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Abstract. This publication describes a concept that intends to enable an 
optimization of machining with regard to the balance between criteria related to 
technology, economy and sustainability. The work is of a discussion nature and 
intends to provide a framework for further research and development in the area. 
Previous research and development during the 80's and 90's is presented in general 
terms and in particular the reasons for its limited success in providing real-time 
feedback on machining operations are highlighted, despite very large financial 
investments even by today's standards. Ongoing research worldwide in current 
process optimization and its associated building blocks will be highlighted, and 
identified important work is referenced. Below are new conditions that can be linked 
to both process knowledge and its modeling, as well as new conditions for 
developing integrated sensors that can handle the extreme environment in and 
around a processing operation. A previous limiting factor has been signal processing 
and signal transmission, which with new knowledge and developed technology in 
the last 10 years provides new conditions for process optimization in real time.The 
need for new and up-to-date principles for process optimization, which also integrate 
sustainability issues and environmental impact, has increased in importance in 
several respects. Important issues such as tool utilization, efficient use of materials 
and high time utilization have become relevant as these process results control both 
energy consumption and environmental impact. The geopolitical development 
linked to the availability of critical tool materials such as cobalt and tungsten also 
drives research issues that can generally optimize and streamline production 
processes.Finally, the publication describes the possibility of realizing a real-time 
feedback and optimized machining that takes into account technology, economy and 
sustainability, through interdisciplinary research across several levels of technology 
readiness (TRL). The results are expected to have positive effects on several 
production factors before, during and after machining. Developed technologies in 
machining can also make valuable contributions to the development of other 
products and production processes. 
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1. Introduction 

Industry and society face major challenges in terms of resource consumption and 
achieving long-term sustainability. High and inappropriate resource consumption, in all 
respects, negatively impacts the environment and limits the prosperity and development 
of future generations. The need for a more resource-efficient industry with low 
environmental impact has been drastically accentuated by the current geopolitical 
situation, including the aftermath of the pandemic. Trade flows and the availability of 
raw materials and key alloying elements have changed significantly. The stabilizing 
effect of global trade is no longer valid and common values between trading partners 
have become increasingly important. These conditions place even greater demands on 
the efficiency of products and manufacturing processes and the use of materials while 
optimizing these processes in a conscious and thoughtful way. This work must be done 
in parallel with the development of products to enable resource-efficient manufacturing 
based increasingly on reuse and recycled materials. This must be done without degrading 
the materials in our components in terms of both use and producibility. 

Different types of production losses during processing or their consequences 
contribute significantly to the current high environmental impact in terms of emissions 
and consumption of different resources such as materials, process additives, energy, 
production capacity and working time. Increasing material and energy costs and demands 
for reduced environmental impact mean that the benefits of optimizing manufacturing 
processes represent a great potential for addressing current and future challenges, which 
also contributes to increasing our international competitiveness. 
Despite very large government research investments already in the 80s and 90s, we have 
not been able to fully optimize today's very important and central manufacturing 
processes and associated equipment in real time to prevailing production conditions [1]. 
A quest for increased sustainability and resource efficiency has also gradually emerged 
since the 80s but has been strongly accentuated in the last 10 years. Extensive 
digitalization has been possible alongside the central and value-creating process. 
Digitization has been successfully carried out in the form of numerical control, 
automation, quality control, quality assurance and material management, etc. 

Manufacturing processes, work materials and production systems need to undergo a 
more thorough digital integration and optimization, also taking into account current 
resource consumption and associated environmental impacts. This can be done by 
adapting the process to controlling factors and prevailing conditions, before, during and 
after processing. This approach requires the ability to control and optimize 
manufacturing processes during machining, i.e., to adapt and change the machining 
process in real time to variations in process conditions related to tools and work materials. 
Digital process integration of machining processes with the rest of the machine system 
has been attempted for some time, both in research laboratories and in industry, but has 
not been successful for a variety of reasons. Significant efforts are currently being made 
worldwide in this area, including the publication of several reviews [5, 6, 7]. It can be 
noted that studies that include optimization concerning manufacturing costs, production 
rate and environmental impact are very few, none of the studied works deal with a 
balance between different optimization criteria. The focus of the studies is the detection 
of wear levels and underlying mechanisms. The meaning of optimization is often limited 
to increasing tool utilization where cutting data is adapted to a given tool life to primarily 
reduce tool costs. Indirectly affected are the costs of tool failure resulting from rapid 
wear leading to production downtime. No monitoring systems that allow stress 
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monitoring, monitoring of the tool's main stress or its effective stress have been found in 
recent references, probably due to a lack of models and measurement systems with the 
required performance. Studies on the measurement of machine tool motor currents and 
indirectly power consumption have been carried out regularly since the 1980s. The 
method turns out to have both advantages and disadvantages. The problem of using 
cutting fluids is minimized and the signals obtained can be more easily integrated with 
the machine control system. The main disadvantage that can be identified is the lack of 
consistency between process behavior and measured variables and its accuracy, 
especially in finishing. Obtained measurement data is relatively far from the process, 
which gives low time resolution to detect certain process behaviors. Thermocouples have 
also been widely used for a long time to identify the process temperature and assess the 
geometric change of the tool during its degradation. Several studies have been promising 
where the temperature is measured directly on the cutting tool without intermediate gaps 
[1]. Measuring the temperature in the tool support anvil or in the tool holder usually gives 
too low a time resolution [8], especially for tools with low thermal conductivity. 

An overall basic view of machining that includes the steps or disciplines required 
for a conscious process optimization is missing. Many studies are done in dry machining, 
i.e., where cutting fluid is not used at all. This situation emphasizes the problems that 
cutting fluids cause in the operation of sensors and associated signal handling and 
processing. Recently, image processing to determine tool wear levels has dramatically 
increased in combination with the use of ML techniques and neural networks. 
One of the main reasons for the lack of success in the past is the lack of robust sensors 
and signal transmitting technologies as well as satisfactory process models in 
combination with optimization principles including sustainability aspects. Current 
commercial sensor technology cannot cope with the extreme demands and conditions 
placed on systems for measuring the physical and chemical environment variables in 
refining processes for regular manufacturing. This situation limits the availability of 
input data for process models that form the basis for optimization. 

New technical and scientific conditions can be identified [2] that can contribute to 
the successful integration of new sensors leading to an optimization of the manufacturing 
process with respect to various conscious criteria. The following conditions have been 
identified: 

1. Greater need and increased incentives for resource-efficient and sustainable 
manufacturing.  

2. A new and necessary constellation of researchers is established that can meet all 
the issues that exist regarding sensors, signal transmission and signal processing 
and that digital peripheral equipment is available.  

3. New conditions exist in nanotechnology that enable the development of integrated 
robust sensors with great proximity to the process that have good conditions to 
function under extreme physical and chemical conditions. 

4. Models for certain refinement processes and associated manufacturing costs exist 
today that can form a basis for further development of the current field of science. 
Current models can partially link controlling factors with process outcomes and 
results.  

5. Knowledge and insight into the possibilities of applying the latest developments 
in artificial intelligence and machine learning exist. This enables an optimization 
of the processes against given criteria in real time, where processed sensor signals 
constitute input to selected optimization criteria. 
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Also important for the success of process optimization is the link between technology 
and economics, which enables real-time automatic decision-making on changes in 
process data based on pre-established optimization criteria. The link between technology 
and economics also enables the simulation of cost outcomes for different technological 
development scenarios. This form of techno-economic simulation provides the 
conditions for giving the machining processes the right and optimal conditions. This is 
particularly important when a component undergoes a sequence of processing stations, 
where, for example, savings in the purchase of materials or savings in the preparation of 
materials in the foundry are made with the consequence that large cost increases are 
instead obtained during processing. 

