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Abstract. In the pursuit of sustainable energy solutions, wind power emerges as a 
pivotal contender. This research pioneers the integration of a Horizontal Axis Wind 

Turbine (HAWT) into the Eolic Cell—a modular wind energy system designed for 

augmented wind speed and efficiency. Our primary objective is the holistic 
optimization of HAWT performance, considering five distinct Tip Speed Ratios 

(TSR) to account for varying conditions. To optimize turbine performance, we 

manipulate three key parameters: pitch angles of turbine blades along the radius, the 
First-Grade coefficient, the Second-Grade coefficient, and the NACA profile chord. 

A novel Metamodel of Optimal Prognosis (MOP) methodology is introduced, 

streamlining computational efficiency and facilitating gradient-based optimization 
across the chosen TSRs. This research marks a significant stride in advancing wind 

energy solutions for distributed generation, focusing on practical efficiency 

enhancements. It leverages innovative approaches in wind power generation, laying 
the groundwork for a sustainable energy future. This article signifies the initial phase 

of our exploration into harnessing the potential of Eolic Cells as a transformative 

solution for distributed energy generation, with future research endeavors aimed at 
validating its practicality. 
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1. Introduction 

The pursuit of renewable energy solutions is gaining momentum as the world races to 

achieve Net Zero Emission (NZE) targets by 2050 [1]. This endeavor is critical, given 

that nearly half of the necessary emissions reductions rely on technologies still in 

prototype or demonstration phases [1]. Renewable capacity is on the rise, but the 

trajectory and government commitments may not align with NZE goals, presenting 

challenges in financing, permitting, societal acceptance, grid integration, and supply 

chain dynamics [2]. To bridge this gap, innovative wind power generation approaches 

are essential.  

This research explores the integration of a Horizontal Axis Wind Turbine (HAWT) 

into the Eolic Cell—a modular wind energy system designed for enhanced wind speed 

and efficiency. The primary focus is a comprehensive optimization of HAWT 

performance, encompassing three pivotal parameters: pitch angles of turbine blades 

along the radius, the First-Grade coefficient, the Second-Grade coefficient, and the 

NACA profile chord. Unlike conventional single-parameter optimization, our approach 

is holistic, optimizing turbine performance across a spectrum of conditions, including 
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five distinct Tip Speed Ratios (TSR), thereby introducing multidimensionality into the 

research.

Building on pioneering work in wind energy, we address the pressing need for 

efficiency enhancements in distributed energy generation. We introduce a Metamodel of 

Optimal Prognosis (MOP) as a methodological innovation [3-5], allowing for efficient 

optimization across the various TSRs. This approach streamlines computational 

expenses while identifying an ideal turbine profile within the performance envelope 

defined by these TSRs, a crucial step toward efficient turbine optimization.

This article signifies the initial chapter in an ongoing exploration of Eolic Cells' 

potential for revolutionizing distributed energy generation. Future endeavors will 

encompass exhaustive experimentation, validating the viability of this groundbreaking 

approach. Furthermore, it is worth noting that this study builds upon and extends 

previous research focused on optimizing the Eolic Cell itself [6]. This new phase 

incorporates a turbine and extends the scope of optimization, synergizing both 

components for enhanced wind energy generation.

2. Heading

The Eolic Cell, a foundational component of the innovative wind energy system, is 

explored in this chapter. This versatile unit plays a pivotal role in augmenting wind 

velocity and, subsequently, enhancing the efficiency of wind energy generation. While 

the Eolic Cell is a building block of the larger Eolic Wall structure, our focus here 

remains on its individual attributes.

An Eolic Cell is an aerodynamic structure designed to boost wind velocity, 

composed of two main sections: the Adjacent External Section (AES) and the Internal 

Aerodynamic Chamber (IAC). The AES serves as an external adjoining wall shared 

between adjacent Eolic Cells, allowing for their seamless arrangement. The IAC, the 

heart of the Eolic Cell, is where wind velocity undergoes a carefully orchestrated 

transformation (Figure 1).

The IAC, further divided into three sections, holds unique characteristics. The 

anterior section, exposed to incoming wind, experiences high drag force and pressure 

levels, featuring an inlet opening for wind entry. Positioned between the anterior and 

posterior sections, the throat section witnesses the lowest pressure levels and the highest 

wind velocities, making it a critical region for wind energy augmentation.

The posterior section guides airflow towards an outlet opening while minimizing 

turbulence within the IAC.

