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Abstract. Anti-money laundering is crucial for maintaining financial security and

social stability. In this paper, we propose an anti-money laundering method based

on spatio-temporal graph convolution AT-GCN. AT-GCN consists of GCN

adaptive parameter update method, oversampling method across time steps, and

similarity-based weighted aggregation method. The effectiveness of AT-GCN is

demonstrated using a real dataset of Bitcoin money laundering transactions.
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1. Introduction

The United Nations Office on Drugs and Crime estimates that between $500 billion and

$1 trillion is laundered globally every year [1], with a substantial portion of these illicit

funds originating from drug trafficking, robbery, and terrorist activities. In the present

day, the proliferation of money laundering activities poses a grave risk not only to
financial security but also to social stability.

The rule-based approach is frequently harnessed in Anti-Money Laundering (AML)

strategies, attributed to its simplicity and interpretability. However, these approaches

often rely on extensive prior knowledge from domain experts, and integrating new rules

with existing ones can lead to performance issues and high iteration costs for updates [2].

Currently, more and more AML systems are using machine learning techniques [3].

Traditional machine learning cannot exploit the rich interactions in money

laundering transactions, so GNNs [4-6] have been used in recent years for anti-money

laundering and transaction fraud. But some problems still exist. A primary issue is an

inherent imbalance in labeling, as money laundering activities only comprise a minuscule

fraction of ordinary transaction activities. This label imbalance can critically impair the
performance of the model. Additionally, the graph structure in real financial transaction

networks is changing all the time. Although GNN has achieved great success in static

graphs  [7,  8],  they  have  not  made  good  progress  in  the  study  of  dynamic  graphs.  To

address these problems, this paper proposes an anti-money laundering model based on

spatio-temporal graph convolutional networks (AT-GCN).
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In this paper, a new model AT-GCN is proposed to detect suspicious money

laundering transactions, and an oversampling method across time steps is proposed to

solve the label imbalance problem. An aggregation method based on similarity metric is
proposed to mitigate the negative impact of noisy data.

2. Methodology

2.1. Model overview

The model consists of three main parts: the LSTM dynamic update module, the time

window oversampling, and the similarity-based aggregation module. Figure 1 shows the

framework diagram of the model.

Figure 1. AT-GCN model architecture with time step set to 3 as an example

2.2. GCN adaptive parameter update method

In the process of money laundering detection, since graphs are spatially structured, the

use of GCNs for learning the spatial structure of dynamic graphs is considered.

Considering the temporal relationship of dynamic graphs, the GCN weights at each
moment are also temporally correlated when using GCN for learning dynamic graphs [9].

In the dynamic graph, the method implements an adaptive parameter update mechanism

for the GCN using the LSTM [10]. This update mechanism makes the weight parameters

of the convolution change when the graph structure changes. The model takes as input

to the LSTM the weight parameter ����
�  at moment � � 1, 	-th layer of the graph neural

network, and updates the output ��
�.

In the method, the weight matrix ��

(�)
 of the 	-th layer of the GCN at time � is used

as the input of the LSTM. Finally, the obtained weight parameters are passed into the

GCN so as to realize the adaptive parameter update of the GCN. Defined as Eq. (1).

��
� = 
��
(��

�) (1)
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2.3. Oversampling methods across time steps

Since the dynamic graph snapshots in each time step suffer from label imbalance, it is

important to balance the labels. However, dynamic graphs are often time-dependent, so
adding the fraudulent nodes in the previous time step to the dynamic graph snapshots in

the later time step will have a positive effect. The method establishes connections

between nodes in different time steps by calculating the distance between the fraudulent

nodes in the previous time window and all nodes in the later time step.

Oversampling first requires that the fraudulent nodes in each time step within the

time window be selected, and the sampling equations are given in Eq. (2) and Eq. (3):

�����	� = � ����	��
����
� (2)

� = �. ���(�����	�) (3)

where ����	�� = {�|�� = �����, �  !�}, �" denotes the time window size. By

changing different time windows, the time steps to be sampled and the number of

samples can be controlled.

As the fraudulent nodes from the previous time window are added to the graph of

the later time step, it is necessary to consider how to connect these fraudulent nodes to

the nodes of the later time step. The widely used distance function is the Euclidean

distance function, defined as Eq. (4).

# = ||$� � $%|| (4)

where $�  &'  denotes the features of node �. The Euclidean distance function is

used directly here in order to link nodes of different time steps by this metric.

