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Abstract. This article presents a novel method based on an enhanced version of the

YOLOv5 model for detecting surface defects on capsules. The paper addresses the

challenge of detecting defects on transparent capsules by introducing a deep

learning-based approach called M-YOLO. Firstly, the backbone layer is replaced

with MobileNetV3, enhancing the model's suitability for scenarios with limited

storage space and power consumption. Secondly, a Cross-channel-H-SPP (CH-SPP)

module is devised to augment the contextual information within the sensory field.

To enhance defect detection accuracy, the SE attention mechanism is incorporated.

Additionally, an improved label assignment strategy is employed to enhance the

recall rate. Experimental results on the dataset demonstrate significant

improvements in both accuracy and speed compared to the YOLOv5 model. The

algorithm proposed in this article satisfies the requirement of processing every

second (specific data).
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1. Introduction

Capsules are extensively manufactured in the pharmaceutical industry. However, during

the production process, the occurrence of defects in capsule products, such as dents,

stains, and poor printing, poses significant challenges. Traditional defect detection

methods in pharmaceutical plants rely on manual inspection or simple weighing, with

manual inspection being susceptible to errors influenced by worker mood and physical

fatigue [1].

Existing machine vision defect detection approaches commonly employ image

processing techniques, including image enhancement and segmentation, to extract defect
features from images. However, these methods often heavily rely on manually designed

features and parameters [2]. With the advancement of deep learning techniques, neural

networks have become a prominent tool for capsule surface defect detection [3]. Junlin

Zhou et al. [4] proposed an improved Convolutional Neural Network (CNN) method

called RACNN, which achieved high accuracy on a capsule dataset but exhibited low

accuracy in recognizing deformed capsules. Zhiyuan Wang et al. [5] proposed an SVM-

based complex component detection method that outperformed traditional CNN models

in terms of accuracy. However, the model contained numerous parameters and incurred

high computational complexity. To address these challenges, lightweight CNN models

like MobileNetV2 [1] and MobileNetV3 [6] have emerged, featuring fewer parameters
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and lower computational requirements while maintaining high accuracy.

In recent years, target detection techniques [7] have gained popularity in the field of

capsule surface defect detection, among which the YOLO series algorithm is widely

adopted. However, the YOLO series algorithm still faces issues in capsule surface defect

detection, including excessive computational resource demands, large model sizes, and

false or missed detections [8]. To overcome these limitations, we propose an improved

model based on YOLOv5. The contributions of this paper are as follows:

(1) We employ MobileNetV3, an efficient convolutional neural network model, to

replace the backbone layer of YOLOv5, thereby enhancing detection accuracy. This

modification renders the model more suitable for scenarios with limited storage space

and power consumption.

(2) We introduce the Cross-channel-H-SPP module, which enhances spatial
resolution and enriches contextual information within the sensory field.

(3) We incorporate an attention mechanism to enable the model to finely detect

crucial parts.

In summary, this study addresses the limitations of existing methods by proposing

improvements to the YOLOv5 model. These enhancements encompass the use of

MobileNetV3, the Cross-channel-H-SPP module, an improved label assignment strategy,

the SIOU loss function, and an attention mechanism, collectively leading to improved

accuracy and performance in capsule surface defect detection.

2. Methodologies

This section mainly introduces the structure of Yolo, MobileNetv3, Cross-channel-H-

SPP Hand the construction of M-YOLO.

2.1 YOLOv5

The YOLO (You Only Look Once) series models are widely employed for single-stage

target detection. Its network architecture comprises four components: Input, Backbone,

Neck, and Head. Figure 3 illustrates the detailed structure of the YOLOv5 module.

The Input module preprocesses the input images by resizing them to a size of

608×608. As shown in Figure 1, this preprocessing step scales the input image to match

the network's input size and performs normalization operations. In addition, YOLOv5

introduces adaptive anchor box calculation and adaptive image scaling methods [9]. The

adaptive anchor box calculation [10] sets a fixed anchor box size for the dataset. This

enhancement method enriches the dataset, significantly improves the training speed of

the network and reduces the memory requirements of the model [11]. Adaptive image

scaling is used in the model inference process to avoid information redundancy and speed
up the inference process.