Figure 1. Eolic Cell’s sections [6].
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Computational Fluid Dynamics (CFD) simulations provide valuable insights into 

the pressure and wind velocity fields around the Eolic Cell. They emphasize the 

importance of the IAC's shape in optimizing wind velocity, with streamlined shapes 

proving significantly more efficient. 

This chapter underscores the significance of the Eolic Cell's unique design and 

aerodynamics in enhancing wind velocity. As we progress in this study, the integration 

of Horizontal Axis Wind Turbines (HAWT) within the Eolic Cell promises to unlock 

even greater advancements in harnessing renewable wind energy and fine-tuning its 

performance (Figure 2). Notably, these turbines find their optimal location within the 

throat section of the Eolic Cell, further enhancing their energy capture potential. 

 

Figure 2. Horizontal axis wind turbine within the Eolic Cell. 

3. CFD Methodology 

3.1. Governing Equations and Turbulence Models 

The simulation strategy involves a steady-state simulation within a 3D geometry, 

incorporating distinct domains for the stationary and rotating components. The reference 

frame method will enable the modeling of turbine rotation. The governing equations for 

incompressible and steady-state flow, namely continuity and momentum equations, will 

be utilized [7-8]. Finally, the K-ω SST turbulence model will be applied to accurately 

describe turbulent flow behavior within the Eolic cell and around the HAWT turbine [9-

10].  

3.2. Fluid Domain 

The fluid domain for optimizing the Eolic Wall operates under specific conditions. These 

conditions involve an inlet velocity set at 8 m/s and a range of Tip Speed Ratios (TSR) 

encompassing 1.38, 1.55, 1.725, 1.8975, and 2.07. These particular TSR values were 

selected based on their previously observed high power coefficient (Cp) in simulations 

of the model.  
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Furthermore, the dimensions of the fluid domain adhere to established guidelines 

and are scaled according to the Eolic Cell turbine's diameter (Figure 3). It's worth noting 

that these guidelines were originally designed for 2D simulations. Therefore, both the 

height and width of the domain are set to the same value, maintaining consistency with 

the 2D modeling approach. This approach ensures that the domain dimensions align with 

the requirements and parameters necessary for the optimization process. 

Figure 3. Computational domain dimensions of the Eolic Cell in function of its diameter. 

3.3. Computational Mesh 

The decision to utilize an unstructured mesh for the 3D Eolic wall turbine stems from its 

adaptability to complex geometries, a critical requirement for accurately representing the 

intricate details of both the Eolic Cell and the turbine within the computational domain. 

This meshing approach allows for precise boundary layer resolution, with a 25-boundary 

layer ensuring a y+ value of around 10 for the Eolic Cell and 1 for the turbine blades. 

This meticulous meshing enhances simulation accuracy, enabling a thorough analysis of 

the Eolic Wall's performance and optimization. The meshing specifics are shown in 

Table 1. 

 

Table 1. Eolic Cell Meshing Metrics.  

Metric Orthogonal 
Quality 

Skewness 

Minimum 0.1534 0.0345 

Maximum 0.9845 0.9745 

Average 0.9354 0.0127 

Standard 
deviation 

0.1125 0.0324 

 

3.4. Grid Convergence Analysis 

In the Grid Convergence Analysis, we evaluated the Eolic cell domain using three 

different mesh types: refined, medium, and coarse. Utilizing the Grid Convergence Index 

(GCI) method as proposed by Celik [11], we assessed discretization errors. After 

conducting simulations and calculating average power coefficient values for each mesh, 
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we found that the medium mesh displayed a negligible error of only 0.532%. This makes 

it a highly suitable choice for conducting CFD simulations with minimal uncertainty. 

3.5. Validation Study and Parameter Calibration 

To ensure the accuracy of our numerical simulations, we calibrated the Ansys Fluent 

2022-R2 software using experimental data from a scaled prototype. The focus of this 

calibration was on turbulence parameters at the inlet boundary conditions. We 

transitioned from the "Intensity and Viscosity Ratio" to the "K and Omega" turbulence 

specification method and made specific adjustments to the default K and Omega 

parameters, as shown in the table below:  

Table 2. Modifications for Turbulence Parameters.  

Parameter Default Value Modified 
Value 

Turbulent Kinetic Energy (K) 1.0 0.1910 

Specific Dissipation Rate 
(Omega) 

1.0 0.5455 

 

These modifications were informed by a rigorous sensitivity analysis conducted 

using the OptiSlang software within Ansys Workbench. This calibration process 

involved 100 simulations, ensuring that our computational fluid dynamics (CFD) 

simulations accurately represent real-world conditions [6]. 

