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Abstract. In the realm of machine learning-based target detection, there exist

several challenges that require attention, namely limited detection range, complex

feature extraction, suboptimal detection precision, and significant subjectivity. In

this paper, the strengths and weaknesses of existing deep learning target detection

algorithms have been investigated in order to address these issues by integrating the

actual welding process of heat exchangers. The objective is to improve the model's

detection accuracy and speed. To achieve this, we employ the YOLOv5 model to

detect and identify weld defects of the heat exchanger tube plate, and propose an

enhancement method based on the YOLOv5s model. By implementing several

enhancements, such as incorporating the attention mechanism, updating the loss

function, and optimizing the feature fusion network, the model's overall

performance is enhanced, with a focus on addressing the issues of low detection

accuracy, slow convergence, and inadequate real-time performance in detecting

small target defects compared to the YOLOv5s model. The improved YOLOv5s_m

model improves the detection accuracy by 4.52% and the speed by 4.4 FPS, which

solves the problems of low detection accuracy, weak sensitivity of small target

defect detection and poor convergence of the bounding box loss function of the

YOLOv5s model. These improvements lay the groundwork for enhancing the

automation and intelligence of weld quality inspections.
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1. Introduction

Currently, the detection of weld defects in heat exchanger tube plates is primarily

conducted manually [1]. This method has several drawbacks, including low levels of

automation, potential for fatigue, limited real-time capabilities, and a high likelihood of

leakage or incorrect detection. In this paper, the surface defects of pipe plate weld are

taken as the research object, and the deep learning algorithm [2] is introduced to achieve

the defect recognition of pipe plate weld by comparing with the traditional machine

learning method, with the aim of reduce the complexity of the algorithm, and improve

the detection speed and accuracy of the model. By repeatedly training and testing on the

self-made weld defect dataset presented in this paper, we were able to confirm the
efficacy of the proposed algorithm. Related works and methods

The initial dataset is optimised by adopting data augmentation methods such as

rotational and translational transformation, image noise enhancement [3], etc. Improving
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the model's adaptive capability and detection performance requires increasing the variety

and quantity of the dataset.

An improvement method based on YOLOv5s model of weld defects [4] is proposed.
Firstly, the CBAM attention mechanism [5] is added to the Backbone part to increase the

weights and optimise the learned feature information to improve the overall detection

accuracy of the model. The loss function is often used to determine the magnitude of the

degree of error between the predicted target frame and the actual frame, and the loss

function directly affects the convergence of the model and relates to the detection

performance of the model [6]. Replace the default GIoU loss function with the CIoU loss,

which speeds up convergence in the training process. Finally, BiFPN [7] network is used

for multi-scale feature fusion to change the original path aggregation network Path

Aggregation Network (PANet).

2. Improvements to the YOLOv5s model

2.1. Adding CBAM Attention Mechanism

In the feature extraction network of YOLOv5s, attention mechanism modules have

been added respectively, with their precise positions marked in Figure 1.
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Figure 1. Illustration of the embedded location of the attention mechanism module.

As depicted in the figure above, the attention mechanism is executed for every

session of the C3 module, adjusting the attention weights across multiple dimensions and

enhancing the precision of small target detection simultaneously.

2.2. Introduction of CIoU losses

The positional loss of the bounding box in YOLOv5s is generally evaluated by the GIoU

loss. But GIoU has limitations. As depicted in Figure 2, GIoU degenerates into IoU when

the projected bounding box B is completely within the actual bounding box ���.
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Figure 2. The condition of the prediction box inside the real box.

Given that small target defects like air holes or pits constitute about 1/3 of the

samples in this study, the CIoU loss function is better suited for such cases.

3. Experimental dataset production

3.1. Experimental data enhancement

In order to improve the scale of the dataset and the generalization ability of the model,

and to avoid problems such as overfitting in subsequent models during training [8]. In

this paper, 1276 defect images acquired under different scenes such as strong light, dark

light, dust, etc. are expanded by data enhancement methods. Examples of the data

enhancement methods are shown in Figure 3.

Figure 3. Some data enhancement methods.

The precise number of datasets is presented in Table 1.

Table 1. Statistics on the number of defect data sets of each type

Typology Normal Stoma Arc pit Not fused Damaged
edges Crater

Training set 400 611 390 524 451 504

Validation

set
50 75 50 68 56 63

Test set 50 78 46 58 57 65

Total 500 764 486 650 564 632

3.2. Sample labelling

In this paper, the labeling types are divided into 6 categories. The normal weld category

is 0, label is nm; the edge loss defect category is 1, label is de; the porosity defect category

is 2, label is s; the unfused defect category is 3, label is nf; the crater defect category is

4, label is c; and the arc crater defect category is 5, label is ac.
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4. Specific training and experimental procedures (Figure 4)

Figure 4. Overall training and experiment flow chart.

