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Abstract. In the field of plant taxonomy, species often exhibit high levels of 
similarity in morphological features, color expression, and surface textures, while 

also containing rich and complex detail information. These characteristics pose 

significant challenges in the identification and classification process. Traditional 
machine learning cannot extract features comprehensively and accurately. This 

study leverages the Swin Transformer combined with image enhancement 

algorithms for plant image classification. On one hand, it benefits from enlarging 
the inter-class distance to improve classification accuracy; on the other hand, it 

addresses the issue of high computational complexity in large-scale plant image 

processing. By integrating the Swin Transformer with advanced image 
enhancement techniques in the task of plant image classification, a significant 

performance improvement has been achieved. Compared to using the Swin 

Transformer method alone, this integrated strategy has shown superior results, 
achieving an accuracy of 89.03% in plant classification tasks. This paper focuses 

on the plant image classification process based on the Swin Transformer with 

image enhancement algorithms. 
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1. Introduction 

Plant image classification is a significant research direction in the field of computer 

vision, which can help relevant fields better understand and utilize the diverse plant 

resources. Many scholars have made outstanding contributions to this field, yet there are 

still some problems in practical applications. Therefore, this paper aims to propose a 

new method that achieves high classification accuracy and practicality, providing a more 

effective solution for the application of plant image classification. In the current field of 

plant classification, models such as Convolutional Neural Networks[1], AlexNet[2], 

VGG[3-5], GoogLeNet[6,7], and ResNet[8-10]are commonly used. Agarwal[11] et al. 

proposed a CNN model for plant detection using leaf images, which classifies 10 types 

of leaf images using 3 convolutional layers, 3 max pooling layers, and 2 fully connected 

layers. Experimental data show that compared with pretrained models like VGG16 

(77.20%) and MobileNet[12](63.75%), Agarwal's method achieved the highest test 
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accuracy of 91.20%. Guo et al.[13] proposed a multi-scale detection convolutional 

neural network model, which can better extract plant features, thereby improving the 

model's accuracy. However, existing research indicates that the limited receptive field of 

convolution at each layer makes it difficult for CNNs to capture long-distance 

dependency information. To address this issue, Vision Transformer[14-17] (ViT) uses 

the Multi-headed Self-attention (MHSA) mechanism to increase the diversity of context 

information in multiple projection subspaces, thus enhancing feature representation 

capabilities. The Swin Transformer, based on the ViT model concept, indicates that the 

quality of input images directly affects model performance in plant image classification 

tasks. Therefore, certain preprocessing of input data is necessary in practical applications 

to enhance model performance. This study first uses an edge detection algorithm to 

obtain the edge information of input images and merges the color edge images with the 

original images to highlight the contours of large objects. Subsequently, adaptive 

histogram equalization techniques are used to enhance image colors, improving image 

quality through increased contrast, brightness, and saturation. This can effectively 

improve the information quality and discriminative power of images, achieving an 

accuracy of 89.03% in plant classification tasks.

2. Relevant Theory

2.1 Swin Transformer

The ViT has shown outstanding performance in many competitions and tasks within the 

field of computer vision. The structure of the ViT is shown in Figure 1. 

Building on the ideas behind the ViT model, the Swin Transformer[18-22] 

innovatively introduces a sliding window mechanism. This allows the model to learn 

information across windows while downsampling enables the processing of 

super-resolution images, saving computational resources and allowing the model to 

focus on both global and local information. The structure of the Swin Transformer is 

shown in Figure 2.

Figure 1. Vision Transformer architecture diagram
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Figure 2. Swin Transformer architecture diagram 

The Swin Transformer adopts a hierarchical structure similar to that of 

convolutional neural networks, dividing the feature map into several non-overlapping 

windows, and computing Multi-Head Self-Attention within each window. Compared to 

the ViT model, the Swin Transformer significantly reduces computational 

demands.Swin Transformer Blocks introduce the Window Multi-Head Self-Attention 

(W-MSA) module and the Shifted Window Multi-Head Self-Attention (SW-MSA) 

module to reduce computation. The Multi-Head Self-Attention (MSA) module in 

traditional architectures requires calculating self-attention for each pixel with every 

other pixel across the feature map, leading to substantial computational overhead. In 

contrast, the Swin Transformer partitions the feature map into windows and computes 

self-attention within these windows, dramatically decreasing the amount of 

computation. The difference in computational demand is illustrated in formulas (1) and 

(2). 

������ � 	
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���                                     (1) 

��� � ���� � 	
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�                                  (2) 

Among them, h represents the height of the feature map, w represents the width of 

the feature map, C represents the depth of the feature map, and M represents the size of 

each window. 