4. Response Surface Method 

In this chapter, we delve into the Metamodel of Optimal Prognosis (MOP) [12]. The 

comprehensive methodology, which encompasses the CFD approach, response surface 

method, and optimization procedure, is encapsulated in Figure 4 for an overview. 

Figure 4. Computational domain dimensions of the Eolic Cell in function of its diameter. 

4.1. Input Parameter Identification 

As previously mentioned, our optimization process focuses on three key input 

parameters:  
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� NACA Profile Chord Length (�) 

� Pitch Angle Along the Radius of the Turbine (controlled by two parameters) 

To simplify the control of the pitch angle (�) along the radius (�) and reduce 

complexity, we utilize a second-order equation. The input parameters for this equation 

consist of the first-grade coefficient (FGC) and the second-grade coefficient (SGC), with 

a constant value of 0. 

� � ∗ ��� + �� ∗ 	�� = �� � ����

4.2. Coefficient of Prognosis 

The Coefficient of Performance (CoP) [13] is a key metric for evaluating the 

generalization capability of regression models with unknown data. It measures the 

fraction of explained variation in response predictions and is applicable to various types 

of response surfaces such as polynomial regressions, Moving Least Squares and Kriging. 

� In practice, CoP can be visualized using data from analytical functions. Notable 

points include: 

� CoP tends to increase with more samples, making it a conservative estimate. 

� It should generally rise with an increasing number of samples, up to a certain 

limit. 

� For continuous functions, CoP ideally converges to 1. 

� In CAE models, it often converges to a value below 1 due to numerical noise. 

Thus, understanding CoP helps assess the reliability of response surface models, 

aiding optimization efforts. 

4.3. Single Variable Sensitivity 

The Metamodel of Optimal Prognosis (MOP) allows us to assess the impact of individual 

parameters using variance-based sensitivity indices. These indices measure the fraction 

of variance explained by a single input variable.  

The importance of each parameter is scaled with respect to the global Coefficient of 

Performance (CoP). In some cases, sensitivity indices may also account for coupling 

terms 

It's essential to note that the sum of individual CoPs, when greater than the total CoP, 

indicates the presence of coupling terms, highlighting the interactions between input 

variables. This analysis provides valuable insights into the influence of individual 

parameters within the optimization framework.  
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4.4. Lower Bound and Upper Bound of the variables 

The Computational Fluid Dynamics (CFD) inputs are determined by three primary 

parameters: NACA Profile Chord Length (C), first-grade coefficient (FGC), and the 

second-grade coefficient (SGC). To establish the range of these variables, considering 

the characteristics of the NACA airfoil, conservative lower and upper boundaries have 

been selected, as detailed in Table 3:  

Table 3. Lower Bound and Upper Bound for The Variables. 

Input variable Lower bound (m) Upper bound 
� 0.075 0.125 

    FGC 7.5 12.5 

    SGC -0.5875 -0.3525 

 

For each Tip Speed Ratio (TSR), a comprehensive set of 100 simulations is 

conducted, resulting in a total of 500 simulations. This approach allows for a thorough 

exploration of the optimization space across different TSR values, ensuring a robust 

analysis of the Metamodel of Optimal Prognosis (MOP).   

5. Optimization Procedure 

5.1. Optimization Statement 

This study aims to identify the optimal profile within a specified operational range, 

focusing on performance enhancement. The optimization process involves numerically 

integrating the �

��� − �	 curve using the predetermined TSR values. For this purpose, 

gradient-based optimization methods were employed, ensuring unrestricted exploration 

within the defined boundaries. The optimization statement is as follows: 

Find � =  {�, 	��, ���}�that  maximizes the ∫ �

�������

����
. 

5.2. Gradient Based Optimization 

Gradient-based optimization offers a powerful approach for optimizing complex systems. 

Newton's method is a derivative-based technique ideal for uncertain solutions in 

Computer-Aided Engineering (CAE). Nonlinear Programming by Quadratic 

Langrangian (NLPQL) suits simpler problems with fewer design variables. For more 

complex tasks, the Downhill Simplex (Simplex) method, an iterative approach adjusting 

based on target function values, proves effective [14-15]. 