Limitations and focus: Below, the work is limited to machining and the present 
work does not intend to provide any direct technical solutions, but to describe a concept 
that can provide a framework for technical solutions, from sensors to process 
optimization and sustainability. Reported work should be seen more as a discussion than 
a strictly scientific publication that answers a specific research question or proves that a 
formulated hypothesis is valid. The concept has emerged over a long period of time and 
is based on many years of accumulated experience in combination with rapid 
technological development and ongoing global changes and geopolitical potential 
consequences. 

It can be noted that machining is a complex and extremely complicated process with 
a very large number of input data and variables that may be partly dependent on each 
other. The outcome of the process in terms of process results is also very large depending 
on the type of operation and the quality requirements set for the current component to be 
manufactured. Several of the requirements set for the process can be directly 
contradictory, which makes it difficult to find optimal technical solutions. Only a very 
limited part of the total process behavior can today be modeled and described in 
analytical or numerical form. Current knowledge and technological development in the 
field of machining does not provide any conditions for creating a digital twin in its literal 
sense, but only a cluster of well-functioning models that can provide a basis for decisions 
and optimization combined with real time measurements of relevant variables on the 
machining process.  

2. Sustainability and optimization criteria for machining operations  

A developed link between technology and economics has enabled the optimization of 
machining in terms of manufacturing cost and rate [9, 10]. For a given machining case, 
it is possible to find mathematically or graphically the relationships between cost and 
production time. Through the relationship, which consists of about 35 variables and 
constants, two types of production can be identified, maximum production rate (lowest 
production time tpb,min) and minimum production cost kmin. The relationship can be fully 
illustrated in a Hägglund graph as shown in Figure 1, where the manufacturing cost k is 
shown as a function of the manufacturing time tpb to produce a component in a batch 
with N0 number of parts. In the graph, either the tool life T or the cutting speed vc is the 
parameter with constant feed f. The graph can also be produced with the tool life T or 
cutting speed vc as a constant where the feed rate f is varied within the intended 
application range of the tool in question. The choice of the criteria minimum production 
cost or maximum production rate is traditionally made depending on the company's order 
intake. If the production capacity limits the ability to deliver, the maximum production 
rate is chosen, and if there is free capacity and low URP, the lowest production cost is 
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chosen. In rough machining, it is often possible to vary both cutting speed vc and feed 
rate f during an optimization. In this case, the feed is often limited due to the risk of tool 
failure or plastic deformation. In fine machining where greater demands are made on the 
quality of the cut surface, only the cutting speed vc can usually be varied. In this case, 
the feed rate f is maximized with regard to the current surface roughness requirement. 

 
Figure 1. Example of a Hägglund cost and time graph where the part cost k and the tool cost are reported as a 
function of the production time tp, (tpb) for two different selected feeds f [9, 10]. 

2.1 Sustainability as an optimization criterion in machining operations 

The optimization of cutting data as above according to Figure 1 does not take into 
account the environmental impact in terms of direct or indirect emissions of greenhouse 
gases (equivalent CO2), energy and power consumption, material losses in various forms 
and consumption of critical raw materials (CRM) as well as the use of cutting media and 
other process additives. In the case that the maximum production rate is prioritized in the 
optimization, a higher consumption of tools is obtained and generally speaking, more 
critical raw materials in the form of tungsten and cobalt are consumed at the same time 
as the maximum power consumption increases and the total energy consumption is 
reduced. When selecting the lowest manufacturing cost, the opposite occurs: the tool 
consumption is reduced and the production time increases and the maximum power 
requirement decreases while the total energy consumption increases. 

When considering the environmental impact as well, all environmental impacts must 
be converted into equivalent releases of CO2. This calculation is very complex, but quite 
possible to develop and use in practice. A series of, possibly political, decisions need to 
be made to optimize the manufacturing process in terms of environmental impact. A 
central question is how an already made environmental impact should be handled when 
a technology is used or compared with another alternative technology or process. The 
concrete question is what weight should be given to existing equipment when assessing 
a process and its environmental impact. The logical solution in this respect is that the 
same principles should be used as are used when comparing economic investments made 
in equipment from a production perspective [11], i.e., the environmental impact should 
be distributed over all the years of intended use of the equipment, including renovations 
and updates. This approach differs from the accounting approach based on fiscal 
depreciation, which does not lead to long-term sustainability and correct production 
technology assessments. 
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Significant research and development is required to take full account of the 
environmental impact of machining processes. The interaction with the contribution of 
other manufacturing steps to the environmental impact must be taken into account, in the 
same way as the overall production cost of a component should be taken into account. 
The total environmental impact of a component must be considered in a coherent way 
and also include purchase of raw materials. 

An optimization of the manufacturing process with regard to all three criteria is 
illustrated in principle in Figure 2. The weight functions x and y describe the influence 
of each criterion. The choice of x and y is probably a strategic question. With x = 100 %, 
the best conditions for delivering to customers in the event of high demand are given, 
with y = 100 % the best economic outcome is obtained as long as the URP occupancy rate 
< 100 % and with x = y = 0 %, minimal environmental impact is given the highest priority, 
which can position the company well in the market. A strategic decision is how the 
company chooses the weight factors x and y, which can also be a decision taken at board 
level in the company. This decision can certainly become a topical board issue in an SME 
that is a specialized subcontractor to a larger industry. It is also not inconceivable that 
x+y will have to be declared in the future in order to become a supplier to large groups 
with an environmental profile. 

 
Figure 2. The balance or trade-off between the optimization criteria of maximum production rate, minimum 
production cost and minimum environmental impact. 

2.2 Sustainability and production efficiency in machining operations 

Until the 1990s, the manufacturing industry did not fully realize that sustainability and 
production efficiency went hand in hand. This view has drastically changed in a positive 
direction, e.g., through increased raw material and energy costs and through regulatory 
instruments. The introduction of the producer responsibility law has had a major impact 
on increased recycling in different sectors. An important insight is that an increased 
production time is also an increased environmental impact, e.g., through extra 
consumption of energy in various forms per manufactured component or product. A 
component that does not meet the set quality requirements and must be discarded is both 
lost production time and lost working material that must be reprocessed once again, 
partly illustrated in Figure 3, where different result parameters are illustrated that depend 
on each other and affect the environmental impact of the process. 

A high production rate without scrap and a minimum of material waste are therefore 
important performance parameters for achieving sustainable manufacturing. To achieve 
sustainable and efficient machining, it is of utmost importance to adapt tools, work 
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materials and process data to each other during production planning. However, this 
assumes that material selection and tolerances etc. are well adapted for high producibility. 
From a sustainability perspective, the production preparation is required to fully take into 
account: 

o Time efficiency linked to planned production time. 

o Workpiece material efficiency in process. 

o Tool and tool material efficiency, also with respect to CRM. 

o Process energy efficiency. 

o Efficient use of process additives. 

o In overall minimum process environmental load för manufacturing a component.  

 
Figure 3. Performance and result parameters related to environmental load (ER), there the result parameters 
are depending on one or more factor groups related to machining. 