In the Transformer Block structure, first perform Windows Multi-head 

Self-Attention (W-MSA), followed by Shifted Windows Multi-Head Self-Attention 

(SW-MSA). The computations of consecutive Swin Transformer Blocks are shown in 

equations (3), (4), (5), and (6). 

�� � � � � ������������� � ����                                  (3) 

�� � ������������ � �� �                                          (4) 

�� ��� � �� � ����������� � ��                                    (5) 
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Here, �� �and�� respectively represent the output features of blockl for the (S) 

W-MSA module and the MLP module. 

P
at

ch
 P

ar
ti

ti
o
n

L
in

ea
r 

E
m

b
ed

d
in

g

Swin 

Transformer 

Block

P
at

ch
 M

er
g

in
g

Swin 

Transformer 

Block

P
at

ch
 M

er
g

in
g

Swin 

Transformer 

Block

P
at

ch
 M

er
g

in
g

Swin 

Transformer 

Block

Stage 1 Stage 2 Stage 3 Stage 4

×2 ×2 ×6 ×2

H×W×3

L. Chen et al. / Swin Transformer Based on Image Enhancement Algorithm202



2.2 Image Enhancement Algorithm 

The study employs Gaussian blur to smooth the image by calculating the average of 

surrounding pixels at each pixel point to reduce noise. Gaussian blur is shown in 

Equation (7). 

��� !� � �

"#$ %��&'(�$)�*'+�$

$,$                                        (7) 

G(x, y) represents the weight at the center position of the filter, where x and y are 

the offsets of pixels within the filter relative to the center. μ and ν denote the central 

position of the Gaussian function, and σ is the standard deviation controlling the width 

of the Gaussian function (i.e., the degree of blurriness). 

The direction of the gradient is perpendicular to the direction of the edge. The edge 

detection operator returns Gx in the horizontal direction and Gy in the vertical direction. 

The magnitude G and direction θ of the gradient are shown in equations (8) and (9) as 

follows: 

� � -�. � �/                                                                (8) 

0 � 123415
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                                                   (9) 

After obtaining the magnitude and direction of the gradient, traverse the pixels in 

the image to remove all non-edge points. 

This study uses an image fusion formula to blend the original image with the edge 

image, as shown in equation (10): 

7�8 9� � : ; ��8 9� < � = ; >�8 9�                                         (10) 

Here, α and β are the fusion weight parameters used to control edge strength. 

Subsequently, the Contrast Limited Adaptive Histogram Equalization (CLAHE)[23] 

algorithm is utilized to enhance the contrast of the luminance channel. The CLAHE 

algorithm is a type of adaptive histogram equalization technique that enhances contrast 

by dividing the image into small blocks and performing histogram equalization on each 

block. Finally, the image with enhanced contrast is color adjusted using the HSV[24] 

color space. The HSV color space consists of Hue, Saturation, and Value components. 

By adjusting the values of hue, brightness, and saturation, the color and vividness of the 

image are altered. Lastly, a contour detection algorithm is applied to the edge image for 

highlighting the contours of large objects. By calculating the area of the contours, those 

with an area greater than a threshold are selected, and contour lines are drawn on the 

original image. 

2.3 Swin Transformer Based On Image Enhancement Algorithm 

When using Swin Transformer for plant image classification tasks, the quality of the 

input images will directly affect the performance of the model. Therefore, in practical 

applications, it is necessary to preprocess the input data to some extent in order to 

improve model performance. 
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This study applies techniques such as edge detection, color enhancement, and 

highlighting the edges of large objects. By combining them, it can effectively improve 

the image's information quality and discriminative ability. The study first uses an edge 

detection algorithm to obtain the edge information of the input image and merges the 

color edge image with the original image to highlight the contours of large objects. Then, 

it uses adaptive histogram equalization technology to enhance the image color by 

improving image quality through increased contrast, brightness, and saturation. To 

verify the effectiveness of this method, experimental tests were conducted on the 

CIFAR-10 and plant datasets. The Swin Transformer model was used as the basis for the 

experiments to compare the impact of different preprocessing methods on model 

performance. When using the Swin Transformer model for image classification tasks, 

the image preprocessing method proposed in this study can effectively improve the 

model's performance and generalization ability. Future research directions include 

optimizing algorithms, adding new data augmentation algorithms, etc., to further explore 

the advantages of the Swin Transformer model and improve its performance and 

reliability in practical applications. The Swin Transformer structure based on image 

enhancement is shown in Figure 3. 

