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Abstract. The rise of deep learning technology has significantly improved the

recognition rate of voiceprint recognition technology, such as the success of the X-

vector architecture, which utilizes Time Delay Neural Networks (TDNN) to

transform variable-length speech segments into fixed-length outputs. However, the

current popular voiceprint recognition models have significantly decreased

applicability in noisy environments. To address this issue, this study investigates the

limitations of the X-vector architecture and proposes an improved speaker

verification model based on TDNN. This model incorporates Long Short-Term

Memory (LSTM) to model the input speech features while retaining information

related to previous time steps. Similar to the ECAPA-TDNN model, we introduce a

one-dimensional Res2Net module with a channel attention mechanism (SE-

Res2Block) at the frame level, which enhances channel correlation and rescales

channels based on recorded global properties, thereby extending the temporal

context of the frame layer. Finally, the model's feature representation capacity is

enhanced through multi-layer aggregation. The results show that the recognition

performance of this system reaches 96.32% in a 15 dB noise environment.

Furthermore, this system outperforms the commonly used ECAPA TDNN model,

demonstrating good accuracy and robustness.
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1. Introduction

Voiceprint is a spectrum of sound waves that carries speech information. Voiceprints not

only possess uniqueness but also exhibit relative stability, as an individual's voice tends

to remain unchanged for a long time after adulthood. Therefore, similar to fingerprints

and irises, voiceprints can be used as a unique biological feature for identity verification.

Compared to traditional fingerprint and iris recognition, voiceprint recognition
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technology offers advantages such as non-contact operation, easy collection, high

efficiency, and high accuracy. As a result, voiceprint recognition finds extensive

applications in various fields, including security authentication, telephone banking, voice
assistants, and more.

Voiceprint recognition can be divided into speaker identification and speaker

verification [1]. Speaker identification aims to determine which person among several

individuals uttered a particular speech segment involving a “multiple-choice” problem.

On the other hand, speaker verification confirms whether a given speech segment

belongs to a specific designated individual, involving a “one-to-one discrimination”

problem. Despite the widespread application of voiceprint recognition technology, real-

world environments pose challenges such as noise, echoes, and interference, which can

degrade the original audio quality and even obscure the characteristic speaker

information. Therefore, it is crucial to reduce the factors that cause interference in

voiceprint signals to enhance the robust performance of speaker verification systems.
The concept of “voice print” was born in Bell Laboratory in 1945. L.g. Kesta et al.

proposed a Spectrogram matching problem [1]. Voiceprint recognition is mainly divided

into two parts: feature extraction and speaker modeling. Traditional voice print

recognition methods are mainly template matching and statistical analysis algorithms [2].

At present, the mainstream voice print recognition technologies mainly include the

GMM-UBM model, i-vector model, d-vector model, and X-vector model [3-7]. In addition,

the use of time-delay neural networks to model speaker features is currently a very active

research area [8,9,10]. For example, some researchers enhanced the frame-level feature

extraction capability by introducing one-dimensional SE�Res2Block based on TDNN [11].

The author added LSTM based on TDNN to better capture the time information in speech
[12,13]. This paper proposes a speaker confirmation model based on TDNN and LSTM,

which incorporates a channel attention mechanism and multi-layer fusion mechanism
and will be explained in detail in Section 2. In addition, the SpecAugment algorithm was

added as front-end noise reduction to improve the robustness of the system and enhance

the feature expression ability.

2. Network Design

2.1 Network improvement

TDNN1 D=512

TDNN2 D=512

TDNN3 D=512

TDNN4 D=512

TDNN5 D=1536

SP

TDNN1 D=512

LSTM2 D=512

SE-Re2Block D=512

SE-Re2Block D=512

TDNN5 D=1536

ASP

X-vector Enhanced TDNN

Figure 1. The network architecture of TDNN for X-vectors and Enhanced TDNN
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We have made improvements to the original X-vector based on TDNN, as shown in

Figure 1. The first part replaces a TDNN layer with an LSTM. The second part replaces

two traditional TDNN layers with two one-dimensional SE-Res2Blocks. The third part

utilizes Attentive Statistic Pooling (ASP) [14] with attention instead of a single Statistic

Pooling (SP) layer.

