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Abstract. This work focuses on reducing the experimental need for creating a reli-
able tool life model for a data set of 46 tool data points with its resulting tool life
for a single-tooth side milling application in medium carbon steel, C45 E.

Based on the data set, 615 180 unique tool life models are created using Cold-
ing’s equation.

This is achieved by creating models using different unique subsets of the com-
plete data set where the cardinality is varied from 7 to 43.

The paper shows that the improvement from adding more data points to the mod-
elling are neglectable after 34 data points are included in the modelling if a maxi-
mum absolute model error ≤ 9% is sought.

Furthermore, it is shown that the prediction error increases when extrapolating
outside the range of equivalent chip thickness and cutting speed used for the mod-
elling work compared to an interpolative error within the range.

By carefully planning the experimental set-up by maximising the cutting speed
and feed range decreases the risk of creating a non-relevant model where the pre-
diction error increases when located outside the modelling range.
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1. Introduction

Machining operations such as turning, milling, drilling, boring, reaming and tapping are
commonly used when producing shapes and surfaces on products. Approximately 80%
of all products are machined in one way or another before it’s finalized. [1]

When forming the workpiece, factors such as: process parameters, workpiece ma-
terial, tool geometry and tool material all influences the tool life. Understanding, de-
scribing and improving the machining process has been a subject of research for over a
century [2].

A common method to increase the understanding is by using models [3]. Over the
years, different approaches have been suggested: empirical-, numerical-, soft computing-
and hybrid models. [2,4,5,6,7,8]

The ability to predict the tool life is an important aspect to optimize the tool cutting
process.

1Corresponding Author: Kantojärvi Fredrik, fredrik.kantojarvi@secotools.com.

Sustainable Production through Advanced Manufacturing, Intelligent Automation and
Work Integrated Learning, J. Andersson et al. (Eds.)
© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/ATDE240149

3



Even though advances have been made in several areas, empirical models, such as
the Taylor formula [2] and Colding’s equation [9,10] are still relevant in both academia
and industry. Some advantages identified with empirical models are:

• Low amount of test data needed.
• Low calculation time.
• The wear degradation does not need to be fully evaluated to create a model.

[11,12]
Although, one limitation of empirical models is that the model is only valid for the ma-
chine - tool - workpiece combination used for the data acquisition. [13]

The Colding model proposed by Dr. B. Colding [9,10] has shown as a viable candi-
date when creating empirical models both in turning Johansson et. al. [14] and milling
Kantojärvi et. al. [15]. To minimize the need for experimental data Johansson [12] pro-
posed an experimental set-up to increase the probability of receiving a relevant model
based on five experimental data points. It has also been shown that it is possible to cal-
ibrate a known tool life model with a closely related machine - tool - workpiece set-up
using a reduced experimental trial [16].

Kantojärvi et. al. [15] published a data set of tool life for a milling application which
includes a total of more than 50 hours of machining time. With an extensive testing the
cost of producing the model becomes several times higher than for a turning application.

The aim of this paper is to investigate the possibilities to reduce the experimental
set-up when using Colding’s equation by analysing the data set published by Kantojärvi
et. al. [15].

2. Background

2.1. Tool life modeling

It is showed that Colding’s equation can be utilized for tool life modeling in milling
applications [15]. The Coldings equation for predicting tool life is shown in Eq. (1).
Later, B. Linström [17], showed that Colding’s equation in fact is an extended Taylor
formula, shown in Eq. (2).

vc = eK− (ln(he)−H)2
4M −(N0−L ln(he)) lnT (1)

vc·T α(he)hm(he)
e =C0 (2)

Where: α(he) = α0 +α1 ln(he) and m(he) = m0 +m1 ln(he).
The relationship between Lindströms set of constants and Coldings are:

C0 = eK−(H2/4M),m0 =−2H/4M

m1 = 1/4M,α0 = N0,α1 =−L
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Where vc is the cutting speed [m/min], he the equivalent chip thickness [mm] and
T is the tool life [min]. K,H,M,N0 and L are model constants that are fitted against the
experimental data set. The equivalent chip thickness for milling is calculated as shown
in Eq. (3) [18].

he,S =
ap fze

ap−rε (1−cosκ)
sinκ +κrε +

fze
2

(3)

Where: ap is the depth of cut [mm], fze the equivalent feed [mm], rε the nose radius [mm]
and κ the setting angle [rad]. ap, rε and κ is known based on selected process parameters
and cutting tool. The equivalent feed, fze, is related to the geometetry of the tool and can
be approximated using Eq. (4) [18].

fze ≈ ae ∗ fz

larc
(4)

Where: larc is the arch length [mm] and can be determined geometrically usisng Eq. (5)
and (6), ae is width of engagement [mm] and fz is the feed per tooth [mm].

larc =
Øw

2
ϕae (5)

Øw = Ø+2
2
3 ap

tanκ
(6)

The tool life for a milling application is defined as the cutting edge’s time engaged in the
workpiece and can be calculated according to Eq. (7).

