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Abstract. In order to solve the problem that the spatial structure and temporal 
dynamic structure of skeletal data are not clearly and fully utilized when using hand 
bone data for action recognition, a spatio-temporal synchronous graph convolution 
network with combined attention mechanism is designed. Using the method of 2D 
estimation and triangulation, the feature is projected into a single 3D volume, the 3D 
heat map is output, and the 3D joint coordinates are obtained by soft-argmax operation 
on the heat map. The spatial dimension and the temporal dimension of the bone data 
are separated, the spatial dimension is encoded according to the order of the related 
nodes, and the same related nodes are encoded in the temporal dimension, and the 
spatial embedding matrix and the temporal embedding matrix are obtained. The 
matrix is synchronously added to the spatio-temporal network sequence. The 
experiment is tested on the SHREC2017 data set, and compared with some 
representative gesture recognition methods, the results show that the algorithm has 
achieved good results in hand action recognition. 

Keywords. 3D Skeletal, Space-time synchronization, Graph convolution, Hand 
movements 

1. Overview 

Recognizing human hand gestures is an important topic in the field of computer vision. 
Enabling robots to have hands as dexterous as human hands is a challenging problem in 
artificial intelligence and robotics research [1]. User manipulation of objects through hand 
gestures is a very important mode of interaction, especially the hand's posture plays a 
central role in understanding and implementing hand-object interactions and gesture-
based action recognition. 

Hand gestures can be categorized into two types based on hand and finger movements: 
(1) Coarse gestures (such as swiping, waving up, down, left, and right, defined more by 
the movement of the hand). (2) Fine gestures (such as grabbing, pinching, zooming, 
rotating, defined by finger movements). Hand skeletal data can process precise 
information of hand shapes, providing skeletal joint data of the hand and fingers in the 
form of a complete 3D skeleton corresponding to 22 joints, which will aid in the 
recognition and analysis of gestures and hand actions. In response to the issue of partial 
hand joint occlusion caused by the limited field of view of RGB cameras, some researchers 
have proposed a method based on a multi-camera system [2]. This approach alleviates the 
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high degree of occlusion during gesture interaction but is costly and complex to operate. 

Chen and others [3,4] designed a motion feature-enhanced recursive neural network, 

sequentially encoding each finger and the entire hand's skeletal joints. Lee et al. [5,6] 

developed a real-time learning deep network to recognize dynamic gestures, 

demonstrating good recognition performance. However, manually crafted features are 

insufficient in describing high-level semantic information, and their generalization 

capabilities are limited. Liu et al. [7] treated hand gesture 3D skeletal joints as pseudo-

images, using CNN to extract features of each frame, bypassing skeletal connections, and 

utilizing multi-scale features in image segmentation for gesture recognition. This achieved 

good recognition accuracy on a custom gesture database, but the range of recognizable 

gestures is limited. 

Although dynamic gesture recognition algorithms have achieved commendable 

recognition effects, hand movements are fast and occur within a small range, necessitating 

further exploration of the spatiotemporal information and dependencies in the action 

execution process [8]. Additionally, hand gestures are flexible and varied, rich in meaning, 

and often ambiguous, making it challenging for researchers to design a recognition method 

applicable to all gestures. The "hand gesture recognition algorithm based on STS-GCN 

(Space-time synchronization graph convolution network)" utilizes 2D + triangulation to 

obtain 3D skeletal joint data of the hand. Then, through STS-GCN, it captures the 3D 

skeletal sequence graph of the hand, thereby tracking and recognizing hand actions. 

2. 3D Hand Pose Estimation 

2.1 3D Hand Pose Estimation Framework 

Hand pose estimation is the process of modeling a person's hand as a collection (for 

example, using the main joints of fingers and palms) and locating their positions in hand 

images (2D hand pose estimation) or simulating the positions of hand parts in 3D space 

[9] (3D hand pose estimation). Learning from 3D hand poses is more effective than merely 

using image/video features, thus making pose-based action recognition more efficient. The 

3D hand pose estimation framework is shown in Figure 1. 

