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Abstract. This paper explores the development of digital systems to identify and 
reduce cognitive stresses in contemporary manufacturing environments with 
increasing numbers of robots and smart machines. To achieve this, the study 
attempts to answer the following research question: How can technology-driven 
advancements in engineering psychology be leveraged to foster more productive, 
ethical, and psychologically supportive collaboration between humans and robots in 
the context of modern manufacturing environments? The study explores relevant 
literature to gain deeper insights into the subject succeeded by the development of a 
prototype composed of two digital solutions. By improving cognitive ergonomics 
through the detection and recognition of non-verbal cues, as well as reducing 
cognitive stress by providing real-time information on the positions of mobile robots, 
this study offers potential solutions to the social and psychological challenges of 
human-robot collaboration. The paper concludes with an analysis of the final 
prototype, a discussion on sustainability implications, and recommendations for 
future research. Overall, this research aims to bridge the gap between human 
workers and technology in the manufacturing sector, facilitating a harmonious and 
productive collaboration that aligns with the goals of Industry 5.0. 
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1. Introduction 

The advent of Industry 5.0 (I5.0) signifies a shift towards a human-centric approach in 
the industrial landscape, where human workers engage in collaborative endeavors with 
robots and intelligent machines to execute high-value tasks [1]. However, this transition 
raises substantial concerns regarding the ethical integration of such collaborative systems, 
necessitating a careful exploration of ethical principles [2]. The challenge lies in 
establishing seamless interconnections among workers, organizations, and evolving 
technologies, with emphasis on the critical role of a smooth transition in this evolving 
ecosystem [3]. Notably, the workplace landscape is witnessing a pronounced shift from 
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physical to psychological risks, marked by mental overload and increased work density 
resulting from the dynamic and flexible nature of smart manufacturing activities [4].  
Recognizing these challenges, digitalization emerges as a pivotal tool, not only in 
comprehending these concerns but also in driving effective solutions. 

1.1. Problem Description 

In contemporary manufacturing environments characterized by a growing presence of 
robots and smart machines, the human workforce faces escalating cognitive stresses. 
These challenges are exacerbated by the need for harmonious collaboration between 
humans and technology, a cornerstone of I5.0. The overarching problem centers on the 
development of digital solutions to enhance HRC within these evolving industrial 
landscapes. The aim of this paper is to develop such solutions with focus on addressing 
the cognitive ergonomics of Human-Robot Interaction (HRI), including the recognition 
of non-verbal cues, while also mitigating cognitive stress through the provision of real-
time information on mobile robot positions. 

1.2. Research Question 

The core challenge can be articulated as follows: How can technology-driven 
advancements in engineering psychology be leveraged to foster more productive, ethical, 
and psychologically supportive collaboration between humans and robots in the context 
of modern manufacturing environments? This question calls for innovative approaches 
that blend engineering psychology, technology, and sustainability to facilitate a seamless 
transition into I5.0. 

The rest of the chapters is structured as follows: an unstructured search of related 
work, detailed descriptions of the research approach, prototype development and results, 
and a discussion section involving sustainability implications and future directions. 

2. Related work 

Human Factors Engineering, with a focus on human-systems integration, human-
computer interaction, and user-interface design, plays a pivotal role in comprehending 
human interactions with technology [5]. Engineering psychology, a subdiscipline of 
psychology, further refines this understanding by emphasizing cognitive aspects over 
physiological concerns, especially in design and evaluation [5]. During the design of a 
system involving both humans and technology, human cognitive capabilities and 
processes should be taken into consideration to obtain the necessary knowledge for 
reconciling technical possibilities with human needs [6]. 

