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Abstract.  Digital twins have emerged as a critical technology to enable smart 
production. Digital twins can enhance the current production system by optimizing 

the current setup and facilitating decision-making based on facts rather than gut 

feeling. Despite the numerous benefits explored, digital twins have faced many 
challenges in developing and implementing production systems. Their complexity 

is causing a lack of digital twin implementations in the production system. This 

complexity can be traced back to physical and virtual entities and the digital twin 
development process. By conducting a case study in a global manufacturing 

company, this publication explores the sources of complexity when developing 

digital twins. The findings are organized around the digital twin development steps 
and their corresponding complexity. The number of different types of entities being 

modeled, the choice of the modeling approach, modeling low-frequency events, 

emergent phenomena, and the unpredictability and variability of the manufacturing 
process are all examples of structural and dynamic complexity that have been found 

to impede success in digital twin applications. This research has implications for 

managers who are involved in the development of digital twins in their organizations. 
It can help with methodological guidance when dealing with an undefined and 

complicated process of digital twin development. 

Keywords. Simulation, Complexity, Smart Production, Digital Twin Modeling, 

Virtual Models 

1. Introduction 

In a competitive manufacturing environment, digital twins can assist in simulating 

different scenarios and testing different optimization strategies to maximize efficiency. 

Digital twins have emerged as a promising technology for enabling smart production to 

make better decisions based on data from simulations that aid in decision-making in 

several domains, such as production design, planning, and maintenance [1]. Digital twins 
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can support sustainable production by helping with resource allocation efficiency, 

monitoring and reporting on progress on KPIs, and performing simulations that can 

quantify sustainability aspects like energy efficiency in manufacturing equipment [1, 2].  

The development of digital twins is a central topic for advancing this technology and 

still requires more research. Previous research has highlighted an array of different 

problems and challenges related to the development of digital twins. In comparison with 

simulation models, digital twin models need to be faster, easier to use, maintainable over 

time, and adaptive [2-6]. Developing and maintaining digital twins is still a labor-

intensive process—specifically, model creation, which might potentially be mechanized 

in the future [7]. For example, the developer needs to figure out how to combine data 

from different sources and types in a virtual model and how to choose the right level of 

detail for the purpose or situation. The digital twin determines the level of fidelity and 

detail depending on the goal [7]. Developers also need to check how the digital twin 

reacts in real-time settings over time and how to pick a modeling technique that best suits 

its purpose. Moreover, it is also important to decide how often the data from the real 

system should be sent to the model and what aspects of the system should be copied in 

the virtual world. For different applications and purposes, some aspects of the system 

may not be very relevant and can be left out of the model. This is where the developer 

needs to choose what parts and components are essential to represent its behavior. 

Feasible method options that propose solutions for developers to deal with these 

difficulties are scarce [7]. 

Many of the above-identified challenges are conceptually rooted in complexity.  

Complexity encompasses the quantity of parts within a system, the interplay among these 

components, and any challenges associated with predicting their interactions [8-10]. The 

complex digital twin's development process is unknown. The development of the digital 

twin integrates the ideas of holism and reductionism, and it also emphasizes that the 

construction of complex systems necessitates not only decomposing them into simple 

objects that can be implemented but also analyzing relationships among the components 

and considering their functions (including the system's inputs and outputs) as a whole 

[11, 12]. However, there is a scarcity of literature on how to develop complex digital 

twin models [11] and what the sources of complexity are during this process. Therefore, 

this paper aims to explore the specific sources of complexity in the development of 

digital twins in manufacturing.  

2. Literature review  

2.1. Development of Digital twins in manufacturing 

The digital twin is a young concept with the capability of simulation first introduced by 

Nasa [13]. However, researchers and companies do not have a standard definition [14-

17]. Digital twins have three main components: the real space, the virtual representation, 

and its connections [18]. The real space refers to the element being replicated; the virtual 

representation tries to replicate the characteristics of this object in the virtual space, and 

both are connected through data communication entities such as IoT and sensors. 

Accordingly, the digital twin can be defined as a virtual representation of elements of the 

production system that can be used with various simulation and analytics techniques and 

is distinguished by the synchronization between the virtual and physical systems, using 

mathematical models and near real-time data from sensors, systems and connected smart 
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equipment [19]These characteristics and synchronization between the virtual model and 

physical system make it possible to visualize, monitor, analyze, predict, optimize, and 

simulate the performance of the production system [1]. 