T = Ttool ∗Tratio,Tratio =
larc

πØw
(7)

Where: Ttool is the machining time [min] from engagement to exit of workpiece.
To solve the model constants numerically, it were proposed by Kantojärvi et. al.

[15], to solve for the constants identified by Lindström [17] on matrix form, as shown in
Eq. (8), for a dataset of n experiments.

⎛
⎜⎝

ln(T1) ln(he,1) ln(T1) ln(he,1) ln(he,1)
2 −1

...
...

...
...

...
ln(Tn) ln(he,n) ln(Tn) ln(he,n) ln(he,n)

2 −1

⎞
⎟⎠

︸ ︷︷ ︸
Ā

⎛
⎜⎜⎜⎜⎝

α0
α1
m0
m1

ln(C0)

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
x̄

=

⎛
⎜⎝
− ln(vc,1)

...
− ln(vc,n)

⎞
⎟⎠

︸ ︷︷ ︸
b̄

(8)

Āx̄ = b̄
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In order to determine the model constants, minimizing the least square error are
performed on matrix form, Eq. (9).

min ||Āx̄− b̄||2 (9)

x̄ = (ĀT Ā)−1ĀT b̄

2.2. Milling experiment

Kantojärvi et. al. [15] published a data set consisting of 46 experimental trials for a
single tooth milling application. The milling was performed as a down milling operation,
varying width of cut, cutting speed and feed in C45 E medium carbon steel. The data
set consist of a combination of tool - process parameters for five different milling cutter
configurations, shown in Table 1. [15]

In Figure 1 the equivalent chip thickness and cutting speed combination included in
the data set by Kantojärvi et. al. [15] is shown for the tools presented in Table 1.

Table 1. Cutter configurations used for retrieving the tool life data.[15]

Cutter
Ø rε κ Rake angle Clearance angle

[mm] [mm] [°] [°] [°]

A 157.6 1.0 46 11 12
B 312.6 1.0 46 11 12
C 176.4 1.0 89 11 12
D 330.6 1.0 89 11 12
E 32.0 0.8 90 10 7

Figure 1. All experimental data points included in the experiment by Kantojärvi et.al. [15].

All tool life results published by Kantojärvi et. al. [15] were determined by measur-
ing the maximum wear on the flank with the criterion max{Vb,Vn} ≤ 0.3mm. Where: Vb
is the flank wear and Vn is the notch wear. In Figure 2, the wear evaluation published by
Kantojärvi et. al. [15] is shown.

For the milling experiments published by Kantojärvi et. al [15] the Colding constants
were determined to: K = 6.192, H = −2.921, M = 1.404, N0 = 0.367 and L = −0.067
with a resulting average mean model error of 7.96% for the experiment. [15]
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(a) Measured flank wear after an engaged
time of 61.1 minutes.

(b) Measured flank wear after an engaged
time of 59.4 minutes.

(c) Example of flank wear development.

Figure 2. Determination of tool life for a cutting edge. (a) flank wear when tool life criterion is met and in (b)
flank wear at latest point before tool life criterion is met. (c) Flank wear development with tool life shown for
T(vb=0.3mm).[15]

3. Method

The modelling work, using Colding’s equation Eq. (1), are performed on a subset Bm ⊆ A
containing m randomly selected tool performance points, satisfying: |A| ≥ |Bm| = m.
Where: A = {1,2,3 . . .n} is all tool performance points in the data set published by Kan-
tojärvi et. al. [15].

Regardless of which subset |Bm| that are used, the model error is deteremined as the
absolute model error, AME, over the whole data set A, shown in Eq. (10). This creates
a statistical data set of AME for subsets of different cardinality to be used in further
analysis.

Even though the Colding constants is not directly solved towards Eq. (10), Kan-
tojärvi et. al. [15] showed that the solved constants often gives an improved solution
compared to using an non-linear optimizer directly on Eq. (10). Something that is likely
due to the removed risk of ending up in local optimums. [15]

AME =
1

| A | ∑A
|vc,model,n − vc,n|

vc,n
(10)
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Analysing characteristics of the subset can be determined by calculating the ratio
between maximum and minimum value of a certain property, as shown in Eq. (11).

xR =
max{x(Bm)}
min{x(Bm)} (11)

Johansson [12] proposed to analyse the influence of error based on three identified types
of data points when evaluating a turning application:

• Approximative data point: A data point which is a part of the model creation.
• Interpolative data point: A data point which are positioned within the he − vc

range that the approximative data points span over.
• Extrapolative data point: A data point which are positioned outside the he − vc

range that the approximative data span over.