Transitioning into HRI, recent studies have explored HRI standards with a spotlight 
on control systems and collaboration methodologies in manufacturing, anticipating 
increased adoption by Small and Medium-sized Enterprises (SMEs) [7]. However, a 
significant gap between theoretical research and practical implementation in real 
industrial settings hampers the seamless integration of laboratory-based cobotic 
technology into smart factories [8]. The discourse on HRI recommends a Human-
Centered Design (HCD) approach, emphasizing the importance of placing humans at the 
core of manufacturing systems for fluid, safe, and satisfactory interactions [9]. 
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Key enabling technologies of Industry 4.0 (I4.0) provide new opportunities for 
physical, cognitive, and sensorial assistance, empowering workers for enhanced 
productivity without replacing them [10]. Assessing the pros and cons of I4.0 from 
environmental and social aspects is imperative before technical implementation to 
prevent negative psycho-social effects on the workforce and the manufacturing society 
at large [11]. Artificial Intelligence (AI) utilization in conjunction with Human-
Computer Interaction (HCI) has shown promise in breaking down and understanding 
physical and mental aspects, creating foresight models for risk prevention, especially in 
the context of psychological disorders [12]. The synergy of AI, HCI, and psychology has 
influenced and continues to drive solutions for mental health [13]. 

More particularly in manufacturing environments, the integration of robots and 
smart machines has introduced occupational stresses, affecting workers' mental health 
and overall productivity [14]. Addressing these challenges requires reciprocal interaction 
between humans and robots, where robots respond to human behaviour, creating a robust 
communication channel [14]. Implementing customized robot actions based on 
employees' psychological states could lead to a psychologically safer workplace and 
improved HRC [15]. A promising approach to reduce mental stress involves providing 
workers with notifications before executing high-risk activities [14]. Research discussed 
in [16] evaluates the impact of advanced notice of robot motions on human mental stress. 
Comparative experiments demonstrate that providing advance notice of the maximum 
speed of robot motion can effectively reduce workers' mental stress. 

Ensuring the well-being, safety, and health of workers is crucial for a sustainable 
industrial ecosystem, necessitating a human-centered production approach [17]. 
Concepts like "Social Smart Factory" and "Human Cyber-Physical Systems" advocate 
for considering human elements in the production system for smarter decision-making 
in manufacturing environments [18]. The term “Operator 4.0” emphasizes the need for 
workers to adapt to and excel in an environment where intelligent technologies play a 
significant role, requiring a blend of traditional skills and proficiency in interacting with 
and managing advanced technological systems [19]. Future directions indicate 
exploration of intelligent human-machine interfaces, interaction technologies, and 
adaptive control systems to further develop human-automation symbiosis in the Factory 
of the Future [20]. 

In summary, the literature underscores the significance of Human Factors 
Engineering and its evolution into the realm of HRI in manufacturing settings. While 
advances in I4.0 and AI-driven technologies present promising opportunities, the 
existing gap between theoretical research and practical implementation in real industrial 
contexts poses a critical challenge. The need for a HCD approach and the integration of 
customized robot actions based on employees' psychological states are key findings. 
However, the limited exploration of such implementations emphasizes the existing gap 
and calls for further research to bridge theoretical concepts with practical applications, 
specifically in the context of HRC and its impact on worker well-being and productivity. 
Addressing these gaps is crucial for the successful transition to I5.0, aligning with the 
overarching goal of creating seamless and psychologically supportive collaboration 
between humans and robots in modern manufacturing environments. 
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3. Research Methodology 

3.1. Research Approach 

The research design of this study aims to bridge the gap between theoretical research and 
practical implementation of the subject matter. The maturity level in the research area of 
HCD and HRC applied in manufacturing processes is at a medium state, and the area 
itself is relatively new. Papers on the subject have been emerging over the past 30 years, 
with a rapid increase in the past decade.  

To validate the existing theoretical background and link it to a real-case industrial 
context, the authors employed an experimental approach, specifically using the 
Systematic Parameter Variation method, as defined by [22]: "Systematic parameter 
variation represents a type of quasi-experiment where several variables known to be 
essential are kept constant, while other variables are manipulated and carefully measured 
until an optimal solution is found." This study follows this approach, maintaining 
essential constant variables such as the state of the system - necessitating human-robot 
collaboration to achieve tasks and productivity goals - while manipulating variables 
related to the integration of technology that may affect the psychological state of the 
worker. The study adopts an abductive pattern, aiming to explain experimental results 
by providing reasonable explanations and making educated guesses to further develop 
knowledge in the field. 