After calculating the distances, the sampled nodes need to be added to the current

time step,  and links  need to  be  established with  the  nodes  in  the  current  time step,  as
shown in Eq. (5) and Eq. (6). By calculating the difference between the Euclidean

distance of each node in the current time step and the Euclidean distance of the sampled

nodes, the connection is established with the sampled nodes that are close to each other.

It allows nodes with different time steps to also participate in the training and have a

positive impact on the training of the current time step.

�*� = ��	�+�({�*��(#� � #%)|�  �����	�}) (5)

- = -. ���(�, �) "/��� �  �*�, �  0 (6)

where the ��	�+�() function represents the selection of the sampling node � with the

smallest distance difference from node �. Eq. (6) represents the establishment of the

connection relationship between node � and node �.

2.4. Aggregation method based on similarity weighting

Considering that GCN uses an average aggregation approach in the aggregation process,

it does not distinguish the importance between neighbors. When the camouflages

associate themselves with a larger number of benign individuals, using this approach
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may not be effective in identifying the camouflage, so a similarity-based metric is

designed here. Thus, inspired by previous work, a parametric distance function that

combines embedded and real label information is used here, defined as Eq. (7).

23�(�)(�, �) = ||2(�)(/�
(�)

) � 2(�)(/%
(�)

))|| (7)

where 2(�)(/�
(�)

)=

4(�)(/�
(�)

) denotes the probability of predicting fraud based on

node embedding, and the distance function is defined as the difference between the

predicted probability of node � and node �.

In previous work, less work has been done in the graph neural network aggregation

process, and the methods tend to be averaging, taking the maximum value, etc. These

methods do not take into account the importance of different neighbors for the nodes.

Therefore, in order to preserve the relational importance, the weighting is done directly

using the similarity, and the transformation is done by the adjacency matrix, which is

converted into the weight matrix of the central node and the neighbor nodes, so that the

aggregation operation can be done while saving the computational cost.

5�

(���)
= 6(7

�
8
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�
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(�)

��
{��

(�)
}) (8)

Eq. (8) shows the GCN using the similarity aggregation method, where 7 is the sum

of the distances between the central node and its neighbor nodes, i.e., 7 =

�<
(23�(�)(�, �)), and :; is the similarity weighting matrix of the dynamic graph at

moment �, :; = > + #3�(�, �).

The loss function can be defined as a cross-entropy loss function, as shown in Eq/

(9).

@ABB = � � [C���	*D�� + CE(1 � ��)log (1 � ��)]� G (9)

where �� = 

4(/�
(H)

) and �� denotes the label of node �.

3. Experiment and Analysis

3.1. Comparison models

� GCN [4]: The core idea of GCN is to convolve the features of a node with the

features of its neighbor nodes, so as to carry out information propagation and

feature learning on the graph.

� GAT [5]: By introducing an attention mechanism, GAT is able to adaptively

learn the importance weights between nodes for information propagation and

feature learning on the graph. GAT is also trained using snapshot graphs at each

time step and does not consider the dynamics of the graph.

� EvolveGCN-O [9]: EvolveGCN is an adaptive graph convolutional network

model along the time dimension. EvolveGCN uses RNN to evolve GCN
parameters to capture the dynamics of the graph sequence. EvolveGCN-O is a

version that uses LSTM for dynamic modeling.
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� EvolveGCN-H [9]: EvolveGCN-H is the version of EvolveGCN that uses GRU

for dynamic modeling.

3.2. Experimental setting

AT-GCN was implemented based on Pytorch 1.10.2, and each dataset was divided into

three parts, where the data in the first 31 time steps served as the training set, the data in

the 32-36 time steps served as the validation set, and the data in the 37-49 time steps

served as the test set. All experiments were run on Python 3.8.5, Ubuntu 18.04.1,

GeForce RTX 2080 Ti GPU, 16GB RAM, Intel(R) Xeon(R) Silver 4214 CPU @ 2.20

GHz.  For  EvolveGCN and its  variants  directly  using  the  source  code  provided by the

authors, GCN, the GAT is implemented based on DGL [4].

3.3. Results

This paper uses the Elliptic [3] dataset for model validation, which is currently the largest

dataset of Bitcoin transactions in the world. Because the first 94 features in the dataset

are local information of transactions and the last 72 features are aggregated, the
experiments compare the effect of using the first 94 features with the effect of using all

the features separately to ensure the fairness of the experiments.