 The development of a digital twin can be divided into three main phases, namely 

design, modeling, and implementation [20]. The design will cover activities of objectives 

and functional requirements, process plan, and system requirements and architecture. 

The modeling phase will include determining which model will be used to build the 

solution, tuning and validating the model, integrating it with other models, and validating 

the integration. Finally, during the development or implementation phase, the 

synchronization with the physical production system and the security of these 

connections will be addressed [20].  

 

 

Figure 1: Digital twin development process and main activities 

A DT's design is complex, with several components such as models, internal 

divisions, interfaces, material properties, spatial geometry, and how the entire system 

should be assembled [21]. This process describes the process activities and the 

relationships between the components that carry them out. It also decides which 

functionalities and system properties will be represented in the DT [20]. 

Data from physical and virtual shop floors is often encoded as digital twin, enables 

the translation of heterogeneous data into a unified information model, and uses data 

cleaning and fusion methods (e.g., Kalman filter, neural network, and Bayesian 

inference) [22]. As a result, the unified physical and virtual data become coherent and 

consistent, allowing a digital twin model to analyze them. Another important aspect 

concerning a digital twin design is a study of the cost of developing digital twins; a more 

detailed, higher fidelity digital twin will lead to an increased cost [23]. 

The fusion of several unit digital twins to create a system or shopfloor digital twin 

is suggested. This will entail constructing unit digital twins, assembling them together 
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and fusing their geometrical dimension and disciplinary knowledge, model verification 

that ensures the accuracy of the digital twin, and model modification to address any 

potential deviations between the digital twin and the production system [1]. 

The implementation phase of digital twins requires the integration of different data 

sources, models, and interfaces, as well as their security [20]. One of the important 

aspects during this step is latency, which is the amount of time it takes for data to arrive 

at its destination [25]. Another important activity is the validation of these integrations 

and the tuning of the digital twin with the “real” system. A method for converting expert-

created material flow simulation models into digital twins of production systems was 

developed. This method comprises converting a one-time capture of the system into a 

life-cycle digital twin of reality by employing real production data and automatic 

validation, as well as updating methods [26]. 

2.2. Complexity in the development of digital twins 

Recent studies on the development of digital twins show the importance of dealing with 

complexity [11, 12]. On a general level, it is possible to divide between structural and 

dynamic complexity [27]. Structural complexity refers to the combination of components 

and subsystems into a larger system, along with their interdependence and interactions 

among them [27, 28]. Structural complexity poses the challenge of creating and 

integrating the parts, components, or variables that form a system and ensuring that they 

interact as intended. Dynamic complexity, on the other hand, deals with changing 

interactions between system components and between the system and its surroundings 

over time [27]. Dynamic complexity faces the challenges of adapting and learning from 

a changing environment. Additionally, predicting the effect of changes in the short and 

long term is complicated, and the intervention could change the behavior of the system. 

Complexity applied to models has been studied for decades, and some initial approaches 

suggest a relationship between the level of detail [29] and complexity or between the 

capacity to understand the model and complexity [30]. The lack of understanding of the 

real system, the inability to model correctly, or unclear modeling objectives were 

described as possible causes of complexity [31]. However, virtual models increased in 

size and complexity [32]. 

Later literature pointed out that there are no agreed-upon metrics for the size of 

virtual models and that some of the measures used were the number of process steps, 

number of resources, number of products, and level of interaction between process steps, 

entities, and variables [33]. As a result, an initial approach to measuring and classifying 

complexity in virtual models, which is divided into structural and software complexity, 

was proposed. Structural complexity is composed of the number of objects, connections, 

attributes, and changed and inherent attributes in the virtual model, while software 

complexity is composed of the total cyclomatic complexity, the total length of program 

codes, and computational complexity [34]. Moreover, the prevention of virtual model 

complexity was studied and model evolution was suggested to avoid model complexity, 

i.e., start with a (overly) simple model and slowly add details [35]. 

3. Research method 

To address the purpose, this study is based on a single longitudinal case study in the 

manufacturing industry. Given the complex nature of digital twins, using a case study 
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method to identify specific difficulties might be advantageous. This can aid in creating 

more general solutions. Furthermore, case studies contribute to in-depth comprehension, 

which can lead to theory formation in exploratory research [36]. 