3.2. Experimental Design 

Both experiments were set up to simulate a production logistics facility. The setting was 
formulated as workstations with human employees in distance with each other and 
Automatic Mobile Robots (AMRs) transferring materials between the stations. The 
stations include one main workstation where the human employee is stationed, and three 
passing stations where the AMR might stop during a route. These were the setup 
parameters, which were kept constant throughout the experiments. 

3.2.1. Experiment 1: Cognitive Stress Reduction 

The first experiment aimed at reducing cognitive stress of workers by providing 
information on the movement of the collaborating automatic vehicle.  According to [21], 
providing workers with notifications before important events – for example, an AMR 
arriving at the station to pick up an order that is not yet complete – reduces mental stress. 
For this purpose, a network of proximity sensors was designed to be implemented in the 
simulated production logistics facility to collect information on the AMR’s position and 
provide appropriate visualization of this information to the worker at the station. 

The constant parameters of the experiment, besides the aforementioned, also include 
the positions of the stations and, consequently, the distances between them. The 
parameters possible to control were the types of sensors constituting the network, the 
positioning of the sensors, the number of stations utilized for the experiment and the type 
of notification/visualization shown to the worker. The output variable would be the 
confirmation that the worker was accurately notified of the estimated time of arrival 
(ETA) of the AMR to the workstation. Further experiments are required and 
recommended by the authors to evaluate the levels of stress of the employee to verify 
reduction through this installation.  
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3.2.2. Experiment 2: Emotion Monitoring 

The second experiment focused on monitoring the emotional state of the employee using 
computer vision for facial emotion recognition. The aim was to establish closed-loop 
cognitive communication between the AMR and the human worker by recognizing non-
verbal cues, interpreting the emotions behind the cues, and acting accordingly.  

Constant parameters include the preexisting AMR at the laboratory facilities, with 
its respective mapping and routing system, the use of a pretrained algorithm due to time 
restrictions and the physical characteristics of the testing subjects. The combination of 
the latter two leads to biased results, stemming from the subjectiveness of the human 
emotions determined by personal and cultural differences [22] [23]. Consequently, the 
results might not be optimal and unbiased to the subject in front of the camera. The issue 
will be addressed later in the discussion chapter. For the experiment, it was considered 
as a parameter out of the authors’ control.  

The parameters that were possible to control in this case were the choice of a 
pretrained Machine Learning (ML) algorithm, the actions of the AMR and the range of 
human emotions classified in certain categories. The output of the experiment was 
expected to be the AMR performing an action based on the emotion that it has identified 
on the human employee. Also in this case, further evaluations are required and 
recommended to assess the contribution of this digital solution to the workers’ well-being, 
or even further to evaluate the psychological effects within a cyber-physical system 
(CPS). 

4. Prototype Development 

The authors have confidence in the idea that the world manufacturing ecosystem is 
shifting towards I5.0 and global trends are pushing for more human-oriented conditions 
on the shop floor for maximized resource utilization and socially sustainable production. 
In search of an idea leaning towards these shifts, market research was conducted and 
revealed a gap in assessing and acting on the psychological state of employees, as well 
as incorporation of this information into production flows. 

Ideas were generated through brainstorming, the focus of which was on developing 
end-to-end solutions, considering the stress levels of workstation employees. The main 
requirement for the solutions was to be aligned with the objective, as well as the available 
equipment in the laboratory where the experiments would be conducted. For this 
research, the experimental scenario took place in a laboratory at KTH Royal Institute of 
Technology in Södertälje, Sweden. The laboratory simulates material handling facilities 
with several workstations. The equipment included Arduino microcontroller kits with 
various sensors, a webcam, and a MiR250 AMR.  

