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Abstract. BEV-based 3D object detectors have gained recognition for their rapid

processing capabilities, making them well-suited for on-device applications. In this

research paper, we introduce SS-Pillar, a novel and efficient method for 3D object

detection that offers superior quality results. Compared with the previous methods,

we introduce the SS module which is the auxiliary network based on fine-grained

pillars to learn the shape of objects. We also design a shape complete module to

address the issue of far-distance missing region affected by the occlusion and sparse

point clouds. Our model achieves real-time performance (28.29FPS) on NVIDIA

Tesla V100 GPU significantly and outperforms competitive baselines on KITTI and

nuScenes datasets.
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1. Introduction

Recent advancements in LIDAR-based 3D object detection have shown remarkable

progress, primarily attributed to the successful application of deep neural networks
(DNN) for point cloud representation learning. Nevertheless, there is an increasing

demand to create a highly efficient 3D detector capable of real-time processing for

autonomous vehicles.

Currently, one of the popular methods for on-device deployment is PointPillars [12].

In this method, the point cloud is first converted into pillars, and then they utilize

PointNet [4] to learn the features of points within each pillar. Pointpillars only adapts the

2D convolutions, making it easy to deploy and having a significant advantages in speed.

However, it lacks powerful pillar feature encoding, decimates much local fine-grained

information, and impairs performance especially for small objects.

To address these limitations, we propose an efficient 3D detector from LIDAR point

cloud called SS-Pillar. SS-Pillar is a pillar-based model consisting of pillar encoding,
feature extraction, and an auxiliary network SS module. The SS module is designed for

learning the fine-grained shapes of objects, including those in occlusion with a shape

complete module. Additionally, we propose an efficient and compact backbone and

center-based detector [18].

1 Corresponding author: Mingzheng ZHANG, ZTE Corporation, ZTE Plaza, Keji Road South, Hi-Tech

Industrial Park, e-mail: zhang.mingzheng@zte.com.cn

Electronic Engineering and Informatics
G. Izat Rashed (Ed.)
© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/ATDE240088

289



Overall, our proposed SS-Pillar model overcomes the limitations of existing

methods by leveraging fine-grained object shape information while maintaining real-

time speed and high accuracy, making it well-suited for autonomous vehicle applications.

2. Related Work

2.1. LIDAR-based 3D Object Detection

As we kown, point clouds are characterized by their irregular and sparse nature,

necessitating encoding techniques (e.g., raw points, voxelization) prior to their input into

a network. For instance, certain approaches utilize a mesh grid to convert point clouds

into voxels, where features such as location, density, and intensity are concatenated in

different voxels as distinct channels. Voxelized point clouds are often projected onto

various views, such as the bird's-eye view (BEV), and processed using 2D convolutional

networks [3], [10], [17]. Alternatively, they can be preserved in 3D coordinates and

processed using sparse 3D convolutional networks [15]. Other methodologies employ

raw point clouds as input for 3D detection or segmentation, utilizing multi-layer
perceptrons (MLPs) and max pooling to address the disorderliness of point clouds,

yielding satisfactory performance [4]. Moreover, certain approaches combine

voxelization and raw points, leading to techniques like VFE (Voxel Feature Encoding),

which significantly enhances the performance of LIDAR-based detectors [20].

However, the use of encoders can slow down the detection pipeline. In response,

Pointpillar [12] proposes the encoding of 3D points as pillars instead of voxels.

Consequently, the entire set of 3D points is transformed into a 2D pseudo image with

channels equivalent to those of VFE [22].

2.2. Anchor-Based/Anchor-Free Detector

Various types of detectors exist, including anchor-based and anchor-free detectors [19].