The case study was undertaken at Alfa Laval, a world-leading manufacturing 

business in heat transfer, separation, and fluid handling technologies, with clients 

primarily in energy, the environment, food, and the maritime sector. This company was 

chosen because a company is moving forward with its digital transformation and has 

undertaken various internal initiatives involving digital twins in manufacturing.  This 

case study is elaborated on a factory that frequently acts as a pilot for digitalization 

systems. The factory currently got the implementation of the manufacturing execution 

system, and more pilots planned for this factory. Therefore, more operational data is 

collected. The factory is interested in leveraging this operational data with digital twins. 

Therefore, the availability of more operational data and newer systems and the interest 

in the production development management in digital twins led to the selection of this 

case study. This case study includes the elaboration of a model that is fed with 

operational data in order to evaluate and improve the production system's on-time 

delivery. Data was collected between September 2022 and October 2023. To collect 

relevant data, the manufacturing execution system and its production data were analyzed, 

and several meetings were held with the manufacturing execution team, production 

development team inside the factory, related projects in data-driven solutions with a 

focus on enhanced data collection, a data mapping and system mapping project was 

completed, several meetings with software suppliers of digital twins, elaboration of a 

discrete event simulation model, and discussion among simulation and analytics team. 

Additionally, a visit to the factory was performed, a discussion of manufacturing 

processes and peculiarities, a discussion with production managers on more relevant 

factory objectives, a presentation of digital twin proposals, and the design of digital twin 

interfaces and connectors. The main data collection methods are described in Table 1. 

Table 1: Summary of Collected Data 

Methods No. Duration 
(minutes) 

Types of data collected 

Production Data 
 
 

  Production data was extracted from 
the shopfloor system, such as MES 

including team size, processing times, 
setup times, shifts, routes, etc. 

Simulation Model   A discrete event simulation model 

was created with the data extracted 

that enabled the predict the delivery 
on time. 

Participant 
observation 

   

Project meetings 35 60 Presentations, project status, future 
work 

Joint learning and 
dissemination 

7 60 Research feedback and result 

discussion 

Factory visits  3 180 Current site status in digitalization 

Informal discussions  Continually Opinions and project activities 

Documents   Production system guidelines, lean 

digital factory, and simulation 

documents 

 

Data analysis included three concurrent activities: data condensation, data display, 

and drawing conclusions [37]. Data condensation is the abstraction of raw data, data 
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display is the compression of data in visual form to draw conclusions from, and 

conclusions drawing is the search for the meaning of a case study in comparison with 

existing literature. The raw data was collected with a special focus on sources of 

complexity during the digital twin development. The sources of complexity collected 

were then coded into different groups: physical, virtual, and process-related. The data 

was displayed with the use of different figures and graphs and interpreted in accordance 

with previous literature. 

4. Findings 

4.1. Case Description-Discrete Event Simulation-based Digital Twin 

The case study focused on the prediction of lead time and delivery dates by using a 

discrete event simulation approach.  The sources of complexity were further investigated 

within this practical case of a digital twin. 

The solution is aimed to be leveraged to the production shopfloor by using a low 

code interface application that will allow managing the production planning through 

different calendars, charts, and layouts. The production user may request to simulate a 

specific scenario. If that is the case, the application will leverage a discrete event 

simulation running in the background to provide an outlook on the future scenario based 

on the simulation results. The discrete event simulation model will be continuously 

updated with data provided by the manufacturing execution system, which allows it to 

reflect the current status of the production, therefore increasing the accuracy of the 

simulations produced and allowing it to immediately predict the status of the production 

system in the following days. The digital twin process flow is represented in Figure 2. 