The data set A can be divided into three subsets as shown in Eq. (12), a graphical repre-
sentation is shown in Figure 3.

A = Bm ∪Bi ∪Be (12)

Where: Bm={n∈A|n used in model creation}

Bi={n∈A|min{vc(Bm)}≤vc(n)≤max{vc(Bm)} and min{he(Bm)}≤he(n)≤max{he(Bm)}}

Be=A\(Bi∪Bm)

Figure 3. Definition of model, interpolative and extrapolative data points. Where: (∗) : represents data points
used for the modeling, (	) : represents interpolative data points and (◦) : represents extrapolative data points.
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4. Results and discussion

Colding constants are solved, using Eq. (9), for multiple randomly selected data sets,
containing m = {7,10,13,16,19,22,25,28,31,34,37,40,43} data points. The distribu-
tion of AME is calculated according to Eq. (10) for each created model and is shown
in Figure 4. In Table 2 the total number of models created for each size of subspace are
presented. It can be observed that the number of models created for the subset with 43
out of 46 data points all unique subsets are solved.

Table 2. Number of models created for each subset Bm ⊆ A,
m = {7,10,13,16,19,22,25,28,31,34,37,40,43}.

m 7 10 13 16 19 22 25
# of models 50 000 50 000 50 000 50 000 50 000 50 000 50 000

m 28 31 34 37 40 43
# of models 50 000 50 000 50 000 50 000 50 000 15 180

As can be expected, increasing the number of data points included in the modelling
decreases spread in AME between models. The major improvement of spread between
models can be observed by moving from subsets of 7 up to subsets of approximately 22
data points.

Looking at the ratio between models that has an AME exceeding a certain thresh-
old, AME ≥ {9,12,15}%, and all models is shown in Figure 5. As can be observed in
Figure 5, depending on the quality requirements set on the model, the point where the
improvement becomes negligible with a subset of {37,19,16} data points for AME ≥
{9,12,15}%.

Furthermore, it can be observed that all subsets, regardless of cardinality, there are
models that perform equally good with respect to AME, shown in Figure 4. It is mainly
the spread in-between the models that are affected by the cardinality, where increasing
the number of data points included decreases the spread.

Figure 4. Model distribution with � and ⊥ showing the 1.5x interquartile range (IQR). Outliers, models
outside 1.5 IQR are not shown.
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Figure 5. The ratio of models that shows an absolute mean error larger than the threshold. (a) AME ≥ 9%,
(b) AME ≥ 12% and (c) AME ≥ 15%

By dividing the model error into three different types of error: interpolative, extrap-
olative and approximative error, as proposed by [16], the error contribution from the dif-
ferent types is shown in Figure 6. It is no surprise that the AME of model data points are
quite low and are increasing as the number of data points are included in the model. Both
the extrapolative and interpolative errors have a larger AME compared to the approxima-
tive errors. It is also quite clear that extrapolative data points will generate a larger AME
than the data points positioned inside the he − vc span, especially at the lower count of
data points included in the modeling.

Figure 6. Model distribution with � and ⊥ showing the 1.5x interquartile range (IQR). Outliers, outside 1.5
IQR are not shown. Where (a) AME on extrapolative data points, (b) AME on interpolative data points and
(c) AME on approximative data points.
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Figure 7. Histogram for the 2500 models with lowest {(a),(c)&(e)} and highest {(b),(d)&( f )} AME created
using 7 data points. (a− b) Count of models with an ratio between largest and smallest he in model. (c− d)
Count of models with an ratio between largest and smallest vc in model and (e− f ) Count of models with an
ratio between largest and smallest he,R ∗ vc,r in model.

There seems to be a clear connection between the model error and the spread in
approximative error. In order to quantify the he − vc range of certain models, the ratio
between maximum and minimum value for both he, vc and the product of both is calcu-
lated, using Eq. (11). This calculation is done for 2500 models with lowest and highest
AME and are shown in Figure 7 normalized with the maximum ratio of the complete
data set of each attribute, presented in Table 3.

The models with a low AME, has a majority of the model counts in the upper end
of he,R and vc,R. For the models with a high AME there is still generally quite high dif-
ferences on the he but a low difference in vc. It is worth noting that the product of both
he,R and vc,R is generally low for the 2500 models with largest AME. This should be
compared to the models with low AME where the count is slightly shifted towards higher
he,r ∗ vc,r, as can be seen in Figure 7-e and f.

Table 3. Ratio between the maximum and minimum propertiy ion data set.

