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Abstract. The urban rail transit industry in modern society is growing at an alarming 
rate, and in the rail transit of the network is the schedule is the basis of the train 

operation. Current research focuses on designing and optimizing train schedules to 
better meet passenger demands. In this paper, a multi-objective programming model 

is established on the basis of objective functions that are coupled and aimed at 

minimizing operating costs and passenger travel efficiency in order to optimize the 
train timetable, while considering meeting the demand of passenger flow. One 

objective function is kept in the original problem according to the characteristics of 

the model, and other objective functions are transformed into constraint conditions 
by adding restricted domains, thus turning them into single-objective programming 

models. Genetic algorithm is used to obtain results and train operation is simulated 

through the dynamic programming algorithm to carry out dynamic search. The 
CSMA/CD (Carrier Sense Multiple Access/Collision Detection) protocol is 

introduced to optimize the constraint conditions. The waiting time is transformed 

into the minimum tracking time interval by sending the carrier monitoring code. As 
such, the departure time data of large and small routes are calculated dynamically, 

and equal interval parallel operation diagrams are drawn. The calculation results 

indicate that the multi-objective optimization model improved by genetic algorithm 
can effectively solve practical cases, and its train timetable can highly match the 

spatiotemporal distribution of passenger flow demand and obtain satisfactory 

feasible solutions within a reasonable time. 
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1. Introduction 

Optimizing train schedules [1] is a well-established challenge within the realm of rail 

transit operation management, and it remains a prominent area of study in logistics and 

transportation management. Since 1971, when Amit and Goldfarb[2] initially employed 

mathematical programming to depict and enhance the operational strategy of rail transit 

trains, numerous studies have been published on the operation strategy of train systems 

in urban transit. Shafahi and Khani [3] proposed two constant time headway models, 

minimizing the transfer time in the transportation network. With the aim of reducing the 

waiting time for passengers, Barrena [4,5] introduced an extensive approach involving 

adaptive large neighborhood search and a branch-and-cut algorithm, aimed at addressing 

the optimization model for rail transit operation planning. Li et al. [6] proposed a demand-
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oriented mixed integer nonlinear programming model (HH-ST) that combines 

heterogeneous time headway and short radius turn. 

Apparently, although previous studies aimed to optimize urban rail transit train 

schedules with the goal of reducing operating costs and improving passenger travel 

efficiency, they exclusively focused on either cost reduction or passenger travel 

enhancement during the optimization process. Therefore, in this paper, with the dual 

objective of reducing operating expenses and enhancing passenger travel efficiency, in 

view of the operation mode of urban rail transit with large and small routes, a multi-

objective model is transformed into single-objective model according to the constraint 

method, other objective functions are turned into constraint conditions by adding 

restricted domains, the genetic algorithm is used to obtain the optimal solution, dynamic 

search is carried out by dynamic programming, CSMA/CD [7] is used to send carrier 

monitoring codes with waiting time as the minimum tracking time interval, and equal 

interval parallel operation diagrams are drawn dynamically.  

2. Description 

Under the operation mode of urban rail transit with large and small routes, large-route 

trains and small-route trains operate alternately. A large-route train completes the entire 

route, while a small-route runs between one temporary starting station and one temporary 

ending station along the route. T1 and T2 represent the turnaround time of large-route 

train and small-route train respectively. It is stipulated that only stations with turnback 

capability can function as the initial or terminal point on the line. i is the set of train 

routes, defined as i=1 representing a large route and i=2 representing a small route. The 

trains along the route are presented as an ordered set s={1, 2, 3..., n} along the operation 

planning direction. It is stipulated that overtaking of adjacent trains is forbidden, and the 

train operation sequence should remain unchanged. The rated passenger capacity of each 

train is Cz. a indicates that the ceiling of the train's load factor is 100%.  