 

 

Figure 2: Illustration of digital twin proposed environment for production planning 

4.2. Sources of complexity in digital twin development 

In line with previous research [1, 7, 20, 38-40], the findings confirm that sources of 

complexity originate from the physical and virtual environment as well as the 

development process.  
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4.2.1. Physical environment-Production System 

Our data reveals three sources of complexity in the physical production system: 
 

a) High level of interrelatedness of resources: A key challenge was that the process 

of a single product cannot be modeled alone since products and stations are highly 

interdependent on the manufacturing processes. The manufacturing processes are 

organized in different areas to produce a family of components; these different 

areas deliver a final assembly. Many of these areas share resources and are 

interdependent on each other. One of the critical causes of lead times is that 

components from the different areas arrive at different times at the marriage point, 

which is the assembly area. Therefore, this interdependency of resources is critical 

when creating a digital twin since the manufacturing process must be represented 

more than partially modeling one of the areas or just focusing on one of the 

products.  

b) High reliance on human intervention: A low level of automation will be a source 

of complexity in developing a digital twin. In this case, higher process variability is 

found in the data of areas with a low level of automation since process times often 

depend on operator skills. Additionally, the quality of data obtained for these areas 

is reduced compared to high automation areas since production times are wrongly 

reported and may include, for instance, operator breaks. A highly manual process 

also involves many rules unavailable to a modeler of a digital twin. In this case, for 

example, how the shopfloor prioritizes different orders and how products are sorted 

out when exiting the buffers. This implies that more data needs to be manually 

collected to be included in the digital twin model, and the model will need to rely 

on more assumptions and simplifications to deal with a low level of detail in data 

and to account for human factors or preferences in the production process. 

c) High rate of evolution/variation: Another source of complexity in developing 

digital twins is the high number of changes in the production shopfloor. The changes 

affect the model, as it has to be continuously updated to reflect the current state of 

the system. The complexity involves finding a way to automate the change 

management process and visualize the impact of changes on the model and the 

system early on. A high number of changes also increases the effort for model 

maintenance and validation. For example, in this case, the team faces several layout 

and product changes that require modifying the digital twin model. These changes 

could potentially lead to many errors that could mismatch the digital twin model 

with the real production system. 

4.2.2. Virtual environment-Digital Twin models 

Our data reveals three sources of complexity in virtual environment: 
 

a) Multipurpose and Multiscale: Due to the interrelatedness of various components 

within the manufacturing processes, the model's size extended, necessitating the 

creation of a larger model to achieve a more precise estimation of lead time. One of 

the primary difficulties encountered when working with a complex and extensive 

model is the prolonged runtimes, which impede obtaining prompt responses from 

the model and effectively debugging errors. Furthermore, this challenge became 
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more pronounced when considering multiple objectives, as several perspectives and 

effects on the different objectives need to be taken into account. For instance, to 

improve the precision of lead time predictions, a minimum buffer dwell time was 

introduced before each station. However, it is worth noting that this approach had a 

negative impact on both resource optimization objectives and model flexibility. This 

is because the artificial introduction of a dwell time necessitated an increase in buffer 

capacity, which has an effect on buffer utilization and waiting times at the 

subsequent station. Hence, multipurpose digital twins are complex since modeling 

decisions need to evaluate the effects on both purposes. Likewise, the data shows 

that multiscale digital twins are also complex. The team involved in this case study 

comprised data engineers who specialize in working with machine learning models 

to predict lead times at a unit level. The data shows that integrating prediction 

models at a unit level into the overarching digital twin model of the system can be a 

source of complexity as well. 

b) High Realism and Fidelity: One of the sources of complexity is the need for a high 

level of detail or granularity in the gathered data. Without it, it is challenging to 

attribute behaviors and actions to a specific timestamp. For example, this case study 

collected executed data about the process by track-in and track-out products. 

However, the activities between this track-in and track-out were not divided; 

transportation, breaks, processing, and setup times were all aggregated in the 

timestamps collected. Therefore, it is difficult to attribute specific executed times to 

different factors in the models. To deal with the low detail of executed data, a hybrid 

approach was employed, incorporating planned times derived from the enterprise 

resource planning (ERP) system alongside less granular actual execution times 

obtained from the manufacturing execution system (MES). Consequently, the 

availability of detailed data affects the fidelity or realism of the digital twin. The 

data supports that high-fidelity requirements will be linked to a higher complexity 

since more details need to be included in the model to predict more accurately the 

outcomes. One example of including more details in a model is to consider the low-

frequency events that may occur in the system. For example, this case included the 

consideration of modeling lead times from non-recurring subcontractors, products, 

and re-routings should be included in the digital twin model. However, since the 

frequency of the events is low, there is less data about them, and it is difficult to 

attribute a time distribution to these events or determine how often they should be 

triggered, which makes them complex to be modeled. 
c) Tacit and non-measured knowledge in Models: Tacit knowledge in the shopfloor 

refers to explicit knowledge and experience that they use for planning purposes. The 

shopfloor had some inherent rules that are domain knowledge, such as prioritization. 