The concept of anchors was introduced in Faster R-CNN [13] firstly, where 2D anchors

were expanded into the 3D space by incorporating a z-axis value. Predefined boxes with

({x, y, z, l, w, h, �}) were employed for describing bounding boxes. However, the use of

dense anchors results in a large number of potential objects, which in turn necessitates

non-maximum suppression (NMS) to address the issue effectively. In contrast, anchor-

free detectors frame the detection problem as a keypoint detection task. For instance,

Chen proposed hotspots [5], while Yin, Zhou, et al. introduced CenterNet [8]. These

networks derive features based on object parts, rendering the need for anchors

unnecessary. There’s no doubt single-stage detectors possess a simpler structure that is

more suitable for real-time deployment. Cxonsequently, we present a single-stage,

anchor-free 3D detector for our methodology.

3. Methods

This section provides a comprehensive overview of SS-Pillar, focusing on three key
aspects: the SS Module, Shape Complete Module, and backbone and anchor-free detector.

The architecture of SS-Pillar is visualized in Figure 1.
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Figure 1. A framework of our pillar-based 3D detection (SS-Pillar) system and detailed structure of backbone

and SS Module. The whole pipeline consists of pillarization, backbone, neck, detector and SS Module, where

Shape complete Module completes the occupancy of object shapes in the regions affected by occlusion.

3.1. Preliminaries

To ensure fast pipeline processing on GPU, we adopt a pillar-based model, specifically

Pointpillar as discussed in section 2.1, as our base model. Since the features of each pillar

are derived from the points within it, and the density of points varies for pillars at

different distances from the Lidar sensor, it is logical to partition the scene into a near

sub-scene and a far sub-scene based on depth zones along the forward-axis. While both

sub-scenes share the same voxel size, the number of points assigned to different pillars

differs significantly. Due to the sparser nature of 3D point clouds in the far sub-scene,

the corresponding pseudo-image comprises numerous empty features. Consequently, the

model must learn distinct representations for objects of the same class due to the

substantial differences in the point cloud.
To determine the effect of different sizes of scenes and point cloud sparsity on the

performance and speed of pillar-based methods, we construct the experiments referred

to [9]. For instance, we trained models on the KITTI dataset with pillar sizes v� = v� =

d, with d � {16,20,24,28}. To account for different pillar sizes, we trained two models

for each size: one on objects present in the full scene and another on objects within the
near-related subset. The pillar sizes trained in the near-related subset are specifically

labeled as {16-near, 20-near, 24-near, 28-near}. We used Car, Pedestrian and Cyclist

class  combinations  as  in  the  original  Pointpillar.  As  can  be  seen  in  the  Figure  2,  the

experiments show that

� For hard level objects, the evaluation metric mAP increase with reducing the

pillar size, or to put it in another way, it makes sense to detect distant small

objects using the fine-grained pillar size.

� Compared with the full-scene models, models trained on near objects achieve

similar or better performance. That is, the model learn objects' appearance

representation nearly from near objects due to the sparsity of point clouds at

large distances. Hence, how to exploit the far sub-scene information becomes a
challenge.
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Figure 2. illustrates the performance evaluation of Pointpillar models trained on both the full-scene and a near-

related subset, considering different classes and levels. The suffix "-near" indicates that the models were trained

specifically on the near-related subset, and their evaluation is also conducted on this subset.

3.2. SS Module

This subsection mainly describe the detailed design of the SS module for being aware of

the shapes of objects using the fine-grained pillar size.

3.2.1.Motivation

The improved detection of small and large-distance objects is evident in Figure 2 when

using a fine-grained pillar size. Our approach avoids the need for additional inference

time and complex deployment by incorporating an auxiliary network inspired by SA-

SSD [7]. This auxiliary network leverages semantic segmentation to learn the fine-

grained pillar structures from intermediate features obtained during various stages of

down-sampling. To achieve this objective, it is necessary to convert the CNN features

into representations that capture the fine-grained details of the pillars.

