
Vehicle Driving Behavior Prediction Under
Different Weather Conditions Based on the

Adaptive Network

Cong QIAN1, Xiang GU2, Dengyang CHENG, Chaonan DU, Yidi ZHANG

School of Information Science and Technology, Nantong University,
Nantong 226019, China

Abstract. Driving behavior is typically influenced to some extent by weather

conditions, which is one of the important factors for the identification of driving

behavior of adjacent vehicles by drivers during road travel. In this study, LightGBM

and NN were employed as ensemble feature selection methods to consider the

attributes with the highest information content in the driving behavior dataset. A

stacked ensemble design of machine learning models was proposed under the

framework of adaptive networks. The framework of the proposed model in this

study consists of two layers, including the adaptive layer and the stacked layer. The

performance of the model was evaluated based on classification metrics and

compared with the most popular predictive models. The experimental results show

that the prediction of the ensemble learning model under the adaptive framework is

more stable and shows better comprehensive performance. It can achieve high

accuracy and reliability in identifying driver’s driving behavior.

Keywords. Ensemble learning, driving behavior, weather conditions, driving

behavior prediction models.

1. Introduction

Current driving assistance systems primarily rely on traffic information evaluated for

safety conditions and potential hazards based on inputs from laser radar or visual sensors.

There is a high demand for the detection and prediction of driver’s driving behavior in

intelligent traffic road safety. Assisted driving systems are developed to assist drivers in

better and safer driving. Assisted driving systems typically focus on predicting hazardous

scenarios and issuing warning messages to prevent traffic accidents from occurring. In

the driver behavior analysis system and collision warning, the prediction of driving

behavior under different weather conditions is a fundamental and essential functionality.

However, existing driving behavior prediction techniques often suffer from reduced
accuracy and inadequate fitting due to the complexity of road conditions and limited

visibility caused by varying weather conditions. Driver assistance systems may provide

false or unnecessary alerts. This problem increases driver frustration and reduces trust,

which increases the likelihood of traffic accidents [3]. During vehicle travel, drivers are
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typically influenced by the driving of adjacent vehicles, relying on the driving behavior

of neighboring vehicles as a basis for their own vehicle operation. They need to consider

the driving situations of the preceding and surrounding vehicles in order to perform

actions such as acceleration, deceleration, and lane changes. Drivers are required to

respond within a matter of seconds. As shown in Figure 1, the driving of Vehicle A relies

on the information provided by adjacent vehicles. When Vehicle A needs to overtake or

change lanes, it is necessary to predict the driving behavior of vehicles B, C, D, and

others for at least the next three seconds. Once the driving behavior of adjacent vehicles

is predicted, Vehicle A can use the predicted results to execute its own driving actions.

Figure 1. Road conditions for vehicle travel.

In the era of big data, allowing the concealment of target links from prediction by

introducing minor perturbations to the network structure. Existing algorithms, such as

traditional similarity metrics and newly developed network embedding methods, mostly

focus on learning the structural features of static networks, while overlooking the
dynamic characteristics of real-world systems. The traditional approach has encountered

a bottleneck as it overly emphasizes the network’s topology. Adaptive networks can

assist in the analysis, where the prediction of vehicle driving behavior in the network

involves forecasting driving behavior at different moments on the road. We assign

varying weights to predict future vehicle driving behavior at different time intervals.

Customized tasks can be executed by various nodes on the adaptive network through

programmed handling of information passing through each node. For instance, a node

can be programmed or customized to handle information points based on individual users

or handle multi-point transmission of information distinct from other information points.

The research in this study is specifically focused on a classification task. As an

integral component of artificial intelligence, machine learning can handle dynamic
prediction models involving human-vehicle-road interactions. However, a single

machine learning model has certain limitations in predicting driving behavior. Ensemble

learning possesses higher predictive accuracy, faster computational speed, improved

stability, and better generalization capabilities compared to individual machine learning

methods. In this study, it is necessary to determine the optimal and appropriate strategy

for stacking ensemble machine learning models. As a result, ensemble learning has

gained popularity in various domains, such as healthcare, finance, and others.

