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Abstract. This study introduces an innovative trajectory prediction algorithm for 
table tennis, employing an optimized Unscented Kalman Filter (UKF) combined 
with a Simple Physical Motion (SPM) model. The conventional UKF algorithm, 
while effective in real-time predictions, often encounters significant deviations in 
short-term forecasts, especially when dealing with abrupt changes in a table tennis 
ball's motion. To address this, our approach integrates UKF with SPM, effectively 
predicting the ball's trajectory pre- and post-collision. The method begins by using 
UKF to predict the ball’s trajectory and landing point before collision, taking into 
account factors such as air resistance, gravity, and the Magnus force caused by the 
ball's rotation. After collision, the trajectory is forecasted using a simplified collision 
rebound model and a kinematic model. This dual-phase approach significantly re-
duces trajectory prediction errors post-collision. This algorithm's practical applica-
tion is demonstrated in a constructed table tennis robot system, highlighting its su-
perior real-time performance and accuracy, particularly in post-collision trajectory 
prediction. This makes it a valuable tool for advanced table tennis training and ro-
botic interaction systems. This study contributes to the field of machine vision and 
robotic interaction by presenting a more efficient and accurate method for trajectory 
prediction, particularly in dynamic environments like table tennis. The algorithm's 
lower hardware requirements, combined with its robustness and simplicity, under-
score its potential in broader applications where accurate real-time trajectory pre-
diction is crucial. This development not only advances the field of sports robotics 
but also has implications for various industrial and research applications where pre-
cise object tracking and prediction are essential. 

Keywords. Trajectory prediction, unscented kalman filter, collision rebound model, 
kinematic model 

1. Introduction 

There has been rapid development in machine vision technology both domestically and 

internationally [1]. Recognition and tracking of target objects are crucial in machine vi-

sion research [2]. However, solely relying on target detection and tracking cannot accu-

rately predict the movement state and position of objects in the next moment, making 

trajectory prediction a focal and challenging aspect in the field of machine vision [3]. 

Currently, common trajectory prediction methods include: dynamic trajectory pre-

diction based on traditional polynomial fitting [4], dynamic trajectory prediction based 

on Kalman filtering, and dynamic trajectory prediction based on neural networks [5]. 
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Among these, dynamic trajectory prediction based on traditional polynomial fitting in-

volves fitting a kth-order polynomial with k+1 parameters to approximate the function 

curve, minimizing the error to obtain the predicted function curve of the moving object's 

trajectory. This method is simple, easy to implement, and suitable for small data sets and 

simple trajectory predictions [6]. However, its accuracy is not high, and the system di-

verges with increasing order of fitting. Dynamic trajectory prediction based on Kalman 

filtering updates the estimation of state variables for the next moment's trajectory posi-

tion by utilizing the previous moment's estimated value and the current moment's ob-

served value, adapting well to frequently changing motion targets but unable to perform 

long-term trajectory prediction [7]. Meanwhile, dynamic trajectory prediction based on 

neural networks can effectively learn the historical motion states of moving targets, es-

tablish the mapping relationship between input and output through machine learning, 

achieve trajectory prediction, approximate nonlinear systems accurately, but requires a 

large amount of data to train the model, and has poor real-time performance [8]. 

In recent years, research on predicting the trajectory of ping-pong balls has primarily 

focused on non-spinning balls, while studies on spinning balls have been more centered 

on their recognition and classification, or utilizing machine learning methods for predict-

ing the trajectory of spinning balls. Reference [9] proposed a novel physical bounce 

model for trajectory prediction of ping-pong balls, which depends on the friction coeffi-

cient and vertical restitution coefficient, based on a high-speed vision system composed 

of four high-speed 1394 firewire cameras and a powerful industrial PC. Reference [10] 

constructed an integrated vision system to observe the spinning motion of ping-pong 

balls and utilized position and spin information to predict trajectories through an ex-

tended Kalman filter (EKF). Reference [11] proposed a trajectory prediction scheme us-

ing backpropagation neural networks (BPN), where two neural networks were trained to 

learn the flight parabolas before and after collision, predicting trajectories based on ten 

points of the first parabola. Reference [12] predicted the trajectory of ping-pong balls by 

constructing an aerodynamics model and a rebound model, and calculated the state of 

hitting points based on the predicted trajectory. 