 

Figure 1. 3D Hand Pose Estimation Framework. 

Initially, sampling is performed from videos to obtain input images at a rate of eight 

RGB images per frame. The Encoder is an autoencoder that extracts 2D keypoint features 

for each view. Then, the features are projected into a single 3D volume using a 2D 
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estimation + triangulation method. Finally, the volume features are refined through a 3D-

CNN (three-dimensional convolutional network) and output as 3D heat maps. On the heat 

maps, the soft-argmax operation is employed to obtain the coordinates of the three-

dimensional joint points. 

2.2 2D Estimation + Triangulation 

 

Figure 2. 2D Estimation. 

As shown in Figure 2, P is a three-dimensional point in space, 
0

C  and 
1

C  are two 

different observation points, and 
0

C -
1

C - P  is an epipolar plane formed by the line, 

intersecting the left and right planes, placing 
0 1 0 1

C C P p p     on the same plane. 

0
p  and 

1
p are two-dimensional points on the image plane, which are converted into 

three-dimensional directional vectors and represented in the 
0 0 0

X Y Z coordinate system 

of 
0

C as in Equation (1): 
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In Equation (1), 
0
x is the coordinate of 

0
p  on the normalized plane, and 

0
q  is its 

homogeneous pixel coordinate. 

1
x   is the coordinate of 

1
p   on the 

1
C   normalized plane, and 

1
q  is its 

homogeneous pixel coordinate, with the normalized vector of 
1
p in the 

1
C  coordinate 

system represented as in Equation (2). 
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The normalized vector of 
1
p  in the 

0
C   coordinate system is described as in 

Equation (3). 
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In the 
0 0 0

X Y Z  coordinate system, substituting the relationship between normalized 

coordinates and homogeneous pixel coordinates yields Equation (4): 
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The essential matrix is defined as in Equation (5): 

E t R


                       (5) 

The epipolar constraint simplifies to Equation (6), which succinctly gives the spatial 

relationship of two matching points, and the 2D estimation problem is to find R t，  

based on E . 

0 1
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T
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For any given E  , there are two possible t  and R  corresponding to it, as shown 

in Equations (7) and (8). 
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After obtaining the two-dimensional coordinates of key points in multiple views, 
three-dimensional information is recovered through triangulation. Triangulation is an 
algorithm that calculates the three-dimensional spatial coordinates of feature points based 
on the pixel coordinates of matched feature points in consecutive frames and the camera 

motion between these frames, R  and t  , as illustrated in reference [10]. Intuitively, 

triangulation addresses the problem of estimating the actual pose of an object from two 
images taken by cameras at known relative positions: obtaining the three-dimensional 
structure of corresponding points on two-dimensional images through triangulation. 
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Figure 3. Triangulation. 

As shown in Figure 3, the relationship between 
1

O  and 
2

O   is known, and 
1
P  

and 
2
P   are also known. To determine the three-dimensional spatial coordinates of point 

P , it is necessary to solve the depth of two points, 
1 2
,s s . According to the definition of 

epipolar geometry, let 
1 2
,x x  be the normalized coordinates of the two feature points, 

then they satisfy Equation (9): 

2 2 1 1
s x s Rx t                        (9) 

Left multiplying both sides of Equation (9) by the antisymmetric matrix 
2
x


of 
2
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yields Equation (10): 
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Once 
1
s  is obtained, 

2
s  can be determined from Equation (9), leading to Equation 

(11): 
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Where
1

O
P  denotes the three-dimensional coordinates of point P  in camera 

coordinate system 
1

O   , and 
2

O
P   denotes the three-dimensional coordinates of point 

P  in camera coordinate system 
2

O  . 