3. Factor groups and performance parameters in machining 

A very large number of factors affect the output of a machining operation, which can be 
grouped into factor groups from A to G (Tool A, Work material and starting material B, 
Process and process data C, Personnel and organization D, Wear and maintenance E, 
Special factors F and Peripheral equipment G). The output of the machining process can 
in turn be subdivided into quality outcomes (Q), stoppages and disturbances (S), 
production rate (P) and environmental and recycling parameters (ER). The factors can 
individually or in combination control the output parameters of the machining process 
(Q, S, P and ER). A further complicating factor is that the factors can be interdependent 
to varying degrees. The dependence between factors (factor groups), process behavior 
and performance parameters is studied in a PSM, Production Performance Matrix. 

3.1 Monitoring, control and optimization of performance parameters 

In monitoring, control and optimization of machining, information and data from 
individual factors and measured quantities in the process are combined to predict and 
optimize outcomes in performance parameters as shown in Figure 4. 
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Figure 4. Relationship between factors and performance parameters (process outcomes) and how this can be 
optimized by measuring and identifying variables in the process that become input to process models. 

The optimization of the result according to the previous section is done by changing the 
input factors in line with the chosen optimization criteria. 

3.2 Examples of performance parameters in machining 

Machining has a large number of different types of operations that have different 
requirements for the performance parameters associated with groups Q, S, P and ER. 
Below are examples of individual performance parameters from each group. 

Obtained quality with respect to quality (Q): 

o Surface integrity, roughness, residual stresses, structure and chemistry. 

o Surface roughness with respect to e.g., Ra, Rz and Rmax. 

o Geometric accuracy with respect to shape and dimensions. 

o Geometric accuracy with respect to burr formation and tool exit damage on the 
workpiece. 

o Damage and effects on the workpiece related to chip forming and chip 
management. 

Obtained stops and disturbances with respect to productions stops: (S): 

o Set-up time (Tsu) and Tool change time (Ttct). 

o Tool failure and the risk of tool breakage and/or rapid plastic deformation. 

o Maintenance of machine tools or other peripheral equipment. 

o Other causes of stops and loss of production e.g., related to clamping and fixtures. 

Obtained production rate or cycle time with respect to (P): 

o Tool life T and type of tool degradation and degradation rate for a given tool life 
criteria. 

o Nominal Metal Removal Rate, MRR in [cm3/min] for different selected tool life. 

o Nominal Surface Generation Rate, SGR in [cm2/min]. 

o Engagement distance eT in [km] with respect to selected tool life criteria T in 
[min] or produced chip volume in [cm3].  

Obtained losses and environmental loads of different kind respect to (ER): 

o Scrap rate (qQ) and workpiece material losses (qB) and recycling material losses 
(qBR). 

o Stop rate (qS) and process losses due to non-added value time (qrem, qtct and qD). 

o Speed loss rate (qP). 

o Energy or power consumption in [kWh/h]. 
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o Consumption of process additives in [kg/h]. 

o Direct (qCO2,D) and indirect (qCO2,ID) generation of CO2 in [kg/h]. 

More or less all of the specific performance parameters described above give rise to 
production costs that affect a company's competitiveness and its contribution to 
environmental impact and long-term sustainability. Some of the performance parameters 
are easier to influence than others. 

4. Modeling and optimization of machining operations 

It is of great importance to optimize the process not only during machining but also 
before and after machining. One of the most important parameters is the variation in 
workpiece machinability between batches and between individual components within the 
same batch. These properties are largely governed by specifications of purchased 
materials and requirements of previous operations such as castings and forgings. A 
consideration of the contribution of different factors to the process behavior and 
associated production outcomes must be made before processing begins. Factors with a 
large influence on the production outcome that cannot be influenced during processing 
must be dealt with prior to the start of processing. There is then a more or less limited 
number of performance parameters that may be possible to control and change in real 
time during processing. Against this background, unambiguous relationships and models 
must also exist or can be developed that describe the factors' influence on the process 
behavior and its relation to the desired result parameters. 

4.1 Variations in performance parameters and their consequences 

Variations in the machinability of the workpiece are the most common cause of unwanted 
deviations in the machining result. The concept of machinability is relatively well 
defined and includes 5 groups of criteria as follows: 

o Tool degradation and tool life.  

o Cutting forces and energy consumption  

o Chip shape including burr formation  

o Obtained surface character including surface roughness.  

o Working environment and environmental impact. 

There are also other process-related variations that can give rise to problems related to 
quality, stops and disruptions, speed and environmental impact. This also includes 
personnel and organizational factors related to e.g., action plans and procedures. 

4.2 Opportunities for monitoring, control and optimization 

By adapting the process to the prevailing circumstances regarding the machinability of 
the work material, the processing can be optimized and lead to better efficiency regarding 
the above-mentioned performance parameters according to Figure 5, which can be seen 
as a subset of Figure 4. Variations in the machinability of the workpiece, which have so 
far increased with the increased proportion of recycled material, contribute to undesirable 
variations in process results. Selected cutting data is no longer optimal with regard to 
these new conditions. A new optimization must therefore be made. This optimization can 
be done during ongoing processing or in connection with the standstill between the 
respective processing. This reasonably assumes that the material in the same batch has 
the same machinability and that there are no variations between and in the relevant 
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blanks. Otherwise, an optimization must be made during ongoing processing to obtain a 
sustainable use of tools and work materials. 

Experience from completed processing and its adaptation and corrections made 
according to Figure 5 can be utilized and analyzed for future corresponding processing.  

 

Figure 5. Adaptation and optimization of the machining process to changing conditions regarding the 
machinability of the work material.  

There is particularly great potential in terms of developing improved specifications and 
requirements for the work material. Documented knowledge and experience may well 
influence and accelerate the introduction of sustainable and circular recycling of metallic 
materials when the associated problems are clarified. 

4.3 Process engineering models and required measured quantities 

In order to make timely adjustments and corrections to the treatment process, both 
qualitative knowledge and experience and process models must be used to make 
informed decisions in an efficient and sustainable direction. Models to describe the 
outcome of the performance parameters, directly or indirectly, must be available. These 
models require that included variables or parameters can be measured or otherwise 
determined so that the outcome of the model in question can form the basis for a 
proactive decision. Below are three examples of typical cases where measures may be 
relevant: 

1. The cutting data shall be adapted to the actual machinability of the material so 
that the tool is used as efficiently as possible with respect to the established 
optimization criteria.  

2. The cutting data shall be adapted to ensure that the remaining life of the tool 
results in a tool change after completion of the machined component. 

3. High cutting loads in terms of mechanical and thermal loads shall be identified 
and the cutting data shall be adapted so that tool failure or plastic deformation can 
be avoided and an optimum load level obtained. 

What is to be measured and identified in the cutting process fully determines which 
variables are to be measured and correlated to one or more result parameters. These can 
be measured directly, or indirectly via some quantity that correlates or partially correlates 
with the sought variable. The result parameters of the cutting process are often over-
determined and can arise from different combinations of variable values and factors. An 
example of this is the tool degradation level where e.g., an increased cutting force level 
or increased power output can be caused by different geometric changes on the tool or 
by an increased cutting resistance of the work material. A major source of error in this 
context is variations in the working mode, particularly in the rough machining of cast 
and forged parts. It is also common for the tool to change its geometry on both the chip 
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and drop sides. The geometric change on the drop side increases the cutting forces while 
the change on the chip side reduces the cutting forces by increasing the positive chip 
angle. This relationship can be addressed by studying the load distribution on the tool. 