3.2.2.Feature representation

In Figure 3, it can be observed that the feature maps from the initial two layers primarily

capture the shape and structure of objects, while the last two layers focus on object

textures. To leverage this observation, we transform the feature maps from the first two

layers of the backbone into a real-world fine-grained pillar representation based on the

current stage's quantization step. For feature propagation, we employ bilinear

interpolation. Furthermore, we introduce a pillar-based semantic segmentation task to

guide the backbone in learning more distinguishing patterns within object classes.
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Specifically, we utilize a sigmoid function in the segmentation branch to predict the

probability of each center point of the pillars denoted as �.  To optimize  this  task,  we
apply a focal loss [11],
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where �� is multiplied by the one hot label and 	 and 
 are the hyper-parameters

and we use the empirical values 0.25 and 2.

Figure 3. Feature maps from different CNN down-sampling layers.

3.3. Shape complete module: learning shapes in occlusion

3.3.1.Motivation

As  we  analyzed  before,  the  SS  Module  is  designed  for  being  aware  of  the  shapes  of
objects. However, due to signal miss and occlusion the model can’t learn knowledge

from the shape of far-distance objects. To solve such a problem, we design a shape-

complete module to help the backbone learn the complement of the target objects.

3.3.2.Evaluation the completed object shapes

Given the target object A and the source object B covering most parts of A, we give a

cost E to evaluate the similarity of A and B,
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where �� means the 2D bounding box of A and N(B/A) means the pillar numbers

belonging to B except A.

To approximate the complete shape of A , we select the top source objects B with

the best score evaluated by the cost E .

3.3.3.Create target labels

We use the labeled target to get the fine-grained pillars belonging to the objects. For
instance, we mirror the pillars against the orientational center axis of the bounding box

for cars dyed blue and cyclists dyed green illustrated in Figure 4.
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Figure 4. The process to approximate the complete object shapes for car, cyclists and pedestrian on KITTI

under the bird eye's view.

3.4. Design for backbone and center-based head

3.4.1.Backbone

We have observed that the lack of robust feature encoding in previous pillar-based

methods is the primary factor contributing to their suboptimal performance. Inspired by

CBAM [16], we add the convolutional attention module before encoder the pillar feature

map F, resulting in 
� =  �� � �� � 
, where
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In addition, we devised an encoder to facilitate hierarchical deep pillar feature

extraction, along with a neck module for effective multi-scale feature fusion. Inspired by

RepVGG [6] and Fastpillar [21], we exploit RepVGG block (i.e. a stack of 3 × 3

convolutional layers) to simplify the model structure and reduce the inference latency

with excellent feature representation ability.

3.4.2.Center Head

Here we commonly use the center-based detect head CenterNet with little modification.

Unlike the normal CenterNet, for each pixel (x, y) in the pseudo image, we define

the value of it in the heatmap as follows,
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where d represents the distance between the center of the bounding box and the

coincident pixel in the pseudo image. A prediction M�,� = 1 denotes the presence of an

object center, while M�,� = 0  indicates that the pillar represents the background.

Following the approach presented in [8], we employ the modified focal loss for training

the heatmap loss ���.

In accordance with the experiments conducted in [14], the optimization direction

remains consistent even in the presence of significant orientation deviations. To address

this, we introduce an Orientation-Decoupled IoU-related regression loss, referred to as

OD-IoU, which decouples the orientation and extends the IoU regression loss.

3.4.3.Overall Loss Function

The total loss function is given as follows,

othershmoriSStotal LLLLL ����

where L�� and L�� are focal loss while ����  and L������ are �! loss.

4. Experiments

This section begins with an introduction to the KITTI dataset utilized in our study, along

with a detailed description of the experiment settings. Subsequently, we present the

performance analysis conducted on the KITTI [1] validation dataset, followed by a

presentation of preliminary results obtained from the nuScenes [2] validation dataset.

4.1. Dataset and experiments setting

The KITTI object detection dataset comprises a total of 7,481 training samples and 7,518

test samples. In our experiments, we divided the official dataset into 3,712 samples for

training purposes, while the remaining 3,769 samples were allocated for validation. To

ensure consistency with Pointpillars, we set the detection range, pillar size, and output

channels of the pillar encoder similarly for KITTI . In the backbone architecture, all

convolutional layers employ a kernel size of 3. The resulting shapes of the backbone and

neck outputs are depicted in Figure 1. Each head consists of two convolutional layers:

the first layer has a kernel size of 3 and 32 channels, while the second layer has a kernel

size of 1, with different channel numbers assigned to different heads. During inference,

we utilize circle Non-Maximum Suppression (NMS) to suppress overlapping detections.