3. STS-GCN Hand Gesture Recognition Algorithm 

3.1 Graph Convolution Operation 

For the 3D skeleton of the hand, it is inherently a natural graph structure. All the joint 

nodes of the hand skeleton can be considered as vertices of the graph, and the connections 
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between skeletal joint nodes can be represented by lines between points. The implicit 
relationships within the joint nodes are obtained using the Graph Convolutional Network 
(GCN) method [11-12]. Represent skeletal joint nodes as three-dimensional vectors, 
corresponding to the x y z、 、   coordinates, with each joint node represented as 

1 1 1 1
( , , )v x y z , the set of joint nodes as 

1
{ }n

i i
V v



 , and the connections between 

joint nodes as 
1

{ }n
i i

W w


 , where 
2i

w v v  . Define the hand skeletal data graph as 

an undirected graph ( , )G V W , where W  is the set of edges, and the vertex set V

can be represented by the matrix 
1 2

( , ... ), c

n i
X v v v v �  , 

n n

M


�   represents 

the adjacency matrix of X  , and 
n n

N


�   represents the degree matrix, satisfying 

ij ij

i

N M . Therefore, the graph convolution operation is defined as Equation (12): 
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In the equation,    represents the graph convolution operation, g   is the filter, 

which is a key parameter of A  , 
c c

A


�  . Substituting ˆM M I   and

ˆ ˆ

ij

i

N M  into Equation (12) yields Equation (13): 
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Hammond D K et al. proved that the graph convolution operation of g


 can be 

approximated by a R -th order Chebyshev polynomial as shown in Equation (14) [13]: 
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Where 
'

r
 represents Chebyshev coefficients, 

1

2L N MN ，
0

1T  ，
1

ˆT L . The 

recursive formula of the Chebyshev polynomial can be defined as Equation (15). 
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3.2 Space-Time Synchronization Graph Convolutional Network 

The Space-Time Synchronization Graph Convolutional Network (STS-GCN) with 
combined attention designed in this paper is illustrated in Figure 4. The network captures 
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the 3D skeletal sequence graph of the hand for tracking and recognizing hand actions. The 

space-time synchronization graph convolution part consists of spatial and temporal 

branches. The spatial branch is responsible for extracting multi-scale spatial features, 

mainly comprising one GCN and two ResNet structures. The temporal branch focuses on 

extracting finger position and motion features, primarily consisting of one GCN, one 2D-

ResNet, and one ResNet structure, where the 2D-ResNet more effectively extracts 

temporal features. 

 

Figure 4. Space-Time Synchronization Graph Convolutional Network Framework. 

Unlike typical graph convolutional networks, which treat each frame's skeleton as a 

separate graph, this paper separates the spatial and temporal dimensions of skeletal data. 

It encodes the spatial dimension according to the sequence of joints and encodes the same 

joints in the temporal dimension according to their chronological order. This encoding 

generates spatial and temporal embedding matrices, which are added to the space-time 

network sequence, enhancing the network's ability to model the spatiotemporal 

correlations in the data. This enables the network to analyze and recognize gestures more 

precisely. 

For the input skeletal sequence 
T N C

X R
 

 , where T  is the number of frames in 

the sample sequence, N  is the number of nodes in a frame, and C  is the number of 

feature dimensions. The spatial position vector of the data sequence is set to 

[1,2,... ]
pos

S N , and the temporal position vector is [1,2,... ]
pos

T T  . The spatial 

and temporal position vectors are encoded using sine and cosine functions, as shown in 

Equations (16) and (17): 

2
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
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Where pos  represents the position of the element, i  is the dimension of the 

position encoding vectors, and % is the modulo operation. According to Equations (16) 
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and (17), the time information matrix 
T C

T R


   and the spatial information matrix 

N C
S R



 of the skeletal sequence can be obtained, as shown in Equations (18) and (19): 
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Since the tensor matrices T   and S   have different sizes, tensor expansion is 

required to match their dimensions with X  before adding these two matrices. 