The simulation assumes first-in, first-out buffer prioritization, but this was different 

from what happens on the shopfloor because the shopfloor constantly reevaluated 

which orders were running late and may prioritize these orders in order to meet 

delivery dates. However, it was difficult to model when these revaluations occurred 

and how the shopfloor prioritized specific orders.  
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4.2.3. Digital Twin Development Process 

 

Our data reveals three sources of complexity in the digital twin development process. 
a) The ambiguous and manual development process for digital twins: Another 

source of complexity in developing digital twins was the lack of a common or 

structured process to guide the development. This resulted in a long and uncertain 

time to evaluate each step and provide the necessary resources. For example, in this 

case, the simulation model had to run as a service on a server to communicate with 

the production user interface that allowed the creation of scenarios. However, the 

simulation engineer did not have the right certificates to install and manage the 

server, and there was no procedure to decide where the server should be installed 

and how it should communicate with other production systems. This led to several 

discussions and delays. Moreover, this case required a simulation engineer to spend 

months constructing a discrete event simulation model of the factory. The 

construction of the model was a highly manual and time-intensive process that 

depended on the modeler's experience, knowledge, and preferences. 

b) Heterogenous system and data structures impede integration: One of the 

sources of complexity in developing digital twins was the heterogeneity of the 

system and data structures. The production system consisted of various systems that 

collected data about different parts of the equipment, such as historians, MES, and 

specialized systems. The production shopfloor also had different levels of 

digitalization within the factory. The developers of the digital twin were experts who 

did not have much knowledge about the local factory data and infrastructure. As a 

result, they faced problems such as not knowing what data these systems contained 

and how reliable they were, finding inconsistencies in the system, and dealing with 

different formats and structures of data among these systems. 
c) Deficiency of Methods to Evaluate and Refine Model with “real" System/ 

Deviation Threshold: The case study aims to test the predictive capability of the 

digital twin model for the lead time of the most recent order for a specific product. 

The model will compare its predictions with the actual outcomes and report any 

deviations that exceed a predefined threshold. The modeler will be notified promptly 

of any discrepancies. This challenge is caused by the dynamic complexity of the 

production system, which changes frequently and unpredictably. This shows the 

connection and interaction between the virtual, process, and physical spaces in 

developing digital twins. For example, a production system with more changes and 

variations needs faster and more automated methods to evaluate and refine the 

digital twin model with the real system. 
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Figure 3: Sources of Complexity in Digital Twin Developments

5. Discussion and Conclusions

This paper aimed to explore the specific sources of complexity in the development of 

digital twins in manufacturing, as there is a lack of literature on how to develop complex 

digital twin models [11]. This study has three main contributions. First, it focused on the 

manufacturing industry, which differs from other domains where complexity has been 

studied before [38, 40]. Second, it identified and described three main sources of 

complexity and their subcategories: the physical system, the virtual model, and the 

creation process. Third, it analyzed how these sources of complexity are related across 

the physical, virtual, and process spaces. For example, a more variable and flexible 

production system may require a digital twin model that can adapt quickly and easily, a 

production environment with more human intervention may need more assumptions and 

simplifications in the model as data cannot be easily obtained from automation and 

sensors, and a model that captures a high degree of interrelatedness may increase the 

scale of the digital twin model as more components need to be included to understand 

the interactions and make holistic decisions.

The findings described different sources of complexity. The physical system that the 

digital twin is based on may have too many features or behaviors to be modeled

accurately. Additionally, the dynamic complexity of the system with a high degree of 

changes and variability may be a challenge. Another is the virtual model itself, which 

may have many connections, interactions, and details that make it complex. Specifically, 

it might need to model setup times, re-routing, or advanced operator capacity in great 

detail. Furthermore, it needs constant calibration through time in response to physical 

changes. Lastly, developing the digital twin involves many decisions and choices by the 

developers, for instance, determining an adequate synchronization timespan, 

determining a modeling approach, modeling low-frequency events, and determining a 

specific level of accuracy required for the application. By finding out these sources of 

complexity, the way digital twin models are developed today can be further eased for 

digital twin developers.