2.2 Integral design

Figure 2 represents the schematic diagram of the overall design of the network model in

this paper. It mainly consists of six parts: TDNN+ReLU+BN module, LSTM module,

two layers of one-dimensional SE-Res2Block modules, TDNN+ReLU module,

ASP+BN module, and AAM-Softmax module.
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Figure 2. The model in this paper

In the figure, ReLU is a nonlinear activation function. BN is batch normalization [15].

FC is the fully connected layer. k is the kernel size, and d is the expansion spacing of the

TDNN layer or SE-Res2Blocks.

Firstly, the Mel-spectrogram processed by SpecAugment is inputted into the TDNN

layer. This layer performs convolution operations along the time axis using multiple

convolutional kernels to extract feature vectors at each time point. These feature vectors

are then combined to form a new sequence of feature vectors.

A speech signal is a temporal signal, where each time point is correlated with the

preceding and subsequent time points. Therefore, to better capture the temporal

information in the speech signal, a neural network structure capable of processing

sequential data needs to be used. To achieve this, this article introduces the LSTM layer.

The LSTM layer is a type of recurrent neural network structure that has memory

cells and gate structures and can effectively process sequential data. In this article, the

LSTM layer receives the feature vector sequence extracted by the TDNN layer and

models it. By reusing the same neurons and introducing three gate structures (input gate,

forget gate, and output gate), the LSTM layer can effectively solve problems such as

gradient vanishing and gradient explosion and model long-term dependencies in

sequential data. In addition, LSTM has a certain degree of noise resistance and can

effectively distinguish target information and noise information in speech signals by

learning the temporal patterns and context of input data, thereby improving the accuracy

and robustness of the model.

In the original X-vector system, the time context of frame layers is limited to 15

frames. It is indicated that SE-Res2Blocks are beneficial for enhancing the depth and

nonlinearity of the model [10]. To enhance the representation and generalization abilities
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of the model, this paper introduces two layers of one-dimensional SE-Res2Blocks after

the LSTM layer, which enables the model to better capture the temporal information and

frequency domain features of speech signals. SE-Res2Blocks combines the

characteristics of SE modules and Res2Blocks, where the SE module is used to

adaptively adjust the importance of different feature channels to enhance the expressive

power of feature channels. Res2Blocks is a novel residual block composed of multiple

ResBlocks and a 1D convolution layer, which is used to improve the model's non-linear

modeling ability. In addition, this paper adopts a multi-layer aggregation mechanism,

where the output features of each module can serve as the input features of the next

module, to extract more advanced features layer by layer. This multi-layer feature

aggregation can help the model better capture the temporal and frequency characteristics

of speaker signals and further improve the performance of speaker recognition.

Subsequently, the outputs of LSTM and SE-Res2Block are input together into the

TDNN+ReLU module for aggregation and then fed into the ASP layer to obtain a global

speaker embedding. Then, the BN layer maps the global speaker embedding to a low-

dimensional vector space, further enhancing the expressive power of the features. Finally,

the feature vector is classified using AAM-Softmax to determine the speaker identity

corresponding to the input speaker signal.

2.3 Data augmentation

Before inputting the speaker embedding into the model, the SpecAugment algorithm is

applied to the Mel-spectrogram, which includes two parts: time masking and frequency

masking. Specifically, some contiguous frequency regions are selected on the time axis

and frequency axis of the Mel-spectrogram, and the spectral values of these regions are
set to zero. This method can simulate the speech variations and discontinuities in the real

world, as well as the frequency variations and discontinuities in the signal, to provide

more robust training data that helps improve the generalization ability of the model and

reduce overfitting.

3. Experiment and Analysis

3.1 Data set

This paper uses the Chinese speech dataset (zhvioce) for model training. The dataset has

been processed for noise reduction and silence removal and contains 3, 200 speakers,

with a total audio duration of about 900 hours and approximately 130 million words. 80%

of  the  dataset  is  used  for  training,  and  the  rest  is  used  for  testing.  In  addition  to  the

aforementioned dataset, the VoxCeleb1-E and VoxCeleb1-H datasets are also used for

testing. These two datasets are widely recognized as large-scale standard datasets for
speaker recognition. The former contains 6, 366 speakers, and the latter contains 13, 718

speakers, allowing the performance of the model to be evaluated in different testing

environments.