3.3 Adjacency Matrix 

The relationships between nodes are constrained by spatial distance and temporal 

sequence. Typically, these constraints are integrated into an adjacency matrix. Define M  
as the adjacency matrix of a graph composed of three consecutive time steps. This matrix 

is used to adjust the weight coefficient matrix S  of the nodes, allowing S  to converge 

to a reasonable value. For the sample sequence 
3K N C

C
X R



  , the adjacency matrix 

3 3N N
M R



  is defined as in Equation (20): 
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Where 
k k

i jv v   represents the connection from node 
k

i
v  to node 

k

jv  ,

, 1,2,3p q   and 0 | | 1p q    . t   is the time step in the space-time graph, and 

0 3t  . The structure of the adjacency matrix is shown in Figure 5, where 
p q
t t

M


  

represents the connection from time step 
p
t to time step 

q
t . The diagonals represent the 

adjacency matrices of the spatial graph at three time points, while the other four represent 
connections across time steps. 
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Figure 5. Adjacency Matrix M. 

3.4 Combined Attention Mechanism 

In the attention module, the combined attention mechanism simultaneously utilizes spatial, 
temporal, and channel aspects. Combined attention is a linear combination of individual 
self-attentions and is defined as in Equations (21) and (22): 

( , , )Q k P

m m m m
H Attention QW KW PW  ， 1,2,...m M     (21) 

1 2
( , , ) ( , ... ) o

M
MultiH Q K P Concat H H H W         (22) 

Where 
m

H   represents the output of them  attentions, , ,Q K P  is the query-key-

value matrix, and , ,

Q K P

m m mW W W  is the weight matrix corresponding to the three linear 

fully connected layers of the m -th attention. Since the sequence in the space-time graph 

can be defined as Equation (23): 

3

,
{ | , 1, 2, 1,2... , 1,2,... 2, 1,2,...3 }k k N C

c j t iX v v t k k k i N k T j N R


           (23) 

Where 
k

jv   represents the j  -th node in the k  -th space-time graph, and 
,t i

v  

represents the i -th skeletal node in the t -th frame. The query-key-value matrix for the 

m -th attention of this sequence is represented as in Equations (24), (25), and (26): 

3m Q k Q N d

m c Q m
Q QW X W W R



               (24) 

3m K k k N d

m c k m
K KW X WW R
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Where 
1 2 3

[ , ,... ]
m m m m T

N
Q q q q  , 

1 2 3
[ , ,... ]

m m m m T

N
K k k k   ,

1 2 3
[ , ,... ]

m m m m T

N
P p p p  and , ,

m m m

j j j
q k p  ( 1,2,...3 , 1,2,... )j N m M   are the 

query-key-value vectors corresponding to the m -th node feature of the i -th attention, 

with vector dimensions d . , ,

Q K P

m m mW W W are the weight matrices of the fully connected 

layer for the m -th attention. The overall output of the sample sequence X  can then be 

represented as in Equation (27): 

3( )
( , , ) max( )

m m T

m m m m m N dQ K
Y Attention Q K P soft P R

d



      (27) 

The output of the combined attention is given by Equation (28). 

1 2 3( , ) ( , ,... )M M N d
MultiH Q K P Concat Y Y Y R

 

 ，             (28) 

4. Experimental Results and Analysis 

4.1 Experimental Environment Setup 

The hardware requirements for the experiment include a CPU: AMD Ryzen 5 3600 @4.2 
GHz, GPU: NVIDIA GeForce RTX 3060, memory: 32 GB, and an ASUS TUF-GeForce 
RTX3080TI-O12G-GAMING graphics card with 12 GB of video memory. Software 
development tools used include: Python3 downloaded and installed from the official 
website; Python editor PyCharm installed; Anaconda installed; pandas library installed; 

OpenCV library installed; CUDA downloaded and installed; cuDNN downloaded and 

installed; and PyTorch installed. 