The model is trained for a total of 100 epochs.

For consistency, we have set the maximum number of objects, maximum points per

voxel, maximum voxel number per frame, and voxel size to 500, 10, 160,000, and [0.2m,

0.2m, 8m], respectively.

4.2. Evaluation on the KITTI and nuScenes validation dataset

As the experiment setting before, compared with the original Pointpillar our model SS-

Pillar can achieve better performance especially on Cyclist without a complex NMS,

which is illustrated in Table 1.
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Table 1. The KITTI validation dataset car, pedestrian, cyclist detection performance under the BBOX.

Method
Car BBOX IoU=0.7 Ped. BBOX IoU=0.5 Cyc. BBOX IoU=0.5

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Pointpillars 90.5317 88.5366 87.6965 64.8495 62.2438 58.7925 66.1198 56.0745 51.9256

SS-

Pillar(with
SSD head)

90.4778 89.0245 88.0708 72.6371 69.9601 67.3834 83.1102 71.2423 69.5357

SS-

Pillar(no

SS
module)

89.8610 86.0672 85.3331 61.6167 54.5474 53.8150 76.0883 63.7429 59.0650

SS-

Pillar(no
shape

complete)

89.8323 87.9542 85.5084 62.7041 58.6146 54.3333 80.5186 66.5156 62.3297

SS-Pillar 89.9190 88.2230 86.6229 62.9086 59.5958 54.4637 81.4422 65.5512 62.9305

As shown in Table 2, we use point clouds following the convention on the

benchmark to measure the speed of SS-Pillar on KITTI test set. Compared with

Pointpillar, SS-Pillar achieves 28.285 FPS on a single Tesla V100 GPU, including

7.204ms for pillar encoding, 18.38ms for network and 9.77ms for post-processing.

Table 2. The time-consuming and overall speed of each part of our SS-Pillar models on a single Tesla V100

GPU.

Method FPS Pillar(ms) Network(ms) Post-process(ms) Overall

Pointpillar 14.643 7.204 7.785 53.5 68.488

SS-Pillar(SSD head) 10.786 7.204 47.74 37.77 92.714

SS-Pillar 28.285 7.204 18.38 9.77 35.354

4.3. Ablation studies

4.3.1.Number of the upsampling backbone layers

Effect of numbers of upsampling layers is shown in Table 3. Each row corresponds to an

auxiliary network with different number of upsamping layers.

Table 3. Effect of numbers of upsampling layers.

Layers Car AP Pred. AP Cyc. AP

0 89.86 61.62 76.1

2(SS-Pillar) 89.92 62.91 81.44

4 89.89 62.29 78.19

4.3.2.Importance of SS module

As shown in Figure 5, the SS module is able to guide the feature maps from the backbone

leaning the shape of objects. Moreover, without extra cost at the inference stage, the SS

module has a better performance than original version increasing almost 10 points of
mAP.
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Figure 5. Visualization of the first layer feature map guiding by SS module on KITTI test set. The SS module

is able to separate and learn the shape of objects.

5. Conclusion

In this study, we studied the pillar-based 3D object detectors and introduced a novel

detector called SS-Pillar. This enables the features learned in the backbone network to

have an improved understanding of object shapes in the Bird's Eye View (BEV)

perspective. Additionally, we propose a shape completion module to address the issue of

missing regions in the far-distance. Furthermore, we have developed a pillar encoder

backbone and a widely used center-based detection head [18]. Experimental results on

the KITTI dataset demonstrate the efficiency and superior performance of our method,

which also exhibits faster processing speed for on-drive applications compared to

Pointpillar.
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