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Abstract. This paper presents a novel approach for active gait trajectory planning

in lower limb rehabilitation exoskeletons, specifically targeting hemiplegic patients.

The proposed method integrates dynamic motion primitives (DMPs) and

generalized regression neural networks (GRNN) to accurately simulate lower limb

joint motion trajectories. Experimental results demonstrate the superiority of the

GRNN-DMPs method over the standalone DMPs approach, as it generates joint

trajectories with reduced error and enhanced precision. This approach holds great

promise for active rehabilitation training with exoskeleton robots for lower limb

rehabilitation.
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1. Introduction

In recent years, the population of individuals experiencing lower limb walking

difficulties has significantly increased due to factors such as aging and conditions like

brain injury, spinal cord injury, or accidents[1]. Consequently, there is a growing need for
rational planning of walking gaits in lower limb rehabilitation exoskeleton robots to aid

patients in regaining their locomotion[2].

Currently, two main types of walking trajectory planning methods are employed in

lower limb rehabilitation exoskeletons: those based on standard human gait databases[3]

and those utilizing intelligent algorithms[4]. For example, Ailegs[5], a wearable lower limb

rehabilitation exoskeleton developed by Beijing Da Ai Robotics Technology Co. Ltd, is

based on a human standard database for rehabilitation of human gait, aiming at restoring

normal walking posture through various therapeutic activities.

On the other hand, the latter method, based on intelligent algorithms, has

significantly improved the adaptability of exoskeleton robots to overcome and navigate
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obstacles[6]. Stefan Schaal and his team of researchers in proposed Dynamic Motion

Primitives (DMP) algorithms, which model the motion control as nonlinear differential

equations and generate trajectories by learning and adapting to the motion schematic
data[7]. However, as with any method, they have limitations that need to be considered.

For example, dynamic motion primitives are prone to overfitting.

To address these limitations, this paper presents an active gait trajectory planning

method for lower limb rehabilitation exoskeletons. By combining dynamic movement

primitives[8] and generalized regression neural networks[9], GRNN-DMPs enables more

precise simulation and control of lower limb joint motion trajectories, resulting in

reduced errors and improved fits compared to the standalone DMPs method. Thus, it

helps patients with lower limbs to regain their ability to walk.

2. Trajectory generation based on dynamic motion primitives

Dynamic movement primitives (DMPs) can be categorized into two forms[10]: periodic

DMPs based on limit cycles for representing periodic motion trajectories, and discrete
DMPs based on point attractors for representing discrete motion, a periodic DMP based

on limit cycles is adopted to model the gait of lower limb rehabilitation exoskeleton

robots.

The limit cycle system used in trajectory planning for cyclic Dynamic Movement

Primitives (DMPs) is similar to a spring-damper system. Its first-order dynamical system

equation can be expressed as:
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In the global regression setting, the criterion for minimizing the quadratic error is:
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The DMPs model can generate the motion trajectory gene�  by integrating equation

(1) with the initial system state [ ( ), ( ), ( )]demo demo demot t t� � �� ��  nd initial phase 0� .

3. An active gait trajectory planning method based on GRNN-DMPs

3.1. GRNN modelling

GRNN (Generalized Regression Neural Network) is an improved version of the Radial

Basis Function Neural Network (RBFNN) that exhibits enhanced learning speed and

nonlinear mapping capability[11].

GRNN offers several advantages, including one-shot training without the need for

iterative processes, automatic determination of the number of neurons in the hidden layer

based on training samples, automatic determination of connection weights between
network layers, and eliminating the need for manual weight adjustments.

In this paper, a GRNN-DMPs algorithm is proposed and applied to the task of gait

trajectory planning for active rehabilitation training in order to reduce fitting errors. The

structure of the GRNN is illustrated in Figure 1.

Fig 1. The structure of GRNN.

3.2. GRNN-DMPs Active Walking Trajectory Planning

Figure  2  illustrates  the  flow  chart  of  the  trajectory  simulation  for  the  GRNN-DMPs
model, which is based on the GRNN-DMPs approach for active gait trajectory planning

in lower limb rehabilitation exoskeletons.

Fig 2. GRNN-DMPs flow chart.
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The specific process of GRNN-DMPs trajectory simulation is as follows:

The parameters are first initialised according to the parameter values in Table 1, and

then the dynamical system is established based on the initial parameters. The distribution
of each Gaussian kernel function is deduced and the corresponding weights of the

Gaussian kernel functions are determined according to Equation (4). Then input the

angular trajectories of the hip and knee joints, calculate their velocities and accelerations,

determine the forcing term according to Eq. (2), and calculate the forcing term function

f  , take f   as the input vector of the GRNN input layer, and then output the joint

trajectories modulated by the GRNN.

The simulation parameters of the combined model are shown in Table 1.

Table 1. Combining model parameter selection.

Parameter name Numerical Parameter name Numerical

Gain factor z� 25 Gain factor z� 6.25

Number of kernel functions N 10 Time constant � 0.5

Target state g 1 Wideband h 15

Focal point c 1 Smoothness � 0.005

4. Simulation experiments

Based on research, we set the duration to 1.2m/s[12] and chose three different sets of

values. To demonstrate the effectiveness of GRNN-DMPs, we will use the left leg joint

for example. Figure 3 shows the output of the GRNN-DMPs specifically for the left leg

joint.

Fig 3. GRNN-DMPs planning track of each joint.
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Figure 3 demonstrates that the motion trajectory planning of the hip joint and knee

joint using GRNN-DMPs shows positive effects. When the smoothness is set to 0.005,

the error between the joint motion curve and the actual motion trajectory curve generated
by the combined model is minimized, and the motion trajectory closely aligns with the

design requirements.

To assess the accuracy and precision of the proposed GRNN-DMPs model,

trajectory generation graphs of both DMP and GRNN-DMPs are provided. Additionally,

a trajectory generation error diagram is included for comparison. These diagrams can be

found in Figure 4 and Figure 5.

Fig 4. DMPs and GRNN-DMPs trajectory generation graphs.

Fig 5. trajectory generation error diagram.

In Figure 5, it is evident that the joint trajectories generated using the DMPs method

exhibit larger errors during the flexion and extension of the joints in a walking gait cycle.

Specifically, the knee trajectory shows a maximum error exceeding 8°. In contrast, the

combined GRNN-DMPs method produces smaller trajectory generation errors. The

maximum error for online generation of the hip trajectory does not exceed 0.5°, while

for the knee joint, it does not exceed 2°. These findings highlight the superior trajectory

planning ability of the GRNN-DMPs method.
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5. Conclusion

This paper introduces a combined GRNN-DMPs method for trajectory simulation in the

active rehabilitation training stage of patients. The method aims to establish online joint
trajectories based on patients' active rehabilitation training. The results illustrate that the

combined model achieves a maximum error in generating joint trajectories that does not

exceed 2°, which is smaller compared to using DMPs alone. Additionally, the generated

trajectory curves closely resemble the actual joint trajectories of the lower limbs. These

joint  trajectories  generated  by  the  GRNN-DMPs  method  can  be  used  as  inputs  for

subsequent rehabilitation control strategies.

Indeed, while the current paper focuses primarily on level walking training in the

active-passive rehabilitation of lower limb exoskeletons, it is crucial to consider a wider

range of activities that patients may encounter in their daily lives. Activities like stair

climbing and squatting require different movement patterns and may pose additional

challenges for patients in rehabilitation.
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