The previously mentioned methods have enhanced trajectory prediction accuracy to 

a certain extent, but they face challenges such as high hardware requirements, complex 

algorithms, and neglect of rotational ball angular velocity. In this paper, a trajectory pre-

diction algorithm based on Unscented Kalman Filter (UKF) and kinematic model under 

binocular vision is proposed. Firstly, the trajectory before collision is predicted using 

UKF; after predicting the landing point, collision models and kinematic models are uti-

lized to predict the trajectory after collision. This method achieves more accurate predic-

tion of ping-pong ball trajectory with lower hardware requirements for the visual system. 

Experimental validation shows that this method offers higher real-time performance and 

more accurate post-collision trajectory prediction of ping-pong balls. 

2. Improved Ping-Pong Ball Trajectory Prediction Algorithm Based on UKF 

Predicting the trajectory of a ping-pong ball involves forecasting the ball's trajectory 

based on partial three-dimensional world coordinates to determine its landing point. The 

requirements for ping-pong trajectory prediction mainly revolve around real-time per-

formance and accuracy. While the traditional polynomial fitting method performs well 

in terms of real-time performance, it yields poor results for predicting the trajectory of 
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spinning ping-pong balls [13]. On the other hand, neural network-based trajectory pre-

diction methods can effectively predict the trajectory of spinning ping-pong balls but 

require a large amount of data for model training. This paper proposes a ping-pong ball 

trajectory prediction algorithm based on Unscented Kalman Filter (UKF) and kinematic 

model, which can simultaneously ensure real-time performance and accurate prediction 

of spinning ball trajectories. 

2.1. Prediction of Ping-Pong Ball Trajectory before Collision Based on UKF 

During the motion of a ping-pong ball, due to the force exerted by the paddle on the ball 

during the hitting moment, known as the Magnus force, may not necessarily pass through 

the center of the ball, causing the ping-pong ball to rotate during its flight. Rotating ping-

pong balls have their own angular velocity. Ignoring this angular velocity and treating 

the ball as a point mass can result in significant errors in trajectory prediction. During 

flight, rotating ping-pong balls are primarily influenced by three forces: gravity, air re-

sistance, and Magnus force. The main factor affecting the Magnus force is the angular 

velocity. However, directly obtaining the angular velocity requires equipping with ultra-

high-speed cameras or infrared devices, which are expensive and difficult to ensure ex-

perimental conditions [14]. Therefore, this paper adopts UKF to indirectly estimate this 

unknown state. UKF is a nonlinear Gaussian state estimator based on the minimum var-

iance estimation criterion, which uses Unscented Transform (UT) to approximate the 

posterior mean and covariance of the system state, requiring shorter estimation time and 

higher accuracy [15]. 

Discrete nonlinear systems can be represented by a process equation and an obser-

vation equation, which can be mathematically expressed as: 

1
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Here, F is the state process function, H is the observation process function, Uk is the 

input vector at time k, Zk is the observation vector at time k, Wk and Vk are the process 

noise and measurement noise at time k respectively, both uncorrelated and following 

Gaussian white noise, and Xk is the motion state vector at time k. 

2.1.1. Construction of system process equation 

For a rotating ping-pong ball, the process equation is nonlinear while the observation 

equation is linear. Using a 9-dimensional vector to represent the state variables of the 

ping-pong ball, the specific formula is as follows: 

T

, , , , , , , ,
x y z x y z x y z

X p p p v v v        (2) 

Where px, py, pz represent the coordinates of the ping-pong ball along the x, y, z axes, 

respectively; vx, vy, vz represent the velocities of the ping-pong ball along the x, y, z axes, 

respectively; ωx, ωy, ωz represent the angular velocities of the ping-pong ball along the 

x, y, z axes, respectively. 
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The observation vector is represented by a three-dimensional vector, which is the 

three-dimensional coordinate information of the ping-pong ball obtained through binoc-

ular vision, as shown in equation (3): 

T

, ,
x y z

Z p p p     (3) 

Define [px,k, py,k, pz,k, vx,k, vy,k, vz,k, ωx,k, ωy,k, ωz,k]T as the 9-dimensional state vector 

of the system at time k. Construct the system process equations for the ping-pong ball 

motion model, and the equations are listed as follows: 
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Where Wi,k (i = 1, 2, 3, …, 9) are the components of the 9-dimensional zero-mean 

process noise vector at time k; k1 is the coefficient for air resistance; k2 is the coefficient 

for Magnus force; ||V|| represents the magnitude of the velocity vector in three directions 

at time k-1. 

Furthermore, it is derived that the mathematical formula for k1 can be written as: 

1

1

2
D

k C A
m

   (6) 

Where CD depends on the surface roughness of the ping-pong ball; ρ is the air den-

sity; A is the maximum cross-sectional area of the ping-pong ball. 