In order to improve the accuracy and real-time performance of the prediction results,

this paper uses the construction of an adaptive network framework combined with

ensemble learning as the model of driving behavior prediction LightGBM and NN was

employed as feature selection methods to construct the most informative features from

the extracted dataset [4]. The key contributions of this study are as follows:
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(1) The construction of an adaptive network framework enables the real-time and

efficient performance of the prediction results..

(2) Ensemble learning uses XGBoost as a booster and SVM, MLP, and CatBoost as

a basic learner.

(3) The attention mechanism is embedded, enabling the network to pay attention to

relevant features.

2. Models

2.1. Adaptive module

An adaptive module was embedded in the experiments of this paper, which can compute

the trajectories of the dynamic system. The proposed adaptive module ensures global

robustness, with the system parameters being adjusted online to their optimal stable

values, thereby accelerating the system’s response. The adaptive parameters, including
the center vector and feedback gain, are adaptively adjusted to the optimal values, so that

the model has stability. In the system depicted in Figure 2, the transmission of the uplink

link in the network is taken into consideration. In this study, appropriate modulation

modes are chosen based on the near-instantaneous channel conditions in each

transmission link. This results in the reduction of system transmission power and/or

increase in the overall system throughput, thereby conserving bandwidth in the network.

As a result, the received information frames are encoded by the system to construct

corresponding parity check frames, which are then transmitted to the model during the

cooperative phase.

Figure 2. Adaptive Network architecture.

2.2. Ensemble learning module

The first step involves separating the raw data channels, followed by training the raw

data set using the selected model. The experiment employs two model architectures to

examine the dependency of each iteration. Then, each channel is trained using the model

designed for the raw data set [5]. Figure 3 describes the operation flow of the model. If

the low-accuracy models are combined, the results will be improved. For instance, while

models A and B have an equal number of predictions, the predicted elements differ. This

indicates that model A can make accurate predictions while model B fails to do so.

Conversely, model B exhibits an advantage in prediction speed, but it does not accurately

classify acceleration, unlike model A. When the two models are combined, the collective
insight of the models contributes to a greater ability to accurately classify a larger number

of outcomes. Here, �1��� … 1���1��� … 1���� � �1��� … 1���
	 , �2��� … 2���2��� … 2���� � �2��� … 2���

	 , and �3��� … 3���3��� … 3���� � �3��� … 3���
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represent the highest predicted probabilities for 
, � refers to the number of data sets,

and � denotes the number of predicted values.

Figure 3. Ensemble Learning Network Architecture.

3. Method

3.1. Data

The dataset used in this study was provided by a local automotive company and includes

variables such as driving speed, driving acceleration, and weather conditions during the

testing dataset period, which spans from August 2019 to January 2020. The weather
conditions encompass sunny, rainy, snowy, and foggy conditions. The vehicles on the

road are represented by N units, and the speed and acceleration (measured periodically)

of each vehicle are collected by various systems, forming the set 
�, 
 � �. The whole

data can be formulated as

���� = (��, ��, �), 
 = 1,2,3, … , � (1)
where ��  refers to the data measurement matrix collected by the systems, ��

represents the operating period of the systems, and � denotes the weather conditions

during vehicle operation. The representation is as follows:

�� = ���, ��, ��, ��, … , ���� � ��×�� (2)
�� = ���, ��, ��, ��, … , ���� � ��×�� (3)

where 
�  represents the i-th overall operating period and �  =  [� �, � �, … , � �] ���×� denotes an m-dimensional vector of system measurements at time t.
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3.2. Integration aggregation module

To select the optimal duration from the training interval, a unique interval length "# was

pre-defined for each model.

"# = $%, 
& ' = 1*, 
& ' = 2+, 
& ' = 3 (4)
In Eq. (4), k represents the module, and %, *, + represent the list of specified training

intervals. Within each interval, the optimal model for each module is selected to form an

ensemble.

