lookup table and FF are 86012 and 76849,

respectively. Compared with the pre-optimized RANSAC0 solution, the hardware

resources are slightly increased. Table 1 also shows the delay comparison of IP cores.

Compared with the non-optimized scheme, the minimum clock cycle is reduced by

6.19% and the maximum clock cycle is reduced by 13%. The optimization method can

improve the efficiency of the image Mosaic system without increasing the hardware

resources.

Table 1. Comparison of resources and clock cycles before and after optimization

Required resources
LUT FF RAM(bit)

Latency
(min)

Latency
(max)

RANSAC0 77299 71399 174 8051 2113477

RANSAC1 86012 76849 184 7552 1828347

4. System Implementation and Analysis

4.1. System Construction

After Vivado HLS generates the RANSAC algorithm IP core, it is added to Vivado's

Block Design and connected to other modules. The system structure block diagram of

RANSAC algorithm is shown in Figure 12.

C. Lian et al. / Optimization and FPGA Implementation of RANSAC Algorithm Based on HLS230

Figure 12. RANSAC algorithm verification system structure.

Create the IP core of the ZYNQ system, configure the DDR, UART0, and lead out

the 50MHz PL clock and a reset signal. The whole system is connected through AXI

Interconnect IP to realize data communication between PS and PL. Finally, the driver is

written using SDK platform. The PS part is configured in the SDK environment, which

includes configuring the IP of the algorithm, as well as configuring the input and output

of the data. After the program is burned, the data can be output in the SDK platform to

verify the correctness of the algorithm.

4.2. System Test and Analysis

Figure 13 shows the output result of hardware operation. 112 pairs of input coordinate

data are double type data, which is converted into hexadecimal data and written into the

sorted register address first, as shown in Figure 13 (a). The data results calculated by

RANSAC algorithm are shown in Figure 13 (b), which is converted into double data

output as shown in Figure 13 (c). It can be seen that the hardware operation results are

consistent with the HLS simulation results, which proves that the hardware functions

are correct.

(a) Write register data

(b) Homography Matrix Results (c) Convert to double data output result

Figure 13. Hardware operation output.

C. Lian et al. / Optimization and FPGA Implementation of RANSAC Algorithm Based on HLS 231

The unified input parameters of RANSAC algorithm in OpenCV and HLS are 112

pairs of image coordinates obtained after rough matching with ORB algorithm. The

data in Table 2 are the IP check ratio results of OpenCV and RANSAC algorithm. It

can be seen that the obtained 8 parameter data are not exactly the same. Since the

parameters of the homologous transformation matrix calculated by the RANSAC

algorithm IP kernel are not exactly the same as OpenCV, the two-dimensional

correlation coefficient corr2 function of MATLAB is used to calculate the similarity of

the matrix.

The formula for calculating the two-dimensional correlation coefficient between

matrices is as follows:

(4.1)

Where M and N are the number of rows and columns of the matrix, are the

average value of all elements of matrix A, are the average value of all elements of

matrix B, and r is the correlation coefficient of matrix A and B.

When A and B are not correlated, that is, A and B are independent; The closer r is

to 1, the more correlated A and B are. Until then, A and B are linearly correlated, that

is, A and B are linearly proportional.

Table 2. Comparison of results of RANSAC algorithm

Group Name
The H parameter of OpenCV

(133 �h) Hardware output H parameter(133 �h) matrix
Similarity

C

1.025155704749668

0.001839434873948079
-408.5725443207193

-0.02256456101563815

1.00035943978395
7.94349623216679

-2.124402347316837e-05

1.228399338248041e-05

0.982399

-0.00370534
-387.159

-0.0262459

0.970867
10.4707

-6.09826e-005

2.18133e-006

1.0000

D

0.9635532197542308

0.007343239790621947

-178.7862994757098
-0.007145752763137457

0.9835752885501619

1.588615779543054
-9.285904610154091e-05

5.125834220430886e-05

1.01896

0.00868041

-190.507
0.00140368

1.01832

-0.622146
3.48255e-005

7.5353e-005

0.9999

The correlation coefficient between the homography matrix parameters and

OpenCV obtained by RANSAC algorithm HLS source program is calculated. The

closer to 1, the more correct the designed algorithm is proved. If the error is not large,

it can be applied to the real test graph group to view the output homography matrix

results and picture stitching effects, and judge the practical application results of the

RANSAC algorithm.