4.1. Cognitive Stress Reduction 

For the first experiment, an AMR transfers materials and components between these 
workstations. The main assumption made for the first experiment is that the stations are 
far apart from each other, resulting in limited communication between the workers and 
sole collaboration with the AMR. The authors assume that the sensors operate within the 
design and manufacturing parameters of the available ones in the laboratory, for 
example, a maximum range of 400cm for the ultrasonic sensors.  
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Among the available sensor options, ultrasonic sensors were chosen for this 
experiment.  They were selected over laser sensors and other proximity sensors due to 
their wider angle of detection and suitability for the required application. It should be 
noted that the AMR already had position trackers installed, rendering other sensor 
technologies redundant. However, the experiment aimed to make a case for leveraging 
non-smart technologies for sustainable production logistics. 

An Arduino circuit board was connected with the ultrasonic sensor and programmed 
to provide real-time distance of the moving AMR performing pre-assigned missions. The 
authors decided to use one ultrasonic sensor at the workstation instead of a network 
connecting the various stations, due to negligible distances between them in the 
laboratory environment. However, the system can be augmented with many sensors 
along the AMR path for more accurate information for the operator of the robot’s 
approximate ETA.  

The output of the Arduino code was integrated into Node-Red, a visual 
programming tool, where a function was utilized to convert the real-time distance to ETA. 
To present the collected data in a user-friendly manner, Node-Red's User Interface was 
utilized for visualization, as shown in Figure 1. This visual feedback system served as a 
warning mechanism to reduce work hazard risks for the station operator.  

On the practical aspect of the experiment, the setup was sensitive to the appropriate 
edge design; for example, choosing of wireless or wired sensors, appropriate sensor 
sensitivity, sensor range, edge devices interoperability, and sensor positioning. 
 

 

Figure 1: ETA Dashboard 

4.2. Emotion Monitoring 

In the second experiment, the initial design was to install a camera on the AMR to capture 
non-verbal cues from human employees and utilize an algorithm to understand their 
emotional states. This proved to be a challenge because of image depth, scale-space 
factors, face angle (affine), and motion and optical flow variance [24], hence placing the 
camera at the workstation proved practical. During a review of the design, it was decided 
to utilize a laptop webcam installed in the workstation, for stable resolution. The webcam 
provided adequate resolution and compatibility with the rest of the system, ensuring 
reliable and accurate data capture for emotion recognition purposes.  

A ML algorithm was utilized to interpret facial expressions and trained with 
secondary data, open-source and available on the internet. The testing of the algorithm 
occurred through participatory observation. The pre-trained ML library which was used 
for this experiment is called DeepFace, an open-source project written in Python and 
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licensed under MIT License. The decision was based on the findings of [25], where it is 
investigated how the facial signals expressed by the human operator can be collected and 
analyzed via deep learning algorithms. The results are shown in Table 1 in descending 
order by training accuracy score. 

The emotional classes of the ML model were the following: happy, frustrated, and 
neutral faces. The extra features attributed through the model were gender (female, male) 
and race (white, black, Asian). The main assumption for this experiment was that the ML 
algorithm is unbiased regarding these categories.  

 

Table 1. Machine learning algorithms for Facial Emotion Classification with respective training accuracy [25] 

Name Training Accuracy Name Training Accuracy 
ArcFace 99,83% VGG19 96% 

SphereFace 99,42% FaceNet 95,12% 
CosFace 99,33% Alex-Net 94,4% 

VGGFace 98,95% ResNet50 79,11% 
DeepFace 97% Inception v3 78,1% 

DenseNet201 97%   

 
As for the correspondence of the AMR to the employee’s emotional state, three 

responses were deployed. In the first case when a happy face was detected, the AMR 
was approaching the station and, with the use of natural language, it responded “Oh! You 
look happy today! What’s on the menu?”, creating a discourse. In the case of a neutral 
face, the AMR just completed its mission and moved on. In the final scenario where the 
employee was frustrated, angry, or sad, the AMR kept a safe distance and responded in 
natural language syntax like “I hate to see you like this. What’s wrong? Do you want me 
to give you some space?”.   
 