3.3.1. Performance comparison.

Table 1 and Table 2 show the performance of AT-GCN and other baseline algorithms on

the Elliptic dataset, using the first 94 local features and all features experimented in this

paper. It can be seen that the majority of the metrics outperform the other baseline

algorithms.

Table 1. Model effect using 94 local features

Method F1 Recall Precision

AT-GCN 0.5786 0.6083 0.5517
EvolveGCN-O 0.5095 0.6348 0.4255

EvolveGCN-H 0.3418 0.5253 0.2533

GAT 0.4028 0.3641 0.4508

GCN 0.3848 0.3744 0.3959

Table 2. Model effect using all features

Method F1 Recall Precision

AT-GCN 0.6143 0.5311 0.7283
EvolveGCN-O 0.5384 0.4689 0.6320

EvolveGCN-H 0.2181 0.3422 0.1600

GAT 0.4710 0.4159 0.5429

GCN 0.5316 0.4747 0.6041

3.3.2. Ablation experiment.

To verify the effectiveness of the proposed method, ablation experiments were conducted

using the first 94 local features and all features for different methods, respectively. The

experimental results show that AT-GCN is superior to GCN and the single method,
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proving the effectiveness of the combination of the three methods. GCN+W is  a

simplified version of the AT-GCN proposed in this paper, using only the LSTM for

adaptive parameter updating. GCN+O is a simplified version of the AT-GCN, which
uses only the oversampling method across time steps. GCN+A is a simplified version of

AT-GCN using only the similarity-based weighted aggregation method.

In the case of using only 94 local features, Precision increased by 14.2%, Recall

increased by 22.6%, and F1 increased by 17.9% after using the GCN adaptive parameter

update method proposed in this paper. In the case of using only oversampling methods

across time steps, the effect of GCN is also increased, with Precision improving by 10%,

Recall by 20.6%, and F1 by 15%. In the case of using only the similarity-based weighted

aggregation method, Precision increased by 11.4%, Recall by 13.9%, and F1 by 12.7%.

The experiment is shown in Figure 2.

In the case of using all the features, the addition of more information leads to an

improvement in the effectiveness of all the models, in which case using one of the spatio-
temporal graph convolutional laundering methods alone still improves the results much

more than the GCN. After using the GCN adaptive parameter update method proposed

in this paper, Precision increased by 13.5%, Recall increased by 2%, and F1 increased

by 6.2%.  In  the  case  of  using  only  the  inter-time-step  sampling  method,  the  effect  of

GCN is also improved, with Precision improving by 3.7% and F1 improving by 0.8%.

In the case of using only the similarity-based weighted aggregation method, Precision

increased by 3.5%, Recall increased by 0.6%, and F1 increased by 1.7%. The experiment

is shown in Figure 3.

Figure 2. Performance comparison using 94 local features

Figure 3. Performance comparison using all features
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3.3.3. Sensitivity analysis.

To verify the robustness of AT-GCN, its performance was compared on the Elliptic

dataset with different experimental parameters and parameter sensitivity experiments
were conducted. For presentation purposes, only 94 local features are used for the

experiments. Figure 4 and Figure 5 give the results of parameter sensitivity under several

different parameters.

Figure 4. The impact of different loss function weights on model performance

Figure 5. The impact of different time window sizes on model performanc

4. Conclusion

This paper proposes an anti-money laundering strategy based on spatio-temporal graph

convolution. The strategy is divided into three parts, which are GCN adaptive parameter

update, oversampling across time steps, and weighted aggregation based on similarity.

The GCN adaptive parameter update method uses LSTM to learn the trainable weight

parameters and obtain the temporal correlation of the weight parameters, so that the

model parameters can be updated adaptively with the change of the graph structure. In

oversampling across time steps, the fraud nodes within the time window are oversampled.

By calculating the distance between these oversampled nodes and the nodes in the current

time step, the relationship between the oversampled nodes and the nodes in the current
time step is established, and the detection effect of the model on fraud nodes is increased.
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Finally, in the aggregation method of GCN, the label correlation between nodes and

neighbors is not considered in some previous works. Therefore, the similarity between

nodes is calculated by MLP and the similarity is treated as a weighted value, which can
increase the effectiveness of the model. The final test results show that AT-GCN has

reached the current optimal in most indicators.
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