In Eq. (5), the top N prediction indices (-�) are  provided,  determining the  first  N

categories of the input data. The array �., which represents the prediction array achieved.

-� = �. / �05670�()[8�: ][9 81] (5)
Initially, each module separates data from the original dataset and creates a new

dataset. Three data sets were divided into three modules, and each module was saved.

By processing the data, four data sets were received: the original dataset and datasets for

modules a, b, and c. Then, this study involves training the original data set using the

proposed model architecture and saving the predicted results (-<) of the test set.  Next,

module a is used to train the model architecture for the original dataset. Then, the optimal

duration is obtained from certain training intervals identified from "# . For module

a, "# = % is utilized, where x represents the list of intervals. The optimal duration is

selected only from two intervals, and the testing predictions from the chosen duration are

collected and saved as (-�). Next, module b adopts the same  structure and utilizes the

optimal duration from the intervals provided by ' to obtain the predicted probabilities

for the testing dataset. The final ensemble predictions from module b, denoted as (-�),

are saved. The same goes for module c. The intervals from � and their corresponding

optimal durations are applied to the test set, and the obtained prediction results (-�) are

saved. Next, the top N predictions are selected from -� , -� , and -� , and they are added

to the respective categories of -< . Finally, -0?  = -�(-�) + -�(-�) + -�(-�) .

The data were inputted to the ensemble learning layer in the model. In the second

step, batch normalization and max pooling were performed with a pooling size of 2×2.

The batch normalization function, as given by Eq. (6), provides the normalized form of

the input batch as the output [5].

A(B) = CD� 8 �E��(�)FG��0(�) + H + I (6)
�E"K = &(L) = ma x(0, L) (7)

N(O)� = EP�Q EP�#RS� (8)
U0766E��07�*V766 = W *� log ��X

�S� (9)
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The constants � , B , H , and I  are learning bias coefficients and configurable

constants. The activation function used in all layers of this model is rectified linear unit

(ReLU) [5]. The softmax function takes a vector O of K-class predictions and normalizes

it into K probabilities, where K is greater than 1. In Eq. (9), v represents the number of

classes, y represents the input labels, and �� represents the input predictions.

The prediction cycle, denoted as L, is adjusted if the index is unstable and the

parameters need tuning. The optimal duration, denoted as T, is corrected. Based on the

true value at time t, denoted as -0?,  the  smoothed  value,  denoted  as -� , is obtained,

which allows the calculation of the optimal duration T. A new constant, denoted as C, is
introduced in this paper and is typically set between 0.1 and 0.5. The optimal duration T

is then determined.


 = U -0?-� + (1 8 U)" (10)
3.3. Models Evaluation

Additionally, the ROC curve and area under the curve (AUC) [1] were considered to

assess the performance and stability of the model for estimating binary classifiers, as
shown in Table 1. This paper also tests the accuracy, sensitivity, precision, and F1 score

of the proposed model. The relevant formulas are specified by [1].

Table 1. Actual versus predicted classes.

Actual Class

Positive Class Negative Class

Predicted Class Positive Class TP FN

Negative Class FP TN

TP = True Positive, FP = False Positive1

FN = False Negative and TN = True Negative2

�ZZK0�Z* = 
- + 
�
- + 
� + \� + \- (11)
-0EZ
6
7� = 
-
- + \- (12)

\16Z70E = 2 ^ (�EZ�VV ^ -0EZ
6
7�)�EZ�VV + -0EZ
6
7� (13)
The AUC serves as an unbiased estimator for the classification predictive model e

in determining whether the test positives are ranked higher than the negatives:

��U(E) = Q �< � �< Q �� � ��1[E(�<) < E(��)]|�<| ^ |��| (14)
where �<  represents a set of negative examples, ��  represents a set of positive

examples, and 1[E(�<) < E(��)] is an indicator function that returns 0 when E(�<) <E(��) occurs and 1 otherwise.
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In addition, Mean Absolute Error (MAE), Root Mean Square error (RMSE), and

coefficient of determination (R2) are also used in this paper, which is calculated using

the following equations:

A�` = 1� W|*� 8 *b�|�
�S� (15)

�Ac` = d 1A� W WD*R� 8 *bReF�f
RS�

h
iS� (16)

�� = 1 8 Q Q D*R� 8 *jek F�fRS�h�S�Q Q D*R� 8 npF�fRS�h�S� (17)
where *�  represents the actual values, *b�  represents the predicted values, and np

represents the average score of all outputs with equal weights.

4. Results and Analysis

The model was trained on the NGSIM dataset [2] in this study to validate the driver

behavior recognition model. ����(�) = {%�(�), %�(�), %�(�), … , %�(�), … , %�(�)} .  n

represents the number of training samples, and %�(�) represents the feature variables

corresponding to the time period t. The selected feature variables in this study are weather

conditions and vehicle population. "�LEV(�) = {*(�)} , where *(�)  represents the

classification labels of the model at each node, *(�) � {81,1}. The model was trained

using the Gaussian radial basis function (RBF) kernel, which has fewer kernel

parameters compared to other commonly used kernels such as the polynomial kernel.

The training time was 0.2473 s, and the number of iterations was 42.

4.1. Results

The driving behavior of neighboring vehicles is recognized and predicted every three

seconds in this study, allowing the system to provide new driving strategies to the driver

based on the driving behavior of adjacent vehicles. In this section, the support vector

machine (SVM) model was employed and compared with the proposed model on the

driving dataset. The predicted results of the SVM model are presented in Figures 4 to 7,

showcasing the predictions of vehicle speed and acceleration under different weather

conditions, including sunny, rainy, snowy, and foggy conditions. Figures 8 to 11 denote
the results of the EL, which will be compared with other models in the following section.

The results show that under snowy and foggy conditions, the vehicle speed fluctuates

significantly, with overall lower speeds. In comparison to sunny days, there are more

instances of deceleration in rainy conditions. On sunny days, the vehicles exhibit higher

acceleration, while under snowy and foggy conditions, the acceleration fluctuates and

the average acceleration is lower than that of sunny and rainy conditions.
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Figure 4. The predicted results of vehicle speed and acceleration under sunny conditions using SVM are shown.

Figure 5. The predicted results of vehicle speed and acceleration under foggy conditions using SVM are shown.

Figure 6. The predicted results of vehicle speed and acceleration under rainy conditions using SVM are shown.

Figure 7. The predicted results of vehicle speed and acceleration under snowy conditions using SVM are

shown.
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Figure 8. The predicted results of vehicle speed and acceleration under sunny conditions using EL are shown.

Figure 9. The predicted results of vehicle speed and acceleration under foggy conditions using EL are shown.

Figure 10. The predicted results of vehicle speed and acceleration under rainy conditions using EL are shown.

Figure 11. The predicted results of vehicle speed and acceleration under snowy conditions using EL are shown.

Table 2 presents a performance comparison between the Support Vector Machine

(SVM) and the proposed model in this paper. Ultimately, this paper identifies the best-
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fitting ensemble learning model for predicting driving behavior under different weather

conditions.

Table 2. Performance comparison between SVM and the proposed model.

Name RMSE MAE R2

SVM 0.3152 0.06101 0.89

Proposed Model 0.2123 0.05720 0.94

4.2. Analysis

In this section, a comparison was made between the ensemble learning model and other

powerful existing models using different evaluation metrics. Table 3 describes the

performance of different ML classifiers on the dataset with and without oversampling.

From Table 3, it can be concluded that all the learners exhibit high accuracy, i.e., 98%.

Therefore, the performance of the classifiers must be further examined on other metrics

such as precision, sensitivity, specificity, F1 score, and G-mean.