The load distribution can be determined during processing by using identification 
blocks where the cutting forces are measured and later analyzed, for example as shown 
in Figure 6. Identification blocks are based on a short sequence of well tested changes 
in the cutting data while measuring the variable of interest. An identification block shall 
be designed so that it does not adversely affect the processing result. The change in the 
cutting data and its direct correlation to the variable of interest provides information on 
the searched result parameter (function). In this way, the load distribution on the tool can 
be identified and a degradation factor for the tool can be calculated. The degradation 
factor describes an overall picture of the total load situation of the tool and describes the 
overall load change on the tool. The degradation factor can in many cases be directly 
correlated to the tool's wear criterion and tool life. The use of a degradation factor is 
appropriate to use if the geometric change of the tool due to degradation occurs primarily 
on the release side of the tool. A model to describe the load distribution on the tool is 
therefore necessary. 

Example of steps in an identification block to estimate the flank wear VBe of the tool: 

Theoretical chip thickness h1 is varied in at least three steps. → The changes in the 

cutting forces are identified and modeled. → The intercept force coefficients D2 and C2 

are calculated. → Tool equivalent flank wear VBe is calculated and estimated with 

known model. → The remaining engagement time te,rem until the tool life criterion is 

estimated based on the known model. 

 

Figure 6. The principle of how an identification block is used, 6 or more measured values are recorded, by 
interpolation the constants (process variables) C2z and D2x are calculated (left) and by knowing the relationship 
between the process variables and equivalent flank wear VBe can be estimated (right). 

The geometric change associated with the release side of the tool can be indirectly 
identified by measuring the process temperature in combination with the movement of 
the tool. The motion is often determined by measuring accelerations that are filtered and 
integrated. Through the motion, the damping in the process can be determined in relation 
to a known reference value. The combination of process temperature and damping can 
together strengthen the identification of the wear level of the tool. Also in this context, 
identification blocks can be very useful. 
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If the risk of tool failure is to be assessed, it is necessary to know the load distribution 

on the tool and the absolute value of the maximum main cutting force in combination 

with the current cutting depth ap and the maximum theoretical chip thickness (h1), which 

can be calculated using the selected feed rate f and the current approach angle κ. The 

main cutting force and current chip area form the basis for calculating the cutting 

resistance, which in turn is directly proportional to the maximum main stress in the tool 

(σ1). The same applies to the effective stress (σe) in the tool. Dimensionless stress 

functions can be determined using linear elastic FEM simulations, which provide an 

approximate and general description of the global stresses in the tool. The calculation 

methodology can be used in real time [3]. 

If the maximum principal stress σ1 exceeds a certain value, a principal stress rupture 

of the cutting tool is obtained. In case the effective stress σe exceeds a certain value in 

combination with the temperature, plastic deformation of the cutting tool is obtained. In 

very brittle tool materials, a crushing of the tool is obtained, which applies preferably to 

ceramic-based tool materials. The total load distribution of the tool can be described in 

a mechanical load diagram as shown in Figure 7 where the combination of feed force Ff 

and main cutting force Fc gives different mechanical loads that can correlate to types of 

tool degradation. However, it should be noted that the relationships are not conclusive. 

 

Figure 7. A schematic mechanical load diagram in which areas characterized by the occurrence of specific 

types of cutting tool degradation can be identified [4]. 

There are major difficulties in detecting and assessing the risk of principal stress rupture 

as this requires very high demands on the measurement technique to be used. The cutting 

forces have to be measured with a high bandwidth so that the load condition at the 

engagement phase during intermittent machining can be reproduced with correct 

dynamics and correct phase angles between the cutting force components. In general, the 

force dynamics caused by the chip segmentation must also be recorded.  

In rough machining, cutting force variations should therefore be well reproduced 

with a frequency of about 10 kHz, which is generally very high for mechanical systems. 

In these cases, a sampling rate of measurement data corresponding to about 100 kHz is 
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required to well reproduce the actual course of the cutting process. This measurement 
data can also provide a snapshot of the tool's mechanical load pattern. Examples of 
measured dynamic cutting forces (Ff and Fc) are exemplified in Figure 8 together with a 
load pattern when machining gray iron SS 0125. Figure 9 exemplifies older cutting force 
sensors for measuring dynamic cutting forces. These force sensors are very sensitive to 
the cutting fluids and electromagnetic fields. They work well in a controlled laboratory 
environment but are still very difficult to use in an industrial environment. 

Figure 8. Examples of measured dynamic cutting forces, main cutting force Fc and feed force Ff during rough 
turning in gray cast iron SS 0125 (left) and corresponding load diagram (right). 

When assessing the risk of plastic deformation of the tool, a significantly lower sampling 
rate is required compared to detecting the risk of principal stress rupture. This is because 
plastic deformation of the cutting tool occurs relatively slowly, on a scale of tenths of 
seconds as opposed to principal stress rupture which occurs on a scale of tenths of 
milliseconds. Some tribological conditions in contact surfaces can be identified by sound 
and acoustic emission (AE). Early on, AE was used to detect cracking, which has also 
been tried in the machining field to detect cracking and breakage in cutting tools. 

The chip formation process including chip forming and chip breaking greatly 
complicates the ability to detect damage to the tool. This condition is particularly 
accentuated when machining brittle work materials where cracking is a significant part 
of the generation of short chips. Changes in sound or AE signal are obtained when the 
contact surfaces between cutting tool and workpiece change. However, the relationships 
between tool wear development and obtained signals are often diffuse and not always 
clear. Power and torque measurements are possibly the most common way to identify 
undesirable events in the cutting process. Power measurement is hampered by the idle 
energy consumption of the equipment and has low time resolution and low sensitivity. 
Torque measurement can provide better performance than power measurement, 
depending on how close to the process the torque can be measured. 
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Figure 9. Example of a force sensor for measuring dynamic cutting forces with a relatively high bandwidth, 

developed at Lund University between 1984 to 1999. 

5. Sensors and signal processing for machining optimization 

The above examples are based on the assumption that the following can be measured in 

the cutting process: 

o Static and dynamic cutting forces.  

o Tool temperature and its temperature distribution. 

o Acceleration, movement or dynamic position of the tool. 

o Airborne sound measurements with microphones. 

o High frequency acoustic emission (AE).  

o Power and torque measurements associated with different spindles of the machine 

tool and its different feed directions.  

Regardless of what is being measured, the location of the sensors in relation to the 

process will determine the accuracy of the measured quantity and its time resolution. 

5.1 Development of robust sensors and encoders for machining applications 

Widespread implementation of sensors directly into harsh and hard to access industrial 

environments such as machining has been an ongoing scientific and technological goal 

for many years [1] but has still not occurred. One reason for renewed optimism is the 

significant progress in micro and nanofabrication which has occurred in the last decade 

[12-26]. Exact bottom-up synthesis is now possible for a wide range of electronic 

materials with varying properties and top-down lithography has evolved not only in 

terms of miniaturization (which is well publicized [17]), but also in regard to the creation 

of a wide variety of 1D, 2D and 3D structures [12-22].  Metal droplet seeded or selective 

area growth using Chemical Vapor Deposition (CVD) methods makes it possible to form 
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extremely well-defined compound structures with electrical device properties in specific 
locations even hidden from line-of-sight of the CVD tool [12-14]. Figure 10 shows a 
CVD furnace with accessories designed to deposit a variety of functional materials, 
including insulators, hard coatings, semiconductors or thermal alloys. The chamber, seen 
in the center, is where the tools are placed and subjected to controlled heating and 
infusion of precursor gases, which react to form uniform thin-film coatings tailored for 
improved tool performance. In-fact metal patterns can be used to control synthesis as 
they change the local chemical environment, as have recently been shown [5]. These 
methods have been further combined with advanced lithographic structuring and 
fabrication of advanced layered structures in 3D combining many different types of 
materials [16, 17, 18].  