Figure 1. The Mosaic data enhancement process
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The Backbone network consists of the Focus module and the CSP module,

responsible for feature extraction from the input image. As described in Figure 2, the

Focus module slices the input image data, reducing the height and width by half and

increasing the number of channels to four times the original number. This transformation

converts spatial information into channel information and reduces the number of

floating-point operations. The CSP module divides the feature map of the base layer into

two parts and merges them through a cross-stage hierarchy, ensuring accuracy while

reducing computational requirements.

Figure 2. Focus slice operation

The Neck network fuses features from multiple scales to enhance the network's
ability to detect objects of varying sizes [12]. While the Neck structure of YOLOv4 uses

standard convolution operations for feature fusion [13], the Neck network of YOLOv5

incorporates the CSP2 structure from the CSPnet design, enhancing the network's feature

fusion capabilities.

The Head network is responsible for predicting object classes and their associated

bounding boxes. In YOLOv5, the Head network comprises multiple convolutional layers

and prediction heads, which output the final detection results.

Figure 3. Structure of YOLOv5 network

2.2 MobileNetV3

MobileNetV3 is a lightweight network proposed by Google, primarily designed for
mobile devices [6]. It introduces the lightweight activation function h-swish(x) [14]. The

network structure is obtained through a combination of platform-aware NAS and

NetAdapt [15] techniques. MobileNetV3 achieves excellent speed and accuracy while

featuring fewer parameters, lower computation, and shorter inference time. These

characteristics makeit suitable for scenarios with limited storage space and power
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consumption, such as edge computing devices like mobile embedded devices. The core

of the MobileNet model is the Depthwise separable convolution [16], which splits a

normal convolution into a depthwise convolution and a pointwise convolution. The

detailed structure is depicted in Figure 4. This approach allows for comparable results to

standard convolution but with fewer parameters and operations.

Figure 4. The deep separable convolution

2.3 Cross-channel-H-SPP

To capture contextual information and improve detection performance by understanding

pixel relationships, it is crucial to incorporate contextual information. Inspired by the

average-pooling method, Xu et al. [1] introduced a hybrid spatial pyramidal pooling

module (H-SPP) [17]. Building upon H-SPP, we propose Cross-Channel-H-SPP (CH-

SPP) and integrate it into the backbone layer. We perform average-pooling on the

channel dimension to generate a new feature map, which we concatenate with the result

of max-pooling.

Figure 5. The detailed structure of CH-SPP module.

Figure 5 illustrates the detailed structure of the CH-SPP module, where "C" inside

the circle denotes the concatenation operation. The CH-SPP module concatenates feature

maps generated by two pooling layers. In the AveragePooling layer, we incorporate
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neighboring images from the sample set to the pooling operation using kernels of

different sizes, considering the correlation between preceding and subsequent images.

Firstly, the feature image "Fin" generated by the backbone layer passes through the

CBL layer to generate an adapted channel image. Then, it is fed into both the MaxPooling

layer and the AveragePooling layer with different kernel sizes (e.g., 3x3, 5x5, 8x8).

Finally, the results are concatenated to form a new feature map .

2.4 M-YOLO

First, we replaced the backbone layer of YOLOv5 with MobileNetV3 to achieve a lighter

network structure and improve both model accuracy and speed. MobileNetV3 is an

efficient convolutional neural network that reduces computation and model size through

lightweight network structures and depthwise separable convolutions. Then, we used the

YOLOv5 detection head to detect surface defects on capsules.
The improved network structure can be divided into two main parts: the feature

extraction network and the detection head. The feature extraction network adopts

MobileNetV3, which possesses a lightweight network structure and employs depthwise

separable convolutions. It comprises Inverted Residual Blocks (IRBs) and Linear

Bottleneck Blocks (LBBs). IRBs extract low-level features from images, while LBBs

extract high-level features. To adapt to the task of capsule surface defect detection, we

added a Cross-channel-H-SPP module at the end of MobileNet Block to extract richer

spatial and channel information. The detection head utilizes YOLOv5, which includes

convolutional layers, pooling layers, and fully connected layers. The input to the

detection head is the output of the feature extraction network, and the output comprises

the detection results, including target bounding boxes and class predictions. We further
improve detection accuracy by employing the SIOU loss function and attention

mechanism. The improved algorithm's network architecture is depicted in Figure 6.