 
Figure 2. 1st Experiment in Node-Red 

Although it is not in the delimitations of this project, the authors aimed to make the 
system intelligent and connected by using output data from the first experiment as trigger 
information for the second experiment. More specifically, when the AMR is sufficiently 
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close to the station, visual to the worker through the human-machine interface, a 
background connection triggers the webcam used for the computer vision to analyze 
emotional state of the worker, thus integrating the two solutions. The integrated system 
is visible in Figure 2 and 3, with the two experimental parts highlighted respectively.  
 

 
Figure 3. 2nd Experiment in Node-Red 

5. Results 

For the first experiment, ultrasonic sensors were strategically chosen for their wider angle 
of detection, aligning with the experiment's non-smart technology focus for sustainable 
production logistics. The ultrasonic sensors, integrated into Node-Red, provided real-
time data on the AMR's position and ETA at the workstation. This visual feedback 
system effectively warned the station operator of the approaching AMR, contributing to 
reduced work hazard risks. 

The results of the emotion monitoring experiment demonstrated the feasibility of 
integrating ML algorithms into human-robot interaction scenarios. The responses, 
tailored to the detected emotional states, showcased the potential for creating a more 
empathetic and responsive human-robot collaboration environment. The computational 
costs resulted in system latency with regards to image analysis. The open-source image 
analysis algorithm displayed some errors and bias. The AMR path seems to be a critical 
constraint for with many obstructions will make the AMR stop.  

Node-Red enabled seamless integration between the ML model, AMR control, and 
data storage, serving as a centralized platform for managing workflow and ensuring 
smooth operation. The integrated system demonstrates potential for creating a holistic 
approach to human-robot collaboration, addressing both physical and emotional aspects. 
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6. Discussion & Future research 

Addressing specific challenges to the emotion recognition aspect of the solution, there 
are a couple of controversial issues to be mentioned. The ML algorithm is pre-trained 
with uncontrollable secondary data, prone to biases concerning gender, race, age, and 
other physical factors. This means that the solution might not apply with the same results 
universally and a scaled-up industrially implemented solution would require case-
specific training with internal company data.  

Another challenge is the limited range of emotions typically displayed by workers 
around robots. Workers often maintain a neutral expression, making it challenging for 
the system to interpret their emotional states accurately. This poses potential issues in 
distinguishing between a production-related concern, requiring a robot slowdown or 
stop, and non-threatening external events. Overcoming such challenges necessitates the 
development of more advanced context-aware intelligence [24]. 

While the results are promising, acknowledging the potential reduction in 
productivity due to the AMR's programming to understand non-verbal cues is crucial. 
The system's initiation of smooth discourse and occasional waiting for appropriate 
human responses may lead to decreased productivity. Long-term concerns involve the 
possibility of employees understanding the impact of their cognitive stress on 
productivity and potentially altering their non-verbal cues. 

Beyond the experiment's scope, the need for total information to inform the system 
about underlying phenomena in an operator's life is emphasized. This includes human 
resource information or accounts department data, contributing to the initiation of a 
gossip protocol [26], between the AMR and the operator, enhancing a more natural 
discourse.   

Addressing general challenges, incorporating offline programming, visualization, 
simulation, and control features into the project is crucial to overcome issues posed by 
remote factories and Wi-Fi bandwidth volatility. This approach ensures uninterrupted 
operations, reducing reliance on real-time data flow susceptible to connectivity 
limitations. Implementing industrial CPS is advocated for robust production system 
handling large volumes of data flow efficiently. Other practical implications of these 
findings suggest the importance of appropriate edge design in deploying sensor networks 
for effective human-robot interaction in industrial settings. 

Considering research points, the integration of technological advances with human 
needs and worker empowerment is highlighted. In the context of scalability, careful 
consideration of greenfield and brownfield opportunities is urged, emphasizing 
alignment with existing platforms to avoid inefficiencies. Lean techniques are 
recommended before digitalization to eliminate waste, and coordinated initiatives are 
essential to prevent duplicated efforts. 