 
Figure 10. Research CVD-furnace used to produce different types of functional materials, including functional 
coatings that can be used for sensors. 

In these methods combinations of layer-by-layer etching and deposition are used in 
combination with various types of masking both using polymers as well as shadow masks. 
Often the manufacturing is combined with advanced characterization using both electron 
microscopes and synchrotron-based X-ray studies [19-22]. This makes it possible to do 
intelligent choices when developing a new fabrication process and not rely on trial-and-
error. With so many possible routes for nano and microstructure formation this is an 
important step as the development of fabrication strategies is a time-consuming affair. 
An interesting development is the ability to create patterns on curved surfaces by initially 
fabricating devices on a flat standard substrate, embedding them in an organic transport 
layer, which is then released from the original substrate and transferred to the machining 
tool [23, 24]. The polymer layer will then fold around the machining tool in 3D. 
Subsequently, the organic material layer can be removed by chemical treatments or 
heating in a reactive atmosphere and the device will adhere to the underlying substrate 
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via heating and/or adhesion layers. Such contact deposition has the advantage that the 
functional structures can be made under optimum conditions as the growth substrate will 
strongly influence the final structure. Thus, a flexible and non-invasive production is 
possible, that can also be fast. It depends on the device structure being flexible, here it 
can be noted that nanostructure will often be rather flexible due their reduced dimensions 
[44]. Figure 11 show a bisected view of the metal cutting tool post Wire Electrical 
Discharge Machining (W-EDM) process, illustrating the precision cutting capabilities 
(a) and an internal cross-section of the cut tool revealing the intricate metal patterns 
created using UV lithography, serving as precursors for thin film sensor integration (b) 
and finally a high-resolution microscopy image highlighting the fine details and the 
superior resolution of the UV lithography-imprinted metal patterns, essential for the 
functionality of thin film sensors (c). 

 
Figure 11. Example of a cutting tool that is sliced (a), a manufactured UV lithography pattern with sensor 
properties (b) and a magnification of a produced film-sensor (c). 

Deep reactive Ion Etching is technique that allows the formation of very thing high aspect 
ratio channels that can be used for wiring or sensors in a range of materials [25].  Also, 
fluid flow assembly can be used to guide functional device structures to the correct 
position using chemical specificity or electrophoresis [26]. For the specific 
implementation of sensors in machining and on steel, micrometer scale structures have 
been fabricated using various basic lithography and growth techniques that have been 
previously implemented for semiconductors indicating the high potential for transference 
of knowhow between the sectors [28-33]. Further complex integration into composites 
has been done [34] and sensors for harsh environments have been explored [35]. One of 
the powerful features of nano/micron fabrication is the ability to create several sensors 
or even sensor arrays in the same printing cycle. This is highly advantageous as it will 
make the eventual signal interpretation more robust and potentially contain considerably 
more information [36, 37].   

While most nano and microstructures are inherently excellent sensors due to their 
small volume and large contact area this is not enough to qualify as a useful in a real 
application. Here both sensing of the relevant signal, transmission of the signal to the 
external world and the interpretation of the signal, in the presence of noise, fluctuations 
and actual functional connection to the relevant physical property at the relevant place in 
space, must be taken into consideration. An important further consideration for 
successful implementation of micron/nano sensors in industrial products and production 
is the direct connection to the actual industrial processing and models of these. While 
much work on sensors, for example for machining, deals with the measurements of 
physical parameters such as temperature these works often lack the direct connection to 
the implementation in the manufacturing process and the additional requirements and 
constrains this sets. A direct comparison between the requirements for sensing based on 
models of industrial production, including their environment impact, with what 
capabilities can be physically realized with nanofabrication is crucial. For both 

J.-E. Ståhl et al. / A Concept from Sensor to Sustainability in Machining 163



technology/research fields the parameter space for possible developments is huge, but 
only where there is a reasonable probability that they will overlap is it worth researching. 
Additionally, a continuous collaboration is needed as both industrial production models 
and physical sensor systems and signal interpretation can be modified to find the 
optimum solution. Here continuous modelling using input from ongoing experiments is 
important as this will further act to reduce the parameters spacing for time consuming 
fabrication development.   

For the specific case of machining, a central challenge lies in sensing and hence 
understanding the conditions (such as temperature, pressure, and vibrations) at the local 
point where the cutting tool interacts with the material to be machined. As an example, 
a parameter such as temperature changes very rapidly and non-linearly away from the 
contact point, hundreds of degrees within a few hundred microns [32], making 
measurements close to the contact point essential. Thus, the sensor has to function near 
the cutting zone that can reach temperatures above 1000 oC and which is also under 
considerable mechanical stress and experience vibrations. For both technology/research 
fields the parameter space for possible developments is huge, but only where there is a 
reasonable probability that they will overlap is it worth researching. Finally, 
communicating the signal to the exterior world is a challenge. An example is that the 
contact point where the cutting occurs is often obscured both by the tool and tool piece 
as well as liquids administered during the machining making remote optical diagnostics 
difficult. Finally, while most micro and nanofabrication methods have been developed 
for planar homogeneous surfaces, such as Silicon wafers, tool surfaces will usually be 
rougher, curved and consist of a complex elemental composition and crystal structure.  

Overall, promising sensor options are based on either electrical or optical signals, 
here we focus on sensor capabilities embedded in the tools. External sensors, such as 
cameras, can be easier to implement and need no modification of the tools, but has 
significant limitations due to e.g., poor optical access. For temperature measurements 
sensing can be accomplished electrically via integrating a thermocouple inside the tool 
or printed on the tool. Alternatively infrared radiation from the tool can be measured via 
optical fibers embedded in the tool. These different approaches have different challenges, 
but reasonably successful cases have been demonstrated [33]. Further miniaturization 
can help make these methods less invasive to the tool and the use of combinations of 
bottom-up and top-down approaches can be helpful. For measurements of vibrations (and 
pressure) both electrical and optical sensing again appear as viable options. Piezoelectric 
materials can be used to gauge both vibrations and larger pressure changes while optical 
reflection has been used to monitor vibrations.  

 

5.2 Sensor design and signal transmission 

Some of today's available sensors have a strong temperature drift, which is why they 
cannot be placed too close to the process without a well-functioning cooling system. 
Another significant problem with measurements in the cutting process is its difficult 
environment in terms of cutting fluids, sharp and heavily deformation-hardened chips 
and severe electromagnetic interference. The electromagnetic interference comes from 
the machine itself but also from other equipment. By increasingly integrating sensors in 
tools, tool holders or other machine equipment, the above-mentioned problems can be 
reduced, but new challenges will arise. A final consideration in the sensor design is the 
need for local filtering, interpretation, amplification as well as subsequent transmission 
of the signal. Here edge computing close to the actual sensor should be considered [38, 
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39]. Already performing a first filtering and interpretation of the signal locally close to 
the sensor can allow for a more simplified and amplified signal to be transmitted out. 
The ability to actually transmit the signal out from the active area should not be 
underestimated as a significant challenge that must be thought out together with the 
sensor design. Here local electronics that can work in high temperature conditions and 
which have high structural stability is of relevance. This leads to materials such as 
GalliumNitride compounds which can work at elevated temperatures, have a high 
melting point and are mechanically robust [30, 31, 32]. Further, these materials are 
already used in the semiconductor industry for high power and optical applications and 
suggested as vibration sensors for harsh environments [41, 42]. 