Simultaneously, it is derived that the mathematical formula for k2 can be written as: 

3
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  (7) 

Where CL represents the lift coefficient; D represents the diameter of the ping-pong 

ball; m represents the mass of the ping-pong ball. 

In conclusion, the angular velocity of the ping-pong ball in the x, y, and z coordinate 

axes at time k can be calculated using the following formula: 
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Hence, the construction of the system process equations for the ping-pong ball mo-

tion model is completed. 

2.1.2. System observation equation research 

The system observation equation for the ping-pong ball motion model is represented as: 
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Where Vi,k (i = 1, 2, 3) is the three-dimensional zero-mean observation noise vector 

at time k. 

Wk is linearly independent of Vk, and satisfies equation (10): 
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The UT transformation is based on weighted statistical linear regression to calculate 

the posterior distribution of random variables. A certain number of points are selected 

according to the prior distribution of random variables (��, Pσ), and the values of these 

points after nonlinear transformation are calculated; using weighted linear regression to 

linearize nonlinear functions of random variables. 

This article adopts a symmetric sampling strategy. In this strategy, the number of σ 

points sampled is L=2×N+1, where N is the dimension of the state variables, and the 

proportion factor θ of the mean σ and the distance between σ points is θ=α2(9+λ)-9. Here, 

α represents the distribution distance of σ points, and λ is the proportion coefficient. The 

mathematical formulas required for the symmetric sampling strategy mentioned in the 

article are: 
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Where ����� is the square root of the covariance. 

Next, the Cholesky decomposition method will be used to calculate  �����. When 

Pi-1 = ATA, A represents the lower triangular matrix with positive diagonal elements, and 

the i-th row of A is taken; when Pi-1 = AAT, the i-th column of A is taken. 
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Calculate the mean weight �(�)

(�)
 and the variance weight  �(�)

(�)
 of the σ points. 

When i≠0, they are equal, which can be represented as: 
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In this section, the computation of initial values can be described as follows: 

(1) The initial value of the mean weight �(�)

(�)
 is calculated using the following for-

mula: 
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(2) The initial value of the variance weight �(�)

(�)
 is calculated using the following 

formula: 
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Where β represents the distribution information of the sampled points. 

According to the σ-point sampling strategy, σ points σk-1 (k=1, 2,.., L) are computed 

based on the mean ��(k-1|k-1) and estimated covariance P(k-1|k-1) at time step k-1, prop-

agated through the state function F to obtain �(�|���). The mathematical expressions can 

be written as follows: 
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The formula for computing the next state prediction value σ(k|k-1) from ��(k-1|k-1) is 

derived as follows: 
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And the next step error covariance P(k-1|k-1) is computed according to the mathe-

matical definition: 
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Similarly, using ��(k-1|k-1) and P(k|k-1) according to the sampling strategy, compute 

�(�|���), propagate through the measurement function H to obtain �(�|���)), then calcu-

late the weighted measurement prediction value  ��(�|���), which can be represented as: 

( | 1) ( | 1)| ( )
 


k k k k

z H  (18) 

Compute the error covariance �	
	
(k|k-1), which can be written as follows: 
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Compute the cross-covariance ���	
(k|k-1), which can be determined by the following 

equation: 
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After obtaining the new measurement value zk, compute the Kalman gain K(k), and 

update the state value ��(k|k) and error covariance P(k|k) for the next time step, the de-

rived mathematical formulas are as follows: 
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2.2. Table Tennis Ball Trajectory Prediction after Collision Based on Kinematics 

Swiftly acquiring the trajectory of the table tennis ball post-collision is paramount to 

ensuring that the mechanical arm has ample time to adjust its posture and position for 

striking the ball back. The altered motion state of the table tennis ball after collision leads 

to longer convergence times and increasing prediction errors in traditional Unscented 

Kalman Filter (UKF) trajectory predictions [16]. This paper employs a simplified post-

bounce physical motion model (SPM) to predict the trajectory of the table tennis ball 

after collision. 

Given the marginal impact of the Magnus force on the physical motion model of the 

table tennis ball and its complexity in construction, we omit it when establishing the post-
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collision physical model. The force analysis during the motion of the table tennis ball is 

depicted in Figure 1. 

 

Figure 1: Force analysis diagram during table tennis movement. 

In Figure 1, Fg represents the gravitational force acting on the table tennis ball; Fr 

denotes air resistance; Cd is the air resistance coefficient; Fb stands for the buoyant force 

due to air; v represents the velocity of the table tennis ball. 