 
Figure 3. Structure Diagram Of Swin Transformer Based On Image Enhancement Algorithms 

3. Experimental Analysis 

3.1 Experimental Dataset 

The dataset contains 3,410 samples, divided into 31 different plant categories, including 

fruits, vegetables, flowers, etc. Each category has 60 images. The shooting angle and 

background of each sample are different, and some samples are partially obscured by 

shadows. Part of the dataset's images is shown in Figure 4. 
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Figure 4. Partial plant images from the dataset 

The dataset comprises 1,488 images in the training set, accounting for 44%, 372 

images in the validation set, accounting for 11%, and 1,550 images in the test set, 

accounting for 45%. Each sample exhibits different characteristics of plants. This study 

uses the plant dataset to accomplish classification tasks. By training and testing the 

dataset, the performance of the methods proposed in this study is evaluated. At the same 

time, comparisons with publicly available datasets are made to provide supportive 

evidence for the results of this study. The dataset selects economically significant crops 

with a wide variety, contributing to future analyses of crops. Before using the dataset, 

this study conducted some data preprocessing. First, the experimental dataset was 

cleaned to remove some anomalous images. Then, feature selection was performed on 

the experimental dataset, choosing features relevant to this study's experiments. 

3.2 Parameter Settings 

This study conducts pre-training on the ImageNet-1K[25] dataset, using the obtained 

weights as the initial weights for the plant classification task. On this basis, the plant 

dataset, consisting of 1,488 initial training samples, is trained using the Swin 

Transformer model. In this paper, the model is trained for 100 epochs with a batch size 

of 4, utilizing the AdamW optimizer with a learning rate of 0.0001. To mitigate 

overfitting, weight decay is set to 0.05. 

3.3 Evaluating Indicator 

In the comparative experiments, this study primarily uses Accuracy as the evaluation 

metric to compare and determine the effectiveness of the improved methods proposed in 

this research. 

Accuracy is the most commonly used performance metric for classification. It 

represents the precision of the model, which is the number of correctly identified 

instances divided by the total number of instances. Generally, the higher the accuracy of 

a model, the better its performance is considered to be. The formula for accuracy is as 

shown in Equation (11). 

�33?213! � @A�@B
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3.4 Analysis of Experimental Results 

The experiment compared the accuracy of the Swin Transformer and the Swin 

Transformer based on image augmentation algorithms as shown in Tables 1 and 2. It was 

found that accuracy improved, indicating that the improved Swin Transformer is more 

suitable for plant classification and exhibits higher robustness. This study utilized the 

CIFAR-10 classification task and a plant classification task encompassing 31 categories 

as experimental benchmarks. In the experiments, the Swin Transformer based on image 

augmentation algorithms and the Swin Transformer were applied to the CIFAR-10 

classification task and the plant classification task, respectively, using the same 

parameter settings. The model architecture, optimizer, and hyperparameters used in the 

experiments were consistent. The experimental results for the CIFAR-10 dataset and the 

plant classification task are shown in Tables 1 and 2. 

Initially, this study compares the classification accuracy between the Swin 

Transformer and the Swin Transformer based on image augmentation algorithms in 

plant classification tasks. After averaging the results of multiple experiments, the 

accuracy of the Swin Transformer was found to be 88.32%, while the Swin Transformer 

based on image augmentation algorithms achieved an accuracy of 89.03%. Compared to 

the original Swin Transformer, the Swin Transformer based on image augmentation 

algorithms achieved a performance improvement of 0.71% in accuracy. This indicates 

that the Swin Transformer enhanced by image augmentation algorithms has achieved 

significant effectiveness in classification tasks. 

Table 1. Experimental results 

Method Accuracy 

Swin Transformer 94.40% 

Swin Transformer Based On Image Enhancement 

Algorithm 
95.01% 

Table 2. Experimental results 

Method Accuracy 

Swin Transformer 88.32% 
Swin Transformer Based On Image Enhancement 

Algorithm 
89.03% 

To more comprehensively evaluate the performance differences between the Swin 

Transformer and the Swin Transformer based on image augmentation algorithms, this 

study presents their multi-class confusion matrices. By observing the confusion matrices, 

one can understand the classification performance of the Swin Transformer based on 

image augmentation algorithms across different categories. The study noted that, in 

some specific categories, the Swin Transformer based on image augmentation 

algorithms achieved better classification results compared to the original Swin 

Transformer. There were also some classification errors in certain categories, providing 

a focus and direction for further optimizing the Swin Transformer based on image 

augmentation algorithms. The confusion matrices are shown in Figures 5 and 6. 
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Figure 5. Confusion matrix for Swin Transformer           Figure 6. Improved confusion matrix