Table 3. Comparison of various prediction models and ensemble learners’ prediction metrics.

MLP XGBoost CatBoost SVM RF EL

Precision

Deg0 0.97

Deg1 0.52

Deg2 0.42

Deg0 0.98

Deg1 0.69

Deg2 0.82

Deg0 0.99

Deg1 0.53

Deg2 0.41

Deg0 0.97

Deg1 0.56

Deg2 0.41

Deg0 0.97

Deg1 0.51

Deg2 0.44

Deg0 0.99

Deg1 0.70

Deg2 0.57

Sensitivity

Deg0 0.97

Deg1 0.56

Deg2 0.41

Deg0 0.96

Deg1 0.61

Deg2 0.77

Deg0 0.97

Deg1 0.56

Deg2 0.43

Deg0 0.97

Deg1 0.56

Deg2 0.41

Deg0 0.97

Deg1 0.59

Deg2 0.38

Deg0 0.97

Deg1 0.71

Deg2 0.58

Specificity

Deg0 0.97

Deg1 0.57

Deg2 0.38

Deg0 0.97

Deg1 0.68

Deg2 0.78

Deg0 0.99

Deg1 0.55

Deg2 0.44

Deg0 0.97

Deg1 0.56

Deg2 0.41

Deg0 0.99

Deg1 0.56

Deg2 0.43

Deg0 0.99

Deg1 0.69

Deg2 0.58

F1-Score

Deg0 0.97

Deg1 0.56

Deg2 0.41

Deg0 0.95

Deg1 0.71

Deg2 0.75

Deg0 0.98

Deg1 0.59

Deg2 0.39

Deg0 0.97

Deg1 0.56

Deg2 0.41

Deg0 0.98

Deg1 0.52

Deg2 0.46

Deg0 0.98

Deg1 0.74

Deg2 0.79

AUC

Deg0 0.97

Deg1 0.58

Deg2 0.41

Deg0 0.97

Deg1 0.56

Deg2 0.41

Deg0 0.98

Deg1 0.57

Deg2 0.46

Deg0 0.97

Deg1 0.56

Deg2 0.41

Deg0 0.97

Deg1 0.61

Deg2 0.44

Deg0 0.99

Deg1 0.63

Deg2 0.49

Accuracy 0.97 0.98 0.98 0.98 0.98 0.98

G-mean 0.85 0.87 0.86 0.86 0.85 0.88

The results in Table 3 illustrate a trade-off between accuracy and sensitivity. The

model proposed in this paper cannot simultaneously achieve high sensitivity and high

accuracy. When considering the weather conditions, the performance of the classifier

improved by 11% in accuracy, 18% in sensitivity, 6.7% in specificity, 3% in F1 score,

and 12.5% in G-mean.

Additionally, in this paper, a booster was added to the first layer of the stacked

ensemble model. Figure 12 shows a comparison of the model with and without boosters.

This confirms that the use of the booster resulted in improved performance.
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Figure 12. The ROC curves of the EL model are shown in Figure (a) with the booster and (b) without the

booster. The AUC value of (b) is 0.941 and the AUC value of (a) is 0.972.

5. Conclusion

An effective artificial intelligence solution for predicting driver behavior considering

road weather conditions was developed in this study, based on the theoretical foundation

of ensemble learning using adaptive networks. This paper uses heterogeneous integration

strategies to reduce complexity, address the limitations of individual machine-learning

models, and leverage the most efficient models.

This paper realizes driving behavior prediction based on different weather

conditions. This research has significant theoretical implications for enhancing road
traffic safety. The adaptive framework fulfills the requirements of real-time and

effectiveness for the model. As road conditions vary with different weather conditions,

corresponding driving behaviors also change. When performing maneuvers such as lane

changing or overtaking, vehicles can rely on the predicted model to predict the driving

behaviors of adjacent vehicles, thus meeting the needs of their vehicles.

Future studies need to consider more factors, such as the level of road service and

traffic flow.
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