5.3 Signal processing for machining optimization  

After sensor local signal handling, amplification, resampling and filtering, the signal 
transmission itself will also contribute with new disturbances and challenges, typically 
outlier and missing data samples as well as complete structural breaks, which calls for 
initial careful data cleaning.  The resulting cleaned measured time series will generally 
be of non-stationary and non-linear character buried in high noise levels. Additionally, 
the noise distributions can be expected to include outliers which typically call for robust 
techniques in the time series modelling. Such methods can in general be combined with 
state-of-the-art methods for prediction of temperatures, e.g., finite element analysis and 
regression analysis  [33]. Another challenge is coupling and correlation of measurements.  
Multi-variate time series, in time and space, can be used for modelling of temperature 
prediction using modern techniques for robust covariance and cross-correlation 
modelling.  Dimensionality reduction analysis of resulting models and parameters using 
principal component analysis (PCA) and independent component analysis (ICA) are 
important approaches. Following the success in image classification, machine learning 
has naturally gained interest also within classification of machining measurements. For 
sound and vibration measurements, state-of-the-art techniques extracting time-frequency 
(TF) domain information are often applied and used as input data. Typical machine 
learning models in this context are Multi-Layer Perceptron, Convolution Neural Network 
(CNN), Long Short-Term Memory (LSTM), and transformers. Classification is then 
generally performed on spectrograms images, obtained from the time series 
measurements, which allow the rendering of more accurate and richer features from the 
signals, as the original time domain signal is very noisy and exhibits several non-
linearities [33]. 

In the popular deep learning sub-field,  models with many CNN-layers and millions 
of parameters have been pre-trained using  millions of images  (e.g., ImageNet and 
ResNet-50). These pre-trained models are successfully used for different computer 
vision tasks, such as image classification and object localization in images.  However, 
these pre-trained models are not at all optimal for classification of features from TF 
images, which are known to have a different structure compared to a general image, with 
a particular strong dependence between the time- and frequency dimensions.  Regardless 
of this important restriction, the pre-trained deep learning models are nowadays 
extensively used for sound and vibration classification by adding an extra classifier to be 
trained for the difference in the TF image characters. In general, a spectrogram image, 
with additional mel-frequency and log-energy transformations, is used as the input TF 
image. The hyperparameters, such as e.g., spectrogram window size, hop length and 
number of mel bands, are always difficult to choose for an optimal performance [46, 47].  
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A number of challenges arise in the application of pre-trained deep learning models 
for sound classification: (1) data cleaning and annotation of measurements is time 
consuming and cannot in general be fully automated, restricting the availability of large 
data sets; (2) extensive testing is needed to find the optimal choices of hyperparameters, 
where mistakes lead to insufficient and non-optimal resolution of the TF images; (3) the 
high noise level of data is in general resulting in degraded information extraction; (4) the 
interpretation of the performance of the deep learning algorithm, as the importance of 
the explicit features is in general hidden. 

The complete solution to the above challenges are not yet available but a number of 
approaches can be found.  (1) Annotation of data often needs to be performed by an 
expert and to save time and effort in these matters, active learning is a modern strategy 
for the expert annotation of data. The available techniques rely on algorithms that 
actively selects informative samples to be labeled by the human expert. An acquisition 
function is used to score the unannotated data which will then contribute to a faster 
learning of the machine learning model [48]. (2) To avoid the extensive testing for 
optimal hyperparameters, recent work has proposed the differentiable spectrogram where 
the window size and hop length are jointly optimized with the model parameters [49]. 
Avoiding the manual choice of these hyperparameters leads to optimal TF resolution for 
a specific classification task. Other novel approaches propose the actual transformation 
from the time series to the TF image to be included in the deep learning model [50].  (3) 
For vibration signals, the frequency variation with time can be expected to be non-linear. 
The feature extraction of separate condition-related components then calls for TF ridge 
sharpening techniques [51, 52, 53]. Modern noise robust methods are the multitaper 
synchrosqueezing wavelet transform and the multitaper reassignment method. These 
techniques aim is to concentrate the blurry energy to sharper structures, which makes the 
TF image more interpretable for the human eye. Specific signal models can be 
incorporated and the methods can be used for optimal feature detection and selection 
[53]. (4) To solve the issue of interpretability and importance of features in deep learning, 
several recent papers investigate explainable AI (XAI) algorithms. General techniques 
exist for interpretation of black-box models, e.g., Shapley Additive Explanations (SHAP) 
and Local Depth-based Feature Importance for the Isolation Forest (Local-DIFFI). 
Specifically for TF images, there exist a number of popular methods to identify the 
globally important features and their connection to a specific TF area, e.g., GradCAM 
and Local Interpretable and Model-agnostic Explanation (LIME) [54, 55, 56]. 

6. Identified challenges related to the optimization of machining operations 

The development of models and techniques to optimize machining with respect to several 
different criteria has a wide range of challenges, not least linking several different fields 
of science that need to be integrated and interact. A number of research questions must 
be answered both at the system level and at the process level. Examples of research 
questions at the system level are: 

o Which variables need to be identified and measured in order to optimize 
machining with respect to predefined criteria?  

o What is possible to measure in the machining process and how can this be 
correlated to the process behavior and output results relevant for an optimization, 
see previous section 3.2?  

o How can measured variables be correlated, directly or indirectly, to the process 
models that can be used for an optimization?  
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o How can the feedback between measured variables and process control contribute 
to knowledge and experience related to the properties of the work material and its 
machinability? 

o How flexible systems for process optimization can be created and how varied can 
the processing be in terms of the number of different operations and the number 
of similar workpieces in terms of batch size? 

Examples of research questions that can be linked to technology and process are: 

o How should the sensors be integrated and constructed to cope with the current 
environment in terms of pressure, temperature, tribology but also in terms of 
chemistry of the workpiece material, chips and cutting fluids? 

o How should measurement signals be handled and transmitted taking into account 
the machine's movement pattern and the current cutting environment? 

o How can AI/ML be integrated together with conventional process models to 
enable data for optimization with respect to different criteria, especially in short-
series production with limited data sets and large process variations? 

o What additional process models and optimization principles need to be developed 
to include the environmental impact of machining fully also under different 
machining conditions? 

7. Summary and conclusions 

The present paper deals with problems, conditions and new opportunities to optimize 
machining with regard to several different criteria. In the discussion, the environmental 
impact of machining has been added as a new optimization criterion. The reported study 
states that a broad approach is required where several different disciplines interact to 
succeed in real-time optimization of machining. New and robust sensors are required 
while new signal management including signal transmission is required, machining 
models linked to the process and system must be further developed in various respects. 
The development of nano-sensors, signal transmission technology and ML/AI in 
combination with a long research tradition in machining provides new and unique 
conditions to eventually be able to control and optimize machining in real time, which 
also includes the environmental impact of machining. 