Train timetable is generally an equal interval parallel operation diagram, meaning 

the departure interval (a train departs every 5 minutes) corresponds to the time spent at 

the same station.t1d and t2d represent the typical passenger wait times for S1 and S2. 

Departure interval is restricted. The docking duration of a train at a station is directly 

proportional to the passenger count involved at that station. trun, j represents the pure 

running time of a train in section j, while tstop, j corresponds to the train's station docking 

duration at station j. In addition, when two trains run in the same tracking section, a 

certain safety interval (tracking interval time, Io) shall be maintained.  

3. Model Building and Solution 

The compilation, evaluation, and optimization of train operation are characterized by 

multiple constraint conditions, large scale, and complex calculations. Factors such as 

passenger flow demand, enterprise operating costs, and service levels lead to the typical 

problem of multi-objective constrained optimization.  

The ε-constraint method is one of the main solutions for multi-objective 

optimization problems, with the core idea of retaining one objective function in the 

original problem and transforming other objective functions into constraint conditions 

by adding restricted domains. Essentially, this method transforms multi-objective 
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problems into single-objective optimization problems. Therefore, in this paper, the model 

is transformed using the ε-constraint method; a genetic algorithm is employed for 

solutions, considering the characteristics of the transformed single-objective models; 

dynamic search is carried out based on dynamic programming; CSMA/CD is used to 

send carrier monitoring codes to convert the waiting time into the minimum tracking 

time interval; and finally equal interval parallel operation diagrams are drawn. The 

depicted framework of the solution algorithm can be observed in Figure 1.  

 
Figure 1. Solution algorithm framework.  

3.1. Building of Multi-objective Optimization Model 

Minimizing enterprise operating costs and maximizing passenger travel efficiency are 

equivalent to minimizing train travel time and maximizing passenger travel quality. The 

docking cost encompasses expenses such as energy consumption, train losses, and other 

costs incurred during train station docking. By minimizing the travel time and docking 

cost of trains can the operating costs be reduced and the passenger travel quality be 

improved. Z represents the minimum train travel time and docking cost, and is taken as 

an objective function.  

Objective function: 

 (1) 

3.1.1. Train quantity constraint  

 (2) 

Wherein  

Train quantity constraint ensures the upper limit of train arrival time. Constraint (1) 

ensures that the required trains under the large-and-small routing mode do not exceed the 

departure frequency under the single routing mode.  
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3.1.2. Load factor constraint  

 (3) 

The load factor constraint [8] of a train ensures that the loaded members of the train 

do not exceed the rated upper limit. If safety is ensured, the closer to the upper limit, the 

higher the selectivity is.  

3.  Minimum tracking interval  

 (4) 

When the train operation sequence diagram is fixed, by ensuring that the adjacent 

intervals meet the tracking interval can the train safety interval constraint be achieved. 

The following equation is used to determine the minimum tracking interval constraint 

after conversion to frequency.  

4.  Departure interval constraint  

 (5) 

Departure interval constraint reduces operating costs while ensuring the safety of 

train operation. It improves the service level and ensures the uniformity of train departure 

time.  

5.  Docking time constraint  

 (6) 

Docking time constraint ensures the safe arrival and departure interval of adjacent 

trains at the station.  

6.  Other constraints  

(1) 3 ≤ OD ≤ 24, the constraint on the number of stations along a small route ensures 

the effectiveness of the operation mode.  

(2) The constraint on the nodes along a small route, represented by g, and defined as 

g=1 representing turnback station; g=∞ representing non-turnback station. This ensures 

that the selected node is a turnback station, in accordance with the actual circumstances. 

Wherein, t represents the average boarding and alighting time of passengers. 