In Table 2, it is calculated that the similarity of the two matrices in group C is 1,

and the similarity of the two matrices in group D is 0.9999. Therefore, the IP core of

the RANSAC algorithm designed in this paper can be considered effective, and the

algorithm can be applied in the image stitching system instead of the original algorithm

to test its practical application effect.

C. Lian et al. / Optimization and FPGA Implementation of RANSAC Algorithm Based on HLS232

By setting the timing function in the program, you can calculate the data transfer

and RANSAC algorithm calculation processing time. OpenCV running time is

110.698ms, RANSAC algorithm in hardware running time is 2.816ms, hardware time

is about 1/39 of the software time, it can be seen that the use of FPGA hardware to

accelerate RANSAC algorithm is more efficient.

Table 3 compares this article to hardware implementations of other RANSAC

algorithms. In terms of resources, the RANSAC algorithm IP designed in this paper

consumes far less resources in LUT and RAM than other research results in the table,

while the FF resource consumption increases. In terms of speed, the algorithm time of

literature [15] and literature [16] is 26.8ms and 2.063ms, which is much lower than this

design. Literature [17] and literature [18] have the same purpose as the RANSAC

algorithm IP designed in this paper, which is used to optimize image feature point

matching. The processing speed designed in this paper is much higher than that in the

literature [17]. Although reference [18] is slightly higher than the design in this paper,

it only supports a fixed number of 128 matching pairs. The feature point screening of

arbitrary matching pairs is designed in this paper.

Table 3. Hardware circuit performance comparison of RANSAC algorithm

5. Conclusions

This paper employs Vivado to accomplish the IP encapsulation design for the

RANSAC refinement algorithm, and identifies an optimization method apt for the

RANSAC algorithm. Upon completion of the design, a RANSAC algorithm system

based on FPGA was constructed, underwent hardware verification, design performance

evaluation, and a comparison of software and hardware. The results indicate that the

FPGA achieves low power consumption and consumes fewer resources. By utilizing a

hardware-accelerated RANSAC algorithm IP core, the hardware execution time for

image processing is shortened to 2.816ms, a significant reduction to 2.54% of the

software execution time, ensuring the algorithm's real-time performance.

The research work of this paper is relatively limited, and it is only a beginning

work, which needs to be further improved and deepened. The work that deserves

further study mainly includes:

(1) The part of image acquisition by camera is not designed in this paper, and the

part of image acquisition by camera can be added to the image stitching algorithm in

the future.

(2) The input and output part of the RANSAC algorithm source program is

designed to use a coordinate array, not an image array, and the input and output of the

algorithm can be improved later, so that the algorithm becomes a complete middle part

of the image stitching processing.

Clock rate

(MHz)

Required resources

LUT FF RAM

Processing

quantity

Processing

time(ms)

Mao [15] 100 — — — — 26.8

Jiang [16] 100 91870 66750 — 1400 2.063

Vourvoulakis [17] 15 98980 11438 5632 128 22.87

Vourvoulakis [18] 15 90326 11430 2448 128 0.5458

Proposed 100 88789 79298 184 112 2.816

C. Lian et al. / Optimization and FPGA Implementation of RANSAC Algorithm Based on HLS 233

(3) This paper only completes the hardware acceleration of some algorithms in

image stitching, and the hardware acceleration of the whole image stitching algorithm

can be realized later.

Acknowledgement

First of all, I would like to thank my mentor Xue Yanbing for his careful training of me.

She gave me unselfish guidance and took pains to help me revise and improve my

thesis. I would also like to thank teacher Feng Chong for solving the difficulties

encountered in my research.

I would also like to thank the students of the research group, without your support

and assistance, I could not solve these difficulties and doubts.

Finally, I would like to thank the fund project: Applied Basic Research Project of

Liaoning Provincial Department of Science and Technology (2022JH2/101300267) for

its support.

Reference

[1] Yan Xiwen. Research and implementation of embedded vehicle panoramic vision system. Guangdong

University of Technology, 2022.
[2] Zhang Liguo, Lei Xuanrui, Jin Mei, et al. Design of circuit board defect detection System based on

image processing. High-tech Communications, 2019, 34(02): 209-217.