Acknowledgement 

The authors would like to thank our employer Lund University. The reported work has, 
among other things, been added due to the fact that Lund University has been granted a 
Vinnova Competence Center, SENTIO Competence Center, where the current subject 
area constitutes a significant subset. The work intends to partly establish a description of 
the competence center's starting points before its beginning in spring of 2024. With this, 
we thank Vinnova and our strategic research areas Nano Lund at Lund University and 
Sustainable Production Initiative (SPI), a collaboration between Chalmers and Lund 
University, for the support that enabled an application for Vinnova's Competence Center. 

References 

[1] Adaptive Control of Manufacturing Eqipment, NUTEKs Research Program 1987-1992, Project
Reports – Machine Tools, Part I and Part II, ISSN 1103-1549, Swedish National Board for
Industrial and Technical Development, Stockholm 1992. 

[2] Jan-Eric Ståhl, Integrerade sensorer och adaptiv produktionsteknik och adaptiva
precessrelaterade produkter, Underlag och arbetsdokument i anslutning till Vinnovas utlysning

J.-E. Ståhl et al. / A Concept from Sensor to Sustainability in Machining 167



av Kompetens Center för hållbar industri och digital omvandling 2022, Lunds universitet, Lund
2022. 

[3] Zhou J., Mechanical Load Identification for Spontaneous Tool Failure Monitoring, Department
of Production and Materials Engineering, Lunds University Lund 1996. 

[4] Ståhl J-E., Metal Cutting Theories and models, in cooperation with SECO Tools AB, Fagersta
and Lund 2012. 

[5] Ali Akhavan Farid, Chuan Li,  Veronica Lestari Jauw, Chin Seong Lim, Application of machine
vision for tool condition monitoring and tool performance optimization – a review, The
International Journal of Advanced Manufacturing Technology, 01 August 2022, volume 121,
pp. 7057–7086 (2022). 

[6] Ambhore N, Kamble D, Chinchanikar S, Wayal V (2015) Tool condition monitoring system: a
review. Mater Today Proc 2(4–5), pp. 3419–3428.  

[7] Li X, Ouyang G, Liang Z (2008) Complexity measure of motor current signals for tool flute
breakage detection in end milling. Int J Mach Tools Manuf. 48(3–4), pp. 371–379.  

[8] Lehtinen P., Monitoring of Cutting-Edge Temperature in the Hard Turning Process, Production
and Materials Engineering, Lund University, CODEN:LUTMDN/(TMMV-5152)/1-47/2000,
Lund 2000. 

[9] Hägglund, S., Methods and Models for Cutting Data Optimization, Doctoral Thesis, Chalmers
University of Technology, Gothenburg, 2013 Sweden. 

[10] Ståhl J-E., (2017), An integrated cost model for metal cutting operations based on engagement
time and a cost breakdown approach International Journal of Manufacturing Research, Vol. 4,
No.12, pp. 379-404. 

[11] Ståhl J-E., Windmark C., Sustainable Production Systems – The link between technology and
economy with global perspective, version 3, Lund 2021. 

[12] Enrique Barrigón, Magnus Heurlin, Zhaoxia Bi, Bo Monemar, and Lars Samuelson, Synthesis
and Applications of III–V Nanowires, Chemical Reviews 2019 119 (15), 9170-9220. 

[13] Bernhard Mandl, Julian Stangl, Emelie Hilner, Alexei A. Zakharov, Karla Hillerich, Anil W.
Dey, Lars Samuelson, Günther Bauer, Knut Deppert, and Anders Mikkelsen, Growth
Mechanism of Self-Catalyzed Group III−V Nanowires, Nano Letters 2010 10 (11), pp. 4443-
4449. 

[14] Zhaoxia Bi, Filip Lenrick, Jovana Colvin, Anders Gustafsson, Olof Hultin, Ali Nowzari,
Taiping Lu, Reine Wallenberg, Rainer Timm, Anders Mikkelsen, B. Jonas Ohlsson, Kristian
Storm, Bo Monemar, and Lars Samuelson, InGaN Platelets: Synthesis and Applications toward
Green and Red Light-Emitting Diodes, , Nano Letters 2019 19 (5), pp. 2832-2839. 

[15] Benter, S., Jönsson, A., Johansson, J. et al. Geometric control of diffusing elements on InAs
semiconductor surfaces via metal contacts. Nat Commun 14, 4541 (2023). 

[16] Zhou, T. T., Zhang, T., Recent Progress of Nanostructured Sensing Materials from 0D to 3D:
Overview of Structure–Property-Application Relationship for Gas Sensors. Small
Methods 2021, 5, 2100515. 

[17] Löfstrand, A., Jafari Jam, R., Svensson, J., Jönsson, A., Menon, H., Jacobsson, D., Wernersson,
L.-E., Maximov, I., Directed Self-Assembly for Dense Vertical III–V Nanowires on Si and
Implications for Gate All-Around Deposition. Adv. Electron. Mater. 2022, 8, 2101388. 

[18] Ram, M.S., Persson, KM., Irish, A. et al. High-density logic-in-memory devices using vertical
indium arsenide nanowires on silicon. Nat Electron 4, pp. 914–920 (2021). 

[19] Ofentse A. Makgae, Filip Lenrick, Volodymyr Bushlya, Jon M. Andersson, Rachid M'Saoubi,
Martin Ek, Visualising microstructural dynamics of titanium aluminium nitride coatings under
variable-temperature oxidation, Applied Surface Science, Volume 618, 2023, 156625. 

[20] Thomas W. Cornelius, Olivier Thomas, Progress of in situ synchrotron X-ray diffraction studies
on the mechanical behavior of materials at small scales, Progress in Materials Science, Volume
94, 2018, Pages 384-434. 

[21] Timm, R., Mikkelsen, A. (2021). Surface Functionalization of III–V Nanowires. In: Fukata, N.,
Rurali, R. (eds) Fundamental Properties of Semiconductor Nanowires. Springer, Singapore.  

[22] Chuntian Cao, Michael F. Toney, Tsun-Kong Sham, Ross Harder, Paul R. Shearing, Xianghui
Xiao, Jiajun Wang, Emerging X-ray imaging technologies for energy materials, Materials
Today, Volume 34, 2020, pp. 132-147. 

[23] Zhaoguo Xue et al., Assembly of complex 3D structures and electronics on curved surfaces Sci.
Adv. 8, eabm6922 (2022). 

[24] G. Zabow ,Reflow transfer for conformal three-dimensional microprinting. Science378,894-
898(2022). 

[25] Huff, M. Recent Advances in Reactive Ion Etching and Applications of High-Aspect-Ratio
Microfabrication. Micromachines 2021, 12, 991.  

J.-E. Ståhl et al. / A Concept from Sensor to Sustainability in Machining168



[26] Nanowire Electronics: From Nanoscale to Macroscale, Chuancheng Jia, Zhaoyang Lin, Yu
Huang, and Xianfeng Duan, Chemical Reviews 2019 119 (15), 9074-9135. 

[27] Gustafson, J.L. (2011). Moore’s Law. In: Padua, D. (eds) Encyclopedia of Parallel Computing.
Springer, Boston, MA.  

[28] El Habra, N.; Visentin, F.; Russo, F.; Galenda, A.; Famengo, A.; Rancan, M.; Losurdo, M.;
Armelao, L. Supported MOCVD TiO2 Thin Films Grown on Modified Stainless Steel Mesh for
Sensing Applications. Nanomaterials 2023, 13, 2678.  