4.2 Dataset 

To validate the effectiveness of the algorithm proposed in this paper, experiments were 
conducted on the SHREC2017 public dataset, comparing it with some representative 
gesture recognition methods. The dataset includes gestures classified into two categories: 
Coarse gestures (such as sliding and other hand movements) and Fine gestures (hand 
shapes). In gesture recognition algorithms, it is necessary to consider the subtle differences 
between these gestures. Each gesture was performed by 28 participants in 1 to 10 instances 
using two methods, producing 2800 sequences with lengths ranging from 20 to 50 frames. 
All participants were right-handed, and sequences were tagged according to their gestures, 
number of fingers used, performer, and experiment. In this experiment, 14 gesture labels 
were used to tag sequences for evaluating the algorithm. The structure directory of the 
dataset is shown in Figure 6. 
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Figure 6. Dataset Structure Directory. 

4.3 Evaluation Metrics 

For hand gesture recognition, the mean Average Precision (mAP) and Cumulative 
Matching Characteristic (CMC) are used on different datasets to assess the overall average 
state of recognition and the accuracy of the recognition results. mAP calculates the average 
precision (AP) value for all samples to be recognized, where AP is the result of precision 
and recall. The formulas for calculating precision and recall are shown in Equations (29) 
and (30): 

 

  

True Positives

True Positives False
pr

P
ecision

ositives




                   (29) 

 

  

True Positives

True Positives False Negatives
recall



              (30) 

The mAP value is the average of precision and recall calculated for all query samples. 
The CMC/Rank(K) metric reflects whether there is a correct match in the top K samples 
of the gallery results in retrieval. If there is a match, the value is 1; otherwise, it is 0, as 

defined in Equation (31): 

1

 1,1
/ ( )

0,

      

        

N

i

The first K retrieval results have correct samples

The first K retrieval result
CMC Ra

s do not have correc
n K

t
k

N



 


   (31) 

Where N   is the total number of samples, and K   is the evaluation metric 

parameter. 
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4.4 Experimental Results and Analysis 

By adjusting relevant parameters and selecting a better-performing group, a comparison 
is made with ST-GCN, SIT-GCN, HiVideoDarwin, CNN for Skeleton, Two-stream RNN, 
etc. The results are shown in Table 1. It can be observed that STS-GCN improves 
recognition accuracy by approximately 1.8% compared to SIT-GCN and about 6.5% 
compared to ST-GCN. In terms of time consumption, STS-GCN also uses nearly 4 seconds 
less than the least time-consuming HiVideoDarwin. Overall, STS-GCN demonstrates 
better gesture recognition accuracy and speed. 

Table 1. Accuracy Comparison of STS-GCN with Other Networks 

Network model Precision (%) Time consumption/s 

ST-GCN[14] 86.67 873.1 

SIT-GCN [15] 91.38 895.5 

HiVideoDarwin[16] 74.92 859.4 

CNN for Skeleton[17] 91.23 910.2 

Two-stream RNN[18] 91.79 879.7 

3s_net_TTM[19] 92.11 863.8 

STS-GCN 93.15 855.3 

5. Conclusion 

This paper presents a Space-Time Synchronization Graph Convolutional Network (STS-
GCN) with a combined attention mechanism. The network input is 3D skeletal joint data, 
where the spatial and temporal dimensions of the skeletal data are separated. The joint 
nodes are encoded using sine and cosine functions for spatial and temporal position vectors, 
resulting in spatial and temporal embedding matrices. These matrices are synchronously 
added to the space-time network sequence, enhancing the network's capability to model 
spatiotemporal correlations in data, thereby enabling more accurate analysis and 
recognition of gestures. Compared to other algorithms, while the STS-GCN algorithm 
achieves commendable recognition results, there is still significant room for improvement 
in recognition accuracy and time consumption. Future work will continue to research 
optimization strategies for this algorithm. 
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