The importance of economic, social, and environmental sustainability in 
digitalization efforts is underscored. While digitalization may seem appealing, it should 
be driven by value creation, aligning with digitalization objectives, organizational 
competencies, employee competencies, and long-term goals. It is essential to recognize 
that the successful launch of I5.0 relies heavily on employee engagement and interaction. 
Without active involvement and participation from employees, the full potential of I5.0 
cannot be realized. Organizational culture and mindset play pivotal roles in successful 
digital transformation, requiring a collaborative approach and effective change 
management to facilitate the organization's exploration of new possibilities. 
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Through the proposed integrated solution, comprehensive tracking and tracing of 
shopfloor key performance indicators (KPIs) becomes feasible. These KPIs might 
include productivity, resource efficiency, capacity utilization, ergonomic deviations, 
automation level, workload variation, and employee work-related stresses. Some of these 
KPIs can be used to determine the environmental impact of the solution. For instance, 
while the energy consumption of the entire system falls outside the scope of this paper, 
monitoring and controlling the energy usage of the system are important for evaluating 
its environmental impact, particularly in terms of SCOPE 2 and 3 emissions. Further 
research is needed to address this aspect and fill the existing knowledge gap.  

Exploring ethics, security, and privacy concerns, data privacy encompasses aspects 
such as autonomy, the desire for privacy, and data ownership, which vary according to 
individual customer preferences and business considerations. Privacy measures should 
encompass data collection, processing, storage, usage, and disposal, ensuring that 
customer rights are respected throughout the data lifecycle. Both employees and the 
organizations they belong to should have rights that include transparency, access, 
objection, restriction of processing, the right to be forgotten, and the right to be informed. 
The presence of multiple parties involved in data governance introduces further 
complexity to the equation. It is imperative to acknowledge that another option is just to 
restrict access of personal data to management and strictly giving access to the employee 
for their edification and correctly assessing, monitoring, and controlling their own 
wellbeing. 

Possible areas of research include the integration of the AMR with the psychological 
natural language processing artificial intelligence to maintain a near human natural 
discourse between the shop-floor worker and the AMR, hence greatly reducing stress 
levels. Another possible area of research is network agnostics of different domains, 
dimensions, and functional areas of the organization in developing an intelligent smart 
production system which is connected, adaptive and prognostic, and can pass 
recommender systems on all domains with a systematic approach. 

7. Summary & Conclusion 

In conclusion, this paper presents an end-to-end digital service with two integrated 
solutions for adapting to and improving the mental condition of employees on the 
shopfloor, enabling the evaluation of productivity in relation to ergonomic deviations 
and work-related cognitive stress. It seems possible to utilize the psychological state of 
the worker with the assistance of modern technology in order to optimize production 
operations. However, the digitalization process presents its own challenges, both in terms 
of infrastructure, such as high capital expenditure, latency for scalability, technical 
competencies gap, limited computational power and an increase in power consumption, 
and in terms of organizational culture and employee resistance to change.   

The experimental results indicate promising avenues for enhancing human-robot 
collaboration in I5.0, with a focus on reducing cognitive stress and incorporating 
emotional intelligence into the workplace. The findings underscore the importance of 
considering various technological and design factors in implementing effective human-
robot symbiosis in manufacturing environments. 

To ensure robustness and reliability of the production system, the paper suggests the 
implementation of industrial CPS capable of handling high volumes of real-time data, 
high velocity, and storage. Additionally, the inclusion of features for off-line 
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programming, visualization, simulation, and control is proposed to address issues related 
to remote factories and volatile Wi-Fi bandwidth. 

The authors emphasize that employee engagement and interaction are vital for the 
successful launch of I5.0. Organizational culture plays a significant role in digital 
transformation, necessitating a collaborative mindset and fundamental mindset change 
within the organization. 
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