To sum up, in this problem, the multi-objective model can be described as single 

objective programming models with constraints[9]:  

 (7) 
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3.2. Genetic Algorithm Solving  

Genetic algorithm is a random search optimization algorithm based on evolution theory, 

biological selection theory, and population genetics theory [10]. It represents a 

computational model that imitates the natural evolution process to establish and solve 

problem extremum. Thanks to its solid biological foundation and intelligent simulation 

generation process, genetic algorithm is not limited to the advantages of specific 

conditions, for which it is widely used in solving combinatorial optimization problems, 

nonlinear problems [11], and multi-dimensional space optimization problems.  

Here are the detailed steps: (Figure 2):  

Step 1: Initialize and set the evolution iterator, iter → 0; set the maximum evolution 

belt speed to 104; randomly generate 200 individuals as the initial population.  

Step 2: Selection operation: employ the selection operator within the group. 

Step 3: Cross operation: implement the crossover operator within the group.  

Step 4: Mutation operation: introduce the mutation operator within the population. 

Step 5: Individual evaluation: Individual assessment involves determining the 

individuals' fitness within the population by considering both constraint conditions and 

objective functions. 

Step 6: The population produces the next generation after steps 2, 3, 4, and 5; if i < 

iter, then i → i+1; if i > iter, the highest fitness achieved during the evolutionary process 

designates the individual to be the optimal solution, which is then presented as the output. 

The flowchart can be found in Figure 2.  

 
Figure 2. A flowchart for solving single-objective optimization using genetic algorithm. 

The algorithm fitness function is determined by the objective function and is used 

to calculate and evaluate each individual's fitness value of [12], which represents the 

current individual's adaptation to the living environment. The individual's performance 

improves as their fitness value increases, leading to a greater likelihood of the individual 

being selected. The following represents the fitness function:  

 (8) 
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3.3. Dynamic Programming Simulation  

Optimizing the train schedule for urban rail transit is a highly intricate task, as it requires 

taking into account the passenger flow at each station, the docking time and distance at 

each station, and the departure time of passengers. When optimizing the timetable, one 

must consider a range of practical situations. Dynamic programming, as a common 

optimization algorithm [13], can solve a problem by dividing it into smaller sub-problems. 

It can also solve complex rail transit train optimization problems by obtaining the 

approximate optimal solution based on a dynamic programming model [14].  

In order to better achieve the goal of minimizing economic costs and maximizing 

service effectiveness at the same time, Problem 1 Constraint (4) has been changed to the 

CSMA/CD protocol. The waiting time is taken as the minimum tracking interval [15]. The 

upper limit of Constraint (5) is lifted in order to ensure the passenger flow demand is met 

as much as possible, that is, .  

Under the above constraints, the train time sequence state transition equation of train 

O is updated as follows:  

 (9) 

The trains passing through a station can be divided into docking trains and departing 

trains. [i/2] represents the station where the train is located. When i is an even number, it 

represents that the train has just entered station [i/2]. Its inbound time sequence state can 

be changed to , representing the time it takes for the train to 

depart from station [(i-1)/2] to station [i/2]. When i is an even number, it represents that 

the train is departing from the station. Its outbound time sequence state can be changed 

to the inbound time sequence + the optimal docking time sequence. Wherein, h(x) is 

obtained from CSMA/CD,  represents the time it takes for passengers to get 

on/off, and tmin is the minimum docking time of the train.  

4. Simulation Example 

In order to confirm the feasibility and efficiency of the proposed method, the rail transit 

route in question is supported by actual data, comprising a total of 30 stations, with 

passenger flow data collected between 7:00 and 8:00. The Matlab on a computer with a 

Gen Intel Core TM i5-11400H 2.70GHz CPU and 16GB of memory is used for 

programming and execution.  