This study has several managerial implications since it enables managers to better 

understand the complexity of the digital twins for their business. By identifying the 

source of complexity, managers can better plan the process of developing digital twins, 
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including responsibilities and resources. Moreover, it can help managers communicate 

and guide developers during this process through the trade-offs and complexities of 

digital twin applications, such as purpose, scale, and fidelity requirements. 

A possible direction for future research is to explore how to cope with the sources 

of complexity identified in this study. Moreover, future research could also develop and 

apply complexity measurements for digital twins in manufacturing that can help 

manufacturers assess the complexity of digital twin applications during the design 

process and select the most suitable use case based on these criteria. 

Acknowledgments 

This work was partially supported by the Industrial Technology (IndTech) Graduate 

School funded by the Knowledge Foundation (KKS, Stockholm, Sweden). This research 

is also partially supported by the XPRES Centre of Excellence in Production Research. 

References 

[1] Tao F, Xiao B, Qi Q, Cheng J, Ji P. Digital twin modeling. Journal of Manufacturing Systems. 

2022;64:372-89. 
[2] Liu YK, Ong SK, Nee AYC. State-of-the-art survey on digital twin implementations. Advances in 

Manufacturing. 2022. 

[3] dos Santos CH, Montevechi JAB, de Queiroz JA, de Carvalho Miranda R, Leal F. Decision support 
in productive processes through DES and ABS in the Digital Twin era: a systematic literature review. 

International Journal of Production Research. 2022;60(8):2662-81. 

[4] Alnowaiser KK, Ahmed MA. Digital Twin: Current Research Trends and Future Directions. 
Arabian Journal for Science and Engineering. 2022:1-21. 

[5] Neto AA, Deschamps F, Silva ERd, Lima EPd. Digital twins in manufacturing: an assessment of 

drivers, enablers and barriers to implementation. Procedia CIRP. 2020. 
[6] de Ocaña AS, Bruch J, Aslanidou I, editors. Model Simplification: Addressing Digital Twin 

Challenges and Requirements in Manufacturing. IFIP International Conference on Advances in Production 

Management Systems; 2023: Springer. 
[7] Kober C, Fette M, Wulfsberg J, editors. Challenges of Digital Twin Application in Manufacturing. 

2022 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM); 2022: 

IEEE. 
[8] Zack MH. If managing knowledge is the solution, then what's the problem?  Knowledge 

management and business model innovation: IGI Global; 2001. p. 16-36. 

[9] Stevens E. Fuzzy front-end learning strategies: Exploration of a high-tech company. Technovation. 
2014;34(8):431-40. 

[10] Simon HA. The Science of the artificial MIT Press. Cambridge, MA, USA; 1969. 
[11] Jia W, Wang W, Zhang Z. From simple digital twin to complex digital twin Part I: A novel modeling 

method for multi-scale and multi-scenario digital twin. Advanced Engineering Informatics. 2022;53:101706. 

[12] Jia W, Wang W, Zhang Z. From simple digital twin to complex digital twin part II: Multi-scenario 
applications of digital twin shop floor. Advanced Engineering Informatics. 2023;56:101915. 

[13] Shafto M, Conroy M, Doyle R, Glaessgen E, Kemp C, LeMoigne J, et al. Modeling, simulation, 

information technology & processing roadmap. National Aeronautics and Space Administration. 
2012;32(2012):1-38. 

[14] Jones D, Snider C, Nassehi A, Yon J, Hicks B. Characterising the Digital Twin: A systematic 

literature review. Cirp Journal of Manufacturing Science and Technology. 2020. 
[15] Barricelli BR, Casiraghi E, Fogli D. A survey on digital twin : definitions, characteristics, 

applications, and design Implications. IEEE Access. 2019. 

[16] Semeraro C, Lezoche M, Panetto H, Dassisti M. Digital twin paradigm: A systematic literature 
review. Computers in Industry. 2021;130:103469. 

[17] Kritzinger W, Karner M, Traar G, Henjes J, Sihn W. Digital Twin in manufacturing: A categorical 

literature review and classification. IFAC-PapersOnLine. 2018. 

A. Sanchez de Ocaña et al. / Sources of Complexity in the Development of Digital Twins 309



[18] Grieves M. Digital twin: manufacturing excellence through virtual factory replication. White paper. 

2014;1(2014):1-7. 