Due to the negligible magnitude of the buoyant force, it is not included in the sub-

sequent model derivation. The mathematical formulas for the forces acting on the table 

tennis ball are specified as follows: 
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Where Cd denotes the air resistance coefficient; ρ denotes air density; A denotes the 

maximum cross-sectional area of the table tennis ball; D denotes the diameter of the table 

tennis ball. 

Since the buoyant force is negligible, it is not included in the subsequent model der-

ivation. 

For the convenience of force analysis and kinematic model derivation along the x, 

y, and z axes, let 	 =

�



���. Based on the force analysis of the table tennis ball on the 

x-axis and Newton's second law, equation (23) can be obtained: 
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Integrating equation (23), we derive the mathematical formula for the x-axis velocity 

vx of the table tennis ball at time t: 
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Where vx0 represents the initial velocity of the table tennis ball along the x-axis at 

time t=0. 
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The formulas for the y-axis velocity vy and the y-axis coordinate py of the table tennis 

ball at time t are as follows: 

0
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Where vy0 represents the initial velocity of the table tennis ball along the y-axis at 

time t = 0, and y0 represents the initial position coordinate of the table tennis ball along 

the y-axis at time t=0. 

In the z-axis direction, the table tennis ball experiences air resistance and gravity. 

When vz>0, based on force analysis and Newton's second law for the table tennis ball, 

we have equation (26): 
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z

v
m mg kv

t
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Integrating equation (26), we obtain the mathematical formula for the z-axis velocity 

vz of the table tennis ball at time t: 

0
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Where vz0 represents the initial velocity of the table tennis ball along the z-axis at 

time t=0. 

Integrating the velocity vz in equation (27) from 0 to t, we can calculate the z-axis 

coordinate pz of the table tennis ball at time t using the following equation: 
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Where z0 represents the initial position coordinate of the table tennis ball on the z-

axis at time t = 0. 

When vz≤0, according to the force analysis of the table tennis ball and Newton's 

second law, equation (29) is obtained: 
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    (29) 

Integrating equation (29) yields: 
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Integrating the velocity vz in equation (30) from 0 to t gives the coordinate pz of the 

table tennis ball on the z-axis at time t, with the computational formula shown in equation 

(31): 
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When the table tennis ball collides with the tabletop, the coefficients of friction and 

attenuation in the horizontal and vertical directions differ due to differences in ball speed 

and motion. Constructing a rebound model for the table tennis ball, the mathematical 

formulas for calculating the velocities vxout, vyout, and vzout of the table tennis ball after 

rebounding on the x, y, and z axes, respectively, are derived as follows: 

xout x xin x

yout y yin y

zout z zin

v k v b

v k v b

v k v

  


 




 (32) 

Where kx, ky, kz, bx, and by represent the fitting parameters for rebound, and vxin, vyin, 

and vzin represent the velocities of the table tennis ball before rebounding along the x, y, 

and z axes, respectively. 

By fitting the trajectories of table tennis ball collision rebounds, sampling multiple 

trajectories of table tennis ball rebounds, recording coordinates before and after re-

bounds, and using the least squares method for fitting to determine the rebound fitting 

parameters. 

3. Comparative Analysis of Experimental Results 

The effectiveness of the algorithm proposed in this study is validated through the con-

struction of a high-speed table tennis system. The image acquisition device in the table 

tennis robot system is a USB industrial camera with a frame rate of 120 fps. The data 

sampling interval for trajectory prediction is 20 ms. The comparison of trajectory pre-

diction results between the traditional UKF method and the SPMUKF method is illus-

trated in Figure 2. 

As depicted in Figure 2, the error of the traditional UKF prediction method does not 

exceed 10 mm on the x-axis, and remains within 20 mm on the y and z axes. Due to the 

continuous correction of state estimation quantities required by the UKF algorithm to 

improve the prediction of the next point's position, significant errors may arise in trajec-

tory prediction when only partial data are input over time. However, the refined UKF 
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table tennis trajectory prediction algorithm, by modeling the physical model, reduces the 

overall error in trajectory prediction after the table tennis ball rebounds. The errors in the 

x and z axes are kept within 10 mm, and within 15 mm in the y-axis direction. Compared 

to the traditional UKF prediction method, there is a reduction in error to a certain extent. 

                    

(a) Three-dimensional trajectory prediction comparison chart   (b) x-axis trajectory prediction comparison chart 

                  
(c) y-axis trajectory prediction comparison chart              (d) z-axis trajectory prediction comparison chart 

Figure 2. Illustrates the comparison of results from different algorithms. 