This study evaluates the training and generalization performance of the model by 

plotting the training loss curve, validation loss curve, training accuracy curve, and 

validation accuracy curve. Ideally, both training and validation losses should decrease 

over time, while training and validation accuracies should increase, without too 

significant a gap between them. Observing Figures 7 and 9 reveals that both the training 

accuracy curve and the validation accuracy curve gradually rise with the increase in 

iteration numbers.The calculated variances for the Swin Transformer model are as 

follows: the training loss curve variance is 0.0164, the training accuracy curve variance 

is 0.0013, the validation loss curve variance is 0.0086, and the validation accuracy curve 

variance is 0.0004. For the Swin Transformer model based on image augmentation 

algorithms, the training loss curve variance is 0.0186, the training accuracy curve 

variance is 0.0014, the validation loss curve variance is 0.0068, and the validation 

accuracy curve variance is 0.0003. The comparison suggests that the Swin Transformer 

model based on image enhancement has smaller variances in both validation loss and 

accuracy curves, indicating better generalization performance. The loss and accuracy 

curves are depicted in Figures 7, 8, 9, and 10.

Figure 7. Loss curve for Swin Transformer            Figure 8. Accuracy curve for Swin Transformer
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Figure 9. Improved loss curve                         Figure 10. Improved accuracy curve 

The experiment compared the classification process of plant images, finding that the 

Swin Transformer model enhanced with image augmentation algorithms achieved 

higher accuracy in complex images. For example, as shown in the first image of Figure 

11, a chili pepper partially obscured by leaves and differing in color, where green 

peppers blend in with the background making them hard to distinguish, and the presence 

of flowers and leaves in the image could influence the classification outcome. The Swin 

Transformer model classified this image as a chili pepper with a 94% probability, 

whereas the model enhanced with image augmentation algorithms classified it as a chili 

pepper with a 99.9% probability.In the second image, the corn includes various growth 

stages, leading to a diversity of shapes and textures in the corn plants. Due to the dense 

and closely packed corn leaves, occlusion between leaves often occurs, preventing some 

of the corn plants from being fully visible. Additionally, variations in lighting in the 

image, particularly strong frontal lighting altering brightness and contrast, pose 

challenges for classification. The Swin Transformer model classified this image as corn 

with an 80.2% probability, while the model enhanced with image augmentation 

algorithms did so with a 100% probability, indicating it was not influenced by the 

external environment.The third image was taken from a low angle, causing the shape 

and features of the bananas to appear distorted. This angle might lead to a different 

appearance from traditional views. Due to the low-angle shot, the upper part of the 

image is brighter, and shadows and reflections have changed. The background includes 

the sky, other plants, and dead leaves, which may have colors and textures similar to the 

bananas, making it difficult for the algorithm to distinguish the bananas from the 

background. The fact that the bananas are seen from below and are connected makes 

their shape appear different, adding to the classification challenge. The Swin 

Transformer model misclassified this image, while the model based on image 

enhancement algorithms classified it as bananas with an 88.4% probability.In the fourth 

image, the lemons are round and slightly flattened, with varying sizes. The lemon's skin 

has a delicate texture, presenting an uneven appearance, which means texture features 

can be easily influenced by lighting conditions. The presence of occluding objects 

makes part of the lemon not fully visible, adding to the classification difficulty. The 

Swin Transformer model classified this image as a lemon with a 96.6% probability, 

whereas the model enhanced with image augmentation algorithms did so with a 99.2% 

probability. Through the experiments, it was determined that the accuracy of 

classification by the Swin Transformer model based on image enhancement algorithms 

was relatively improved. The classification process for some of the images is shown in 

Figure 11. 
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Figure 11. Classification results of partial images in the dataset 

4. Conclusion 

Plant classification based on deep learning methods has been widely applied and 

achieved good engineering application results. However, the quality of the input images 

directly affects the model's performance, leading to the proposal of the Swin 

Transformer algorithm based on image enhancement. In comparative analyses, this 

study observed that the Swin Transformer achieved an accuracy of 88.32% in plant 

classification tasks, while the Swin Transformer based on image enhancement achieved 

an accuracy of 89.03%, indicating a performance improvement of 0.71%. This 

demonstrates the effectiveness of the improved method in plant classification tasks. 

Nonetheless, this study also recognizes some shortcomings, possibly due to the 

characteristics of the dataset or limitations of the model. Therefore, the next steps 

involve further improving the model and optimizing algorithms to increase classification 

accuracy. 
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