Property
Maximum

ratio

he 5.8
vc 5.2

he ∗ vc 30.2
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Figure 8. Box plots describing the AME distribution of models where: A - Includes all created models, B -
includes all models which satisfy vc,R ∗ he,R ≥ 0.80 ∗maxA {vc,R} ∗maxA {he,R} and C - includes all models
which satisfy vc,R ∗he,R ≤ 0.20∗maxA {vc,R}∗maxA {he,R}.

In Figure 8, the AME distribution for all models is compared to models with a sub-
set, Cm, containing all models which satisfy he,R ∗ vc,R ≥ 0.8∗maxA {he,R ∗ vc,R} and Dm
which satisfy he,R ∗ vc,R ≤ 0.2∗maxA {he,R ∗ vc,R}.

The spread for m = {7,10} in AME is lowered for the subset Cm compared to all
models as well as models included in Dm. Where models in subset Dm have a greater
spread than all models created.

Increasing the number of data points included in the model, m = 13, the difference
between all models and Cm is neglectable. There are still a discrepancy between Dm and
all created models. Further increasing the number of data points included in the model
do not show an improvement with Cm. This is related to the fact that when increasing the
number of data points included in the modelling, it will increase the minimum he,R ∗ vc,R
decreasing the influence from extrapolative errors, as shown in Table 4.

The number of models that fulfil the requirement of Cm increases as the number
of data points included in the model increases. A opposite trend can be seen observed
with the Dm subset, where an increasing cardinality decreases the probability of having
models that fulfils the requirement.
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Table 4. Median, quartile 1 and 3 and number of models with m = {7,10,13,16,19,22} for the data sets:
All models, Cm which includes all models which satisfy vc,R ∗he,R ≥ 0.80∗maxA {vc,R}∗maxA {he,R} and Dm
which includes all models which satisfy vc,R ∗he,R ≤ 0.20∗maxA {vc,R}∗maxA {he,R}.

m Attribute All Cm Dm m Attribute All Cm Dm

7

Median 13.3 10.8 20.3

10

Median 10.1 9.5 13.4
Q1 10.4 9.6 13.2 Q1 9.0 8.9 10.4
Q3 20.2 12.7 37.1 Q3 12.0 10.5 19.5

# Models 50 000 352 5 669 # Models 50 000 1 271 833

13

Median 9.2 9.0 11.0

16

Median 8.7 8.7 11.5
Q1 8.5 8.5 9.1 Q1 8.3 8.4 10.2
Q3 10.2 9.7 15.7 Q3 9.4 9.1 14.9

# Models 50 000 3 042 84 # Models 50 000 5 593 9

19

Median 8.5 8.5 -

22

Median 8.3 8.4 -
Q1 8.1 8.2 - Q1 8.0 8.1 -
Q3 8.9 8.9 - Q3 8.7 8.6 -

# Models 50 000 9 070 - # Models 50 000 13 167 -

5. Conclusion

The study aimed to increase the understanding of influencing factor to the experimental
set-up when creating Colding tool life models for milling. It can be concluded that:

• The sensitivity of the modeling increases as the number of data points included in
the modeling decreases.

• Data points outside the he−vc-range generally is predicted with a larger error than
data points inside the model’s he − vc-range.

• With a requirement of AME ≤ 9% the model improvement is neglectable after 34
data points are included in the modelling.

• By increasing the ratio between maximum and minimum he,R ∗ vc,R improves the
probability of having a model with a low AME.

5.1. Future work

In milling, the time the tool is engaged in the workpiece is related to the width of engage-
ment. Knowing if for instance cutter diameter and width of engagement influence the
tool life could affect how the experimental set-up looks like. One would like to maximize
the width of engagement to minimize time for testing.

All experiments that this investigation are based on single tooth machining in side-
milling using a down-milling procedure, how applicable is the model for predicting tool
lives using fully equipped milling tools, or using different milling method, such as up-
milling.

Finally, investigations on the applicability on different workpiece materials should
be performed to evaluate the applicability of empirical Colding models for milling appli-
cations.
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[11] Johansson D, Hägglund S, Bushlya V, Ståhl JE. Sensitivity of Colding tool life equation on the dimen-
sions of experimental dataset. Journal of Superhard Materials. 2017;39(4):271-81.

[12] Johansson D. Tool Life and Cutting Data Modelling in Metal Cutting: Testing, Modelling and Cost
Performance. Department of Mechanical Engineering, Lund University; 2019.

[13] Ashtakov VP, Outeiro J. Importance of Temperature in Metal Cutting and Its Proper Measure-
ment/Modeling In: Davim, J. (eds) Measurement in Machining and Tribology. Materials Forming, Ma-
chining and Tribology. Springer, Cham; 2019.
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