Through simulation results, it can be observed that during the first turning maneuver, 

both UKF and EKF algorithms demonstrate good tracking performance, with no signif-

icant differences observed. However, during the second turning maneuver, noticeable 

deviations in tracking occur, with the UKF algorithm outperforming the EKF algorithm, 

albeit insignificantly. Subsequent to the third turning maneuver, significant differences 

emerge, with the EKF algorithm's tracking trajectory gradually diverging from the true 

trajectory, leading to a notable decrease in accuracy. To comprehensively assess the 

tracking accuracy of the UKF algorithm, 100 Monte Carlo simulations were conducted, 

yielding the error curve depicted in Figure 3. 

 

Figure 3. Error tracking curves for EKF/UKF. 
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Figure 3 indicates that during the first turning maneuver, the tracking errors of both 

methods are nearly synchronous. However, as the second turning commences, the errors 

begin to diverge and gradually widen. It is evident that the tracking accuracy of the UKF 

algorithm exceeds that of the EKF algorithm. 

Figure 4 illustrates the computation time for 100 Monte Carlo simulations. 

 

Figure 4. Computation time for EKF/UKF/IUKF. 

Regarding the issue of high computational complexity associated with the UKF al-

gorithm, enhancements were implemented. To maintain filtering precision, an investiga-

tion was conducted into the optimal sampling point-to-center distance for the system, 

alongside parameter tuning for proportionate correction denoted by α. By varying α val-

ues, the full-course average tracking error was computed, with results detailed in Table 

1. 

Table 1. The influence of parameter α on tracking accuracy. 

Parameter α <0.3 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

RMSE/m NA 520 786 983 1288 1460 995 848 199 

Parameter α 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 

RMSE/m 806 756 665 485 352 180 127 106 112 

Table 1 reveals that when 10-4≤α<0.3, the covariance matrix becomes non-positive 

definite, rendering it unsuitable for the system. Conversely, when0.3≤α≤1.0, the algo-

rithm operates normally, with the peak average error occurring around 0.7, sharply de-

creasing at 0.9, and ultimately plateauing in the range (0.97, 0.99) to reach a minimum. 

The average error fluctuates insignificantly around 0.98, leading to the selection of the 

system parameter α=0.98. A comparative analysis of the tracking performance of the 

enhanced UKF (IUKF) algorithm is depicted in Figure 5. 

 

Figure 5. Comparison of tracking performance of EKF/UKF/IUKF. 
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Figure 5 illustrates that although the precision of the IUKF algorithm experiences a 

slight decline, it remains consistently superior to the EKF algorithm overall. Furthermore, 

Figure 6 presents the error comparison of EKF, UKF, and IUKF algorithms across 100 

Monte Carlo simulations. 

 

Figure 6. Tracking error curves of EKF/UKF/IUKF. 

The findings suggest that the error of the IUKF algorithm is marginally higher than 

that of the UKF algorithm, although the disparity is not pronounced. However, the com-

putational burden of the IUKF algorithm notably diminishes, with computation time 

slashed by over 50%, yielding the anticipated outcome. The computation time for 100 

Monte Carlo simulations of the IUKF algorithm is depicted in Figure 4. 

4. Conclusions 

This paper tackles the problem of escalating prediction errors in table tennis ball trajec-

tory after collision when using the traditional UKF algorithm. An enhanced UKF table 

tennis ball trajectory prediction algorithm is introduced. It employs the UKF algorithm 

to predict the trajectory before collision and utilizes a simple physical motion model to 

forecast the trajectory after collision. Experimental findings confirm that the improved 

UKF algorithm can enhance trajectory prediction accuracy to a certain degree, thereby 

ensuring the smooth progress of subsequent table tennis robot hitting tasks. 

The current enhancement primarily addresses the pre- and post-collision phases sep-

arately. Integrating these phases more seamlessly may present a challenge due to the 

increase in model complexity. The simple physical motion model might not account for 

all the nuances of the ball's interaction with the environment, such as air resistance and 

spin effects. While the improved UKF algorithm shows better performance, its adapta-

bility to different playing styles and conditions has not been extensively tested. 

Future work could explore more sophisticated integration methods that combine the 

UKF predictions with the physical motion model in a more unified framework. Devel-

oping more complex models that capture additional physical aspects of the ball's trajec-

tory, such as spin-dependent aerodynamics, could improve prediction accuracy further. 

Incorporating machine learning techniques to learn from a variety of playing styles may 

enhance the generalization of the trajectory prediction. It's crucial to optimize the com-

putational efficiency to ensure the algorithm can operate in real-time, a necessity for 

table tennis robots. 
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