5. Experimental results and analysis

5.1. Visualisation of the training process

For ease of differentiation, the improved YOLOv5s model is referred to in this chapter

as YOLOv5s_m. Once 300 training epochs were completed, the log files were imported

into Origin software to produce the mAP and Precision curves illustrated in Figures 5

and 6, respectively.

         Figure  5. mAP graph. Figure 6. Precision graph.
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In this context, AP represents the classification accuracy of a single target category.

A higher AP value indicates better predictive performance. The formula for calculating

AP is as follows (1):

�� = � �(�)	�



�
(1)

The mean Average Precision (mAP) refers to the average of AP values across

multiple categories. The calculation formula for mAP is as follows (2):

��� =
 ��
��� �(�)

�
(2)

The enhanced YOLOv5s_m model exhibits higher detection accuracy in mAP and

Precision accuracy compared to the original YOLOv5s model. Once the model reaches

saturation, the final detection accuracy remains stable at around 94%, while converging

faster and delivering superior performance.

5.2. Improve experimental verification

� Attention mechanism improvement verification

Utilizing the CBAM attention mechanism principle elucidated above, the SENet, the

CA, and the CBAM are sequentially positioned at the same locations within the network.

Figure 7 illustrates the loss function acquired from the training.

Figure 7. Comparison curves of loss functions for different attention mechanisms.

Upon scrutinizing the three curves, it becomes evident that the YOLOv5s model,

which incorporates the CBAM attention mechanism module, displays a more rapid

convergence during detection. To further confirm the effective detection impact of

different attention mechanism modules on small target defects, the test set is assessed

using the weight files generated by the model after integrating the attention mechanism.

Several test results are presented in Figure 8.
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(a) YOLOv5s Detection (b) YOLOv5s detection after adding the

attention mechanism

Figure 8. Defect testing of small target images.

As  can  be  seen  from  Figure  8,  the  model  with  the  introduction  of  the  CBAM
attention mechanism can detect some of the pit or air hole type defects more accurately,

which verifies that the CBAM attention mechanism enables the model to pay attention

to the small targets in a wider range.

� Loss function improvement validation

With respect to improving the loss function, Fig. 9 illustrates the comparison curves

of the loss function acquired during the model training before and after the enhancement.

Figure 9. Improved loss function comparison curve.

By utilizing the CIoU loss function, the loss function curve shows a faster

convergence rate and a lower final convergence value for the model's loss.

� The comparison results obtained after embedding the BiFPN feature fusion

module in YOLOv5s are shown in Table 2.

Table 2. Performance comparison after replacing feature fusion networks

Model
AP/%

mAP/% Weights
/Mstoma damaged

edges
arc
pit

not
fused crater P/%

YOLOv5s 88.24 92.15 90.63 92.17 87.56 89.78 90.15 16.5

YOLOv5s+BiFPN 90.72 93.43 91.27 92.95 89.11 90.35 91.49 16.7
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As can be seen from Table 2, the improved feature fusion method results in a more

significant improvement in accuracy for small target defects in the categories of

pneumatic holes and pits, resulting in improvement of 2.48% and 1.55%.

5.3. Visualisation of detection results

To further verify the practical impact of the YOLOv5s_m model on detecting weld

defects dataset, this section randomly selects several images from the test set for

detection, and the visualization results are shown in figure 10 below.

(a) YOLOv5s Detection (b) YOLOv5s_m Detection

Figure 10. Comparison chart of defect detection results.

6. Conclusion

This paper proposes a method to improve the YOLOv5s model, which aims to address

the issues of low accuracy in detecting small target defects, slow convergence speed, and

inadequate real-time performance in the algorithm as the primary focus. Firstly, the

CBAM attention mechanism is introduced to improve the detection accuracy and

precision of the model. The next step is to replace the default GIoU loss with the CIOU

loss function, which will result in an accelerated convergence of the model and improved
robustness. Furthermore, we adopt the concept of the BiFPN network and refine the

feature fusion structure. Finally, a comparison experiment is set up. In order to boost the

sensitivity and accuracy of detecting small target defects, such as air holes or pits, the

feature fusion architecture has been upgraded, incorporating the concept of BiFPN

network. To verify the effectiveness of the proposed enhanced approach, a comparative

experiment was conducted. The results demonstrate that the improved YOLOv5s_m

model significantly outperforms other algorithm models in terms of both detection speed

and accuracy.
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