[3] Zhang Canyu, Feng Ansong, Zhang Hualiang, et al. Design of an image processing hardware
acceleration system based on FPGA. Computer Engineering and Design, 2024, 45(03): 723-731.

[4] Li Xiaoqi, Wang Yunfeng, Wu Qiannan, et al. Real-time acceleration design of CLAHE image

enhancement Algorithm based on ZYNQ. SCM and Embedded System Applications, 2019, 23(11):
49-53.

[5] Wang Yunfeng, Fan Zhengji, He Xin, et al. Design of real-time endoscopic dark area enhancement

algorithm based on Vivado HLS. Electronic measurement technology, 2022, (23): 31-37.
[6] Bouris Dimitris, Antonis Nikitakis, and Ioannis Papaefstathiou. Fast and Efficient FPGA-based

Feature Detection Employing the SURF Algorithm. IEEE International Symposium on Field-

programmable Custom Computing those. IEEE, 2010: 3-10.
[7] Aydin Furkan, H. Fatih Ugurdag, Vecdi Emre Levent, Aydin Emre Guzel, N. Fajar R. Annafianto, M.

Akif Ozkan, Toygar Akgun, and Cengiz Erbas. Rapid Design of Real-Time Image Fusion on FPGA

using HLS and Other Techniques. 2018 IEEE/ACS 15th International Conference on Computer
Systems and Applications (AICCSA). IEEE, 2018: 1-6.

[8] Cao Haojie, Zhang Xu. A real-time microscopic image Mosaic Method based on Improved ORB

Algorithm. Automation & Instrumentation, 2024, (03): 18-25.
[9] Zhao Z, Wang F, Ni Q. An FPGA-based Hardware Accelerator of RANSAC Algorithm for Matching

of Images Feature Points. 2019 IEEE 13th International Conference on ASIC (ASICON). IEEE, 2019.

[10] Wang Jiachen, Ye Zhurun, Ou Xin, et al. Research on GPU-based parallel ICP point cloud registration
algorithm. Journal of Hefei University of Technology (Natural Science Edition), 2023, 46(11): 1501-

1505.

[11] Zhao Sijie, Gao Shengshang, Wang Rugang, et al. Image zooming based on HLS and PYNQ hardware
accelerator design. Journal of yancheng institute of technology (Natural Science Edition), 2023, 4 (02):

55-60.

[12] Wei Sulun, Tao Qingchuan. Implementation of Mobile-Net accelerator based on HLS. Modern
Computer, 2023, 29(08): 91-97.

[13] Xu Cheng, Guo Jinyang, Li Chao, et al. Developing heterogeneous FPGA acceleration systems using

HLS: Problems, optimization methods, and opportunities. Computer Science and Exploration, 2019,
17(08): 1729-1748.

[14] Zhang Ruihao, Li Xiaoqi, Dang Lizhi, et al. Noise removal algorithm of image sensor FPN based on

Vivado HLS. Application of single Chip Microcomputer and Embedded system, 2019, 23(12): 55-
58+62.

C. Lian et al. / Optimization and FPGA Implementation of RANSAC Algorithm Based on HLS234

[15] Mao Xin, Yan libing, Song Jianbo. Image registration algorithm based on RANSAC and Mutual
information and its hardware implementation. Electro-optics & Control, 2022, 29(06): 72-76.

[16] Jiang Jie, Ling Sirui. A voting parallel RANSAC algorithm and its FPGA implementation. Journal of

Electronics and Information Technology, 2014, 36(05): 1145-1150.
[17] Vourvoulakis John, John Kalomiros and John Lygouras. FPGA accelerator for real-time SIFT

matching with RANSAC support. Microprocessors and Microsystems, 2016, 49:105-116.

[18] Vourvoulakis John, John Kalomiros and John Lygouras. FPGA-based architecture of a real-time SIFT
matcher and RANSAC algorithm for robotic vision applications. Multimedia Tools and Applications,

2018, 77: 9393-9415.

C. Lian et al. / Optimization and FPGA Implementation of RANSAC Algorithm Based on HLS 235