[29] Nanosensors for Smart Manufacturing, 1st Edition - June 10, 2021, Editors: Sabu Thomas, Tuan
Anh Nguyen, Mazaher Ahmadi, Ali Farmani, Ghulam Yasin,  Paperback ISBN:
9780128233580. 

[30] Tianxiang Li, Tielin Shi, Zirong Tang, Guanglan Liao, Jian Duan, Jinghui Han, Zhaopeng He,
Real-time tool wear monitoring using thin-film thermocouple, Journal of Materials Processing
Technology, Volume 288, 2021, 116901. 

[31] Leonidas, E.; Ayvar-Soberanis, S.; Laalej, H.; Fitzpatrick, S.; Willmott, J.R. A Comparative
Review of Thermocouple and Infrared Radiation Temperature Measurement Methods during
the Machining of Metals. Sensors 2022, 22, 4693. 

[32] N.A. Abukhshim, P.T. Mativenga, M.A. Sheikh, Heat generation and temperature prediction in
metal cutting: A review and implications for high speed machining, International Journal of
Machine Tools and Manufacture, Volume 46, Issues 7–8, 2006, pp. 782-800. 

[33] Pereira Guimarães, B.M., da Silva Fernandes, C.M., Amaral de Figueiredo, D. et al. Cutting
temperature measurement and prediction in machining processes: comprehensive review and
future perspectives. Int J Adv Manuf. Technol 120, 2849–2878 (2022).  

[34] Roman, M.; Balogun, D.; Zhuang, Y.; Gerald, R.E., II; Bartlett, L.; O’Malley, R.J.; Huang, J.
A Spatially Distributed Fiber-Optic Temperature Sensor for Applications in the Steel
Industry. Sensors 2020, 20, 3900. 

[35] Hossein Montazerian, Armin Rashidi, Abbas S. Milani & Mina Hoorfar (2020), Integrated
Sensors in Advanced Composites: A Critical Review, Critical Reviews in Solid State and,
Materials Sciences, 45:3, pp. 187-238. 

[36] French, P., Krijnen, G. & Roozeboom, F. Precision in harsh environments. Microsyst
Nanoeng 2, 16048 (2016). 

[37] Balakrishnan, V.; Phan, H.-P.; Dinh, T.; Dao, D.V.; Nguyen, N.-T. Thermal Flow Sensors for
Harsh Environments. Sensors 2017, 17, 2061.  

[38] Duan, Y.; He, S.; Wu, J.; Su, B.; Wang, Y. Recent Progress in Flexible Pressure Sensor
Arrays. Nanomaterials 2022, 12, 2495.  

[39] Garima Nain, K.K. Pattanaik, G.K. Sharma, Towards edge computing in intelligent
manufacturing: Past, present and future, Journal of Manufacturing Systems, Volume 62, 2022,
P. 588-611. 

[40] Passian, A.; Imam, N. Nanosystems, Edge Computing, and the Next Generation Computing
Systems. Sensors 2019, 19, 4048.  

[41] Koon Hoo Teo, Yuhao Zhang, Nadim Chowdhury, Shaloo Rakheja, Rui Ma, Qingyun Xie, Eiji
Yagyu, Koji Yamanaka, Kexin Li, Tomás Palacios; Emerging GaN technologies for power, RF,
digital, and quantum computing applications: Recent advances and prospects. J. Appl. Phys. 28
October 2021; 130 (16): 160902. 

[42] Hot-Wall MOCVD for High-Quality Homoepitaxy of GaN: Understanding Nucleation and
Design of Growth Strategies, Rosalia Delgado Carrascon, Steffen Richter, Muhammad Nawaz,
Plamen P. Paskov, and Vanya Darakchieva, Crystal Growth & Design 2022 22 (12), pp. 7021-
7030. 

[43] Nam-In Kim, Yu-Li Chang, Jie Chen, Tanner Barbee, Weijie Wang, Ja-Yeon Kim, Min-Ki
Kwon, Shahab Shervin, Mina Moradnia, Sara Pouladi, Devendra Khatiwada, Venkat
Selvamanickam, Jae-Hyun Ryou, Piezoelectric pressure sensor based on flexible gallium nitride
thin film for harsh-environment and high-temperature applications, Sensors and Actuators A:
Physical, Volume 305, 2020, 111940. 

[44] Rogers, J.A., Chen, X. and Feng, X. (2020), Flexible Hybrid Electronics. Adv. Mater., 32:
1905590. New Flexible Toolbox for Nanomechanical Measurements with Extreme Precision
and at Very High Frequencies Alexander Fian, et al, Nano Letters (2010) 10, 3893-3898 

[45] B. Bhandari, Comparative Study of Popular Deep Learning Models for Machining Roughness
Classification Using Sound and Force Signals, Micromachines, 2021. 

[46] K. Manjunath, S. Tewary, N. Khatri and K. Cheng, Monitoring of machining process anomalies
in diamond turning of Ti6Al4V alloy using transfer learning-based algorithms, Computers &
Industrial Engineering, 182, 2023.  

J.-E. Ståhl et al. / A Concept from Sensor to Sustainability in Machining 169



[47] C. A. K. A. Kounta, L. Arnaud, B. Kamsu-Foguem and F. Tangara, Deep learning for the
detection of machining vibration chatter, Advances in Engineering Software, 180, 2023. 

[48] M. Leco, T. McLeay and V. Kadirkamanathan,  A two-step machining and active learning
approach for right-first-time robotic countersinking through in-process error compensation and

prediction of depth of cuts, Robotics and Computer-Integrated Manufacturing, 77, 2022. 
[49] M. Leiber, Y. Marnissi, A. Barrau, and M. El Badaoui, Differentiable Adaptive Short-Time

Fourier Transform with Respect to the Window Length, Proc. of ICASSP, 2023. 
[50] T. Chen, Q. Chen, Q. Zheng, Z. Li, Z. Zhang, L. Xie and H. Su, Adaptive multi-scale TF-net

for high-resolution time–frequency representations, Signal Processing, 214, 2024. 
[51] L. Wang, S. Ma, Q. Han and F. Chu, Unified Sparse Time–Frequency Analysis: Decomposition,

Transformation, and Reassignment, IEEE Trans. on Industrial Informatics, 18, 2022. 
[52] Y. Li, H. Fu, K. Feng, Z. Li, Z. Peng, A. Saboktakin and K. Noman, Oscillatory time–frequency

concentration for adaptive bearing fault diagnosis under nonstationary time-varying speed,
Measurements, 218, 2023. 

[53] I. Reinhold and M. Sandsten, The Multitaper Reassigned Spectrogram for Oscillating Transients
with Gaussian Envelopes, Signal Processing, 198, 2022. 

[54] L. C. Brito, G. A. Susto, J. N. Brito and M. A.V. Duarte, An explainable artificial intelligence
approach for unsupervised fault detection and diagnosis in rotating machinery, Mechanical
Systems and Signal Processing, 163, 2022. 

[55] A. Hanchate, S. T.S. Bukkapatnam, K. Hwan Lee, A. Srivastava and S. Kumara, Reprint of:
Explainable AI (XAI)-driven vibration sensing scheme for surface quality monitoring in a smart
surface grinding process, Journal of Manufacturing Processes, 100, 2023. 

[56] O. Mey and D. Neufeld, Explainable AI Algorithms for Vibration Data-Based Fault Detection:
Use Case-Adapted Methods and Critical Evaluation, Sensors, 2022. 

 

J.-E. Ståhl et al. / A Concept from Sensor to Sustainability in Machining170