3. Experiment and Analysis

3.1 Experimental Data

We employed industrial cameras with pixel resolutions of 2448×1704, 1700×1100,

944×1024, and 944×944 to capture capsule images illuminated by large-diameter light

sources. Due to the stringent yield rate requirements in actual pharmaceutical production,

obtaining a sufficient amount of real defect samples was challenging. To mitigate

overfitting and enhance the model's generalization ability, we performed data

augmentation techniques on the dataset:

(1) Gamma transformation was applied to adjust the brightness of the images and

improve the model's robustness under different light intensities.
(2) Contrast adjustment was performed using factor values of 0.8 and 1.2 to enhance

the model's color registration robustness.

(3) Gaussian noise with a mean of 0 and variance of 0.02 was added to introduce

image blurring and improve the model's sharpness robustness.

(4) We applied first-order gradient processing to highlight defects using the Sobel

operator [18]. By processing the RGB three-channel images of each sample with the

Sobel operator, we synthesized underlying feature maps to create a multi-channel input

image.
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A total of 1802 images were collected, with the training set comprising two-thirds

of the data and the remaining one-third used for testing. The sample dataset included 95

capsule chips, 166 capsule depressions, and 421 capsule printing stains.

Following data augmentation, the number of images increased to 10,994.

Figure 6. The M-YOLO network structure diagram

3.2 Experimental Environment and Parameters

In this paper, the experimental configuration and parameters are shown in Table 1.

Table 1. Experimental parameters table

Parameter Value

batch-size 4

Image-size 608

lr 0.001

mosaic 0.8

mixup 0.243

momentum 0.843

GPU NVIDIA GTX 1080 TI

3.3 Experimental Results

In this study, the model's detection accuracy was evaluated using mAP (mean Average

Precision) and Recall, while the detection speed was measured using FPS (Frames Per

Second). The Recall calculation formula is as follows:

������ =
��

�� + 	


mAP@0.5 curve for the experiment is depicted in Figure 7. Table 2 presents a

comparison of the experimental results between our proposed method and YOLOv5s.

mAP@0.5 represents the mAP value with a IoU threshold of 0.5 or higher. A higher

mAP value indicates greater model accuracy.

J. Zhao et al. / Capsule Defect Detection Method Based on an Improved Model664



Figure 7. mAP@0.5-recall curves

Table 2. Experimental results of the comparison between M-YOLO and YOLOv5s

Method mAP@0.5/% FPS

YOLOv5s 76.75 19.25

Ours 83.79 18.60

Based on the above figure and table, it can be observed that the M-YOLO detection

framework proposed in this paper achieves a detection speed of 18.60 FPS on the same

dataset, slightly lower than YOLOv5s. However, in terms of detection accuracy, the M-

YOLO algorithm outperforms YOLOv5s with a 7% higher mAP@0.5. In real industrial

pharmaceutical scenarios, the proposed algorithm significantly enhances detection

accuracy with an average detection time of 200ms per photo, making it highly suitable

for capsule production scenarios.

Figure 8 illustrates the effect of partial defect detection. It can be seen that the
proposed defect detection algorithm accurately detects various defects on the surface of

capsules.

Figure 8. Examples of different types of defect detection results.

4. Conclusion

In conclusion, our proposed YOLOv5-MobileNetV3 approach has exhibited exceptional

performance in the detection of capsule surface defects. It achieves an impressive mAP

of 83.79% at an IoU threshold of 0.5, enabling accurate identification and localization of

defects. The integration of MobileNetV3 and the Cross-channel-H-SPP module enhances

the capture of spatial and channel information, facilitating effective detection of various

defect types. Additionally, the incorporation of the SIOU loss function and attention
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mechanism further enhances performance. These findings underscore the efficacy of our

approach for quality control and manufacturing applications, highlighting its suitability

for real-world defect detection tasks.
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