6. Results 

6.1. Meta-model of Optimal Prognosis Assessment 

After conducting CFD simulations using Ansys Fluent for LHS-based design point 

sampling, meta-models were developed for different TSRs, including Linear Regression 

G. Baca et al. / Enhancing Wind Turbine Efficiency Within the Eolic Cell144



Models, Moving Least Squares, and Kriging. Among these, Kriging was identified as the 

most suitable method based on the CoP. 

A 3D heatmap plotting the NACA chord (X-axis) length and FGC (Y-axis), with the 

Integral of the Cp-TSR curve on the Z-axis, is presented in Figure 5. Similarly, Figure 6 

displays a 3D heatmap depicting the NACA chord (X-axis) length and SGC (Y-axis), 

with the Integral of the Cp-TSR curve on the Z-axis. 

 

 
Figure 5. 3D heatmap plotting the NACA chord (X-axis) length and FGC (Y-axis), with the Integral of 

the Cp-TSR curve on the Z-axis.  
 

The individual contribution of each input variable to the Integral of the Cp-TSR 

curve can be observed in Figure 7. This provides a clear insight into how each variable 

independently influences the final outcome. Additionally, Figure 7 demonstrates how 

changes in each of these input variables impact the value of the Integral of the Cp-TSR 

curve. As it shown Figure 7, the FGC has the highest contribution (58% main effect) 

over the output. 

 

 
Figure 6. 3D heatmap plotting the NACA chord (X-axis) length and SGC (Y-axis), with the Integral of 

the Cp-TSR curve on the Z-axis. 
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Figure 7. Individual contribution of each input variable 

6.2. Optimization Results 

Optimizations were carried out using two gradient-based methods: NLPQL and Simplex. 

With the NLPQL method, approximately 70 iterations were required to identify the 

maximum, as illustrated in Figure 8. 

 
Figure 8. Number of iterations performed by NLPQL to reach the optimization objective maximum. 

 

Similarly, the Simplex method also required about 70 iterations to reach the 

maximum, as shown in Figure 9. 

The following table presents the combination of points resulting in the optimal 

turbine design for each methodology: 

Table 4. Results of Simulations of the Optimal Points. 

 C FGC SGC Prediction Simulation Error 
NLPQL 0.1243 11.22 0.5775 0.2960 0.29861 0.8817% 

Simplex 0.1240 11.31 0.5761 0.2948 0.29843 1.2313% 

 

As seen in Table 4, the differences between both optimization methods are minimal. 

However, the NLPQL method proposes a parameter combination that yields a more 

accurate prediction and a lower error when corroborated with the simulation results.  
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Figure 9. Number of iterations performed by Simplex to reach the optimization objective maximum 

6.3. Optimal Profile 

Based on the above, a simulation of the optimal point for the NLPQL model was 

executed, covering a broader range of rotation speeds. The aim was to observe the 

behavior of the Cp-TSR curve.  

 

Figure 10. Performance of the new optimal turbine. 

The figure 10 illustrates the performance of the optimized turbine, highlighting a 

prediction of a maximum Cp of 0.49 at an incoming wind speed of 8 m/s.  

7. Conclusions 

� Kriging was found to be the most suitable method for meta-modeling, based on 

the CoP assessment. 

� The First-Grade Coefficient (FGC) had the highest impact on the Integral of the 

Cp-TSR curve, contributing 58% to the main effect. 
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� Optimization using the NLPQL and Simplex methods required approximately 

70 iterations to reach the maximum. 

� The NLPQL method provided a more accurate prediction and lower error 

compared to simulations. 

� Simulation of the optimal NLPQL model across a wider range of rotation speeds 

revealed a maximum Cp of 0.49 at an incoming wind speed of 8 m/s. 

8. Future Works 

In building upon the findings of this study, several avenues for future research are 

suggested. These include extending the metamodel-driven approach to a wider range of 

wind turbines and renewable energy systems to assess its broader applicability and 

efficiency. An in-depth investigation into the long-term durability and maintenance 

needs of the optimized turbine designs under varied environmental conditions is also 

recommended. Additionally, conducting economic analyses to explore the feasibility and 

cost implications of large-scale deployment of the Eolic Cell technology will be crucial. 

Further studies should also delve into the environmental impact and sustainability 

aspects of the Eolic Cell, particularly its role in carbon emissions reduction. The potential 

integration of this technology with smart grid systems presents an interesting area of 

research, focusing on the enhancement of energy distribution efficiency. Lastly, 

examining the influence of public policy and regulatory frameworks on the adoption and 

scaling of the Eolic Cell technology will provide valuable insights into its practical 

implementation and growth within the renewable energy sector. 
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