[19] Negri E, Fumagalli L, Macchi M. A Review of the Roles of Digital Twin in CPS-based Production 
Systems. Procedia Manufacturing. 2017. 

[20] Segovia M, Garcia-Alfaro J. Design, Modeling and Implementation of Digital Twins. Sensors. 

2022;22(14):5396. 
[21] Angjeliu G, Coronelli D, Cardani G. Development of the simulation model for Digital Twin 

applications in historical masonry buildings: The integration between numerical and experimental reality. 

Computers & Structures. 2020;238:106282. 
[22] Raffaeli R, Peruzzini M, Pellicciari M, Lattanzi L. Digital twin for smart manufacturing: a review 

of concepts towards a practical industrial implementation. 2021. 

[23] Kober C, Algan BN, Fette M, Wulfsberg JP. Relations of Digital Twin Fidelity and Benefits: A 
Design-to-Value Approach. Procedia CIRP. 2023;119:809-15. 

[24] Biller B, Biller S. Implementing Digital Twins That Learn: AI and Simulation Are at the Core. 
Machines. 2023;11(4):425. 

[25] Kober C, Adomat V, Ahanpanjeh M, Fette M, Wulfsberg JP, editors. Digital twin fidelity 

requirements model for manufacturing. Proceedings of the Conference on Production Systems and Logistics: 
CPSL 2022; 2022: Hannover: publish-Ing. 

[26] Overbeck L, Graves SC, Lanza G. Development and analysis of digital twins of production systems. 

International Journal of Production Research. 2023:1-15. 
[27] Brady T, Davies A. Managing structural and dynamic complexity: A tale of two projects. Project 

Management Journal. 2014;45(4):21-38. 

[28] Schuh G, Potente T, Varandani RM, Schmitz T. Methodology for the assessment of structural 
complexity in global production networks. Procedia CIRP. 2013;7:67-72. 

[29] Webster DB, Padgett ML, Hines GS, Sirois DL. Determining the level of detail in a simulation 

model—A case study. Computers & industrial engineering. 1984;8(3-4):215-25. 
[30] Golay MW, Seong PH, Manno VP. A measure of the difficulty of system diagnosis and its 

relationship to complexity. International Journal Of General System. 1989;16(1):1-23. 

[31] Chwif L, Barretto MRP, Paul RJ, editors. On simulation model complexity. 2000 winter simulation 
conference proceedings (Cat No 00CH37165); 2000: IEEE. 

[32]  Henriksen JO. Taming the complexity dragon. Journal of Simulation. 2008;2(1):3-17. 

[33] Ahmed R, Shah M, Umar M. Concepts of simulation model size and complexity. International 
Journal of simulation modelling. 2016;15(2):213-22. 

[34] Popovics G, Monostori L. An approach to determine simulation model complexity. Procedia CIRP. 

2016;52:257-61. 
[35] van der Zee D-J. Model simplification in manufacturing simulation–Review and framework. 

Computers & Industrial Engineering. 2019;127:1056-67. 

[36] Simons H. Case study research in practice: SAGE publications; 2009. 
[37] Miles MB, Huberman AM, Saldaña J. Qualitative data analysis: A methods sourcebook. 3rd. 

Thousand Oaks, CA: Sage; 2014. 

[38] Caldarelli G, Arcaute E, Barthelemy M, Batty M, Gershenson C, Helbing D, et al. The role of 
complexity for digital twins of cities. Nature Computational Science. 2023:1-8. 

[39] Thompson JS, Hodson DD, Grimaila MR, Hanlon N, Dill R. Toward a Simulation Model 

Complexity Measure. Information. 2023;14(4):202. 
[40] Atkinson C, Kühne T. Taming the complexity of digital twins. IEEE Software. 2021;39(2):27-32. 

A. Sanchez de Ocaña et al. / Sources of Complexity in the Development of Digital Twins310


	1. Introduction
	2. Literature review
	2.1. Development of Digital twins in manufacturing
	2.2. Complexity in the development of digital twins

	3. Research method
	4. Findings
	4.1. Case Description-Discrete Event Simulation-based Digital Twin
	4.2. Sources of complexity in digital twin development
	4.2.1. Physical environment-Production System
	4.2.2. Virtual environment-Digital Twin models
	4.2.3. Digital Twin Development Process


	5. Discussion and Conclusions
	Acknowledgments
	References