4.1. Basic data  

Table 1 lists the station numbers, station spacing, section running time, cross-sectional 

passenger flow of 30 stations, and whether they can serve as the starting/ending stations 

of the route under the large-and-small urban rail transit operation mode.  
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4.2. Result Analysis  

In the above examples, the optimal value-evolution generation number of the parameters 

for each generation of the model (as shown in Figure 3) is calculated through single 

objective programming models, genetic algorithm, and dynamic programming. It can be 

seen that the longitudinal coordinates first fluctuate and then gradually stabilize, and 

there is no significant downward or upward trend in the values that remain relatively 

stable in subsequent evolution generation numbers. Therefore, it can be determined that 

the number of trains running in the operating section of a large route should be 10, while 

for a small route, the operating segment consists of 8-25 stations, and there should be 10 

trains in operation. The maximum fitness calculated according to equation (8) is: 

0.00000045684. The lower the fitness, the higher the fitness value, the greater the 

likelihood of population alignment, the more an individual can conform to the 

environment, and the improved the algorithm's performance.  

Table 1. Passenger flow and operational data of stations  

Section 

Section 

running time 
(s) 

Station Spacing 

(km) 

Coss-sectional 

passenger flow 
(person) 

Whether the departure 
station can serve as a 

starting/ending station 

along the route 

Station 1->Station 2 120 1.38 3169 Yes 
Station 2->Station 3 97 1.15 5613 Yes 

Station 3->Station 4 101 1.318 7331 No 

Station 4->Station 5 89 0.964 11179 No 
Station 5->Station 6 102 1.096 15802 Yes 

Station 6->Station 7 144 1.945 21502 No 

Station 7->Station 8 129 1.506 30650 No 
Station 8->Station 9 162 2.267 30939 Yes 

Station 9->Station 10 103 1.241 33990 No 

Station10->Station11 96 1.012 36824 Yes 
Station11->Station12 139 1.589 45749 No 

Station12->Station13 133 1.865 46535 No 

Station13->Station14 82 0.779 45402 No 
Station14->Station15 94 1.233 46049 Yes 

Station15->Station16 193 2.428 33568 No 

Station16->Station17 128 1.738 32233 No 
Station17->Station18 111 1.612 31248 Yes 

Station18->Station19 90 1.14 30524 Yes 
Station19->Station20 106 1.034 30579 No 

Station20->Station21 159 1.8 30681 No 

Station21->Station22 104 1.161 30411 Yes 
Station22->Station23 80 0.827 30815 Yes 

Station23->Station24 114 1.592 10435 No 

Station24->Station25 79 0.721 10493 No 
Station25->Station26 86 1.026 9648 Yes 

Station26->Station27 113 1.35 9130 Yes 

Station27->Station28 86 0.792 8003 Yes 
Station28->Station29 121 1.491 6611 No 

Station29->Station30 154 2.111 4597 No 

Station 30 0 0 0 Yes 
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Figure 3. Optimal value-evolution generation number of the parameters for each generation. 

The equal interval parallel operation diagram of large route at stations 1-30 and small 

route at stations 8-25 are obtained (as shown in Figure 4). It can be seen from the diagram 

that the train timetable can well match the spatiotemporal distribution of passenger flow 

demand; compared to other time periods, there is a large passenger flow demand between 

7:30 and 8:00, resulting in more train operation lines during this period. This indicates 

that with the goal of maximizing operational benefits and improving passenger travel 

efficiency, the effectiveness of the method proposed in this paper is confirmed by the 

successful alignment of passenger flow demand across the train timetable in terms of its 

spatiotemporal distribution. 

 
Figure 4. Train diagram. 
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5. Conclusions 

In this paper, centered on the goal of both minimization of the costs of operation and 

maximizing the quality of services provided, a multi-objective programming model is 

established, train operation is simulated with the dynamic programming algorithm to 

carry out dynamic search, the CSMA/CD protocol is introduced to optimize constraint 

conditions, the goal of cost minimization and service quality maximization is better 

represented in an abstract manner on the basis of mathematical models, thereby obtaining 

ideal results in the simulation experiment. Further studies are required on how to better 

represent abstract requirements such as minimizing operating costs and maximizing 

service quality from multiple dimensions and directions, as well as on the performance 

of relevant algorithms in the application processes.  
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