3.2 Experimental procedure

The experiments in this paper are divided into two stages: training and testing, as shown
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in Figure 3. In the training stage, a TDNN-improved neural network is used to construct

the speaker identity model database. In the testing stage, after preprocessing the test

speech, the speaker embedding parameters are extracted and inputted into the model. The

scores are calculated by comparing them with the model database, and the results are

output.

Training

Data Preprocessing
Feature

Extraction

Model

Trainting

Model

Base

Speaker A Preprocessing
Feature

Extraction
Rating/judgment

Test speech
The output result indicates

that the speaker is A

Training phase

Test phase

Figure 3. Experimental flowchart

In the experiments, in the training stage, the audio in the training dataset is first

preprocessed by using Voice Activity Detection (VAD) technology to clip the speech

signal, remove the silent parts, and filter out the dataset with a speech length of less than

0.5 s. Then, the speech dataset is resampled and normalized to a 20 dB gain. The length

of  the  training  speech  is  set  to  3  s,  and  the  audio,  shorter  than  the  training  length,  is

padded through copying. The speech signal is pre-emphasized by using a first-order

high-pass filter, and then the fast Fourier transform is used to obtain the spectrogram

after framing. A Hamming window is applied to each frame signal after framing to obtain

a better sidelobe attenuation. Finally, the Mel-spectrogram is obtained by using the dot

product of the power spectrum and the Mel filter bank. During training, each audio

segment is represented by the corresponding Mel-spectrogram, and each frequency band

corresponding to each frame is a 513-dimensional feature. The optimizer used for the

model is Adam, and the loss function is the Cross-Entropy Loss Function. The initial

learning rate is set to 0.001, and a total of 30 training epochs are set, with about 3242

audio segments per epoch. Table 1 shows the experimental results of the model in the

testing datasets of zhvioce, VoxCeleb1-E, and VoxCeleb1-H.

Table 1. The recognition rate of the system in different test sets in this paper

Data set Tpr Fpr Eer

zhvoice 0.98972 0.00730 0.01758

VoxCeleb1-E 0.97881 0.00788 0.02907

VoxCeleb1-H 0.98342 0.00776 0.02434

3.3 Comparison experiment

To verify the feasibility of the speaker verification system proposed in this paper under

different signal-to-noise ratio (SNR) noise environments, the system is compared with

the TDNN model and the ECAPA TDNN system in speaker verification experiments,

and the recognition rates are calculated for these three systems. The results are shown in

Table 2.
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Table 2. Experimental results in different noise environments

Types of noise Environment
TDNN ECAPA TDNN Textual algorithm

EER% EER% EER%

White

Noise-free 3.7802 3.1894 2.7392

5 dB 17.9766 15.7944 14.9590

10 dB 7.1595 6.8948 6.2648

15 dB 5.4102 4.9363 3.5199

Factory

Noise-free 3.1802 3.5987 2.6135

5 dB 17.4075 16.5883 15.0262

10 dB 7.3496 6.8952 6.3266

15 dB 5.5851 5.0423 3.6779

The following conclusions can be drawn from the experimental results of the three

algorithms under white noise and factory noise environments. In a noise-free

environment, all three algorithms show a high recognition rate. Among them, the text

algorithm achieves the highest recognition rate of 97.26% compared to the other two

algorithms. In a noisy environment, as the signal-to-noise ratio (SNR) increases, the

recognition rates of all models improve, indicating that the noise environment has a

significant impact on the recognition rate of the speaker verification system. In the case

of low SNR, the proposed algorithm performs slightly better than the other two

algorithms, indicating that the proposed system has a relatively strong noise resistance

performance. In a 15 dB white noise environment, the proposed algorithm improves the

system's recognition rate to over 96%, with a relative error rate reduction of 34.93%
compared to the TDNN network and 28.69% compared to the ECAPA TDNN network.

Although the recognition rate of the proposed algorithm slightly decreases in 5 dB and

10 dB noise conditions, the overall performance of the proposed system in noise

environments is significantly improved, demonstrating the robustness of the proposed

speaker verification system in noisy environments.

4. Conclusion

To improve the accuracy of the speaker verification system in noisy environments, this

paper proposes a speaker verification model based on an improved TDNN. The model

has the following four key features: firstly, the specAugment algorithm is introduced for

data augmentation to enhance the model's noise resistance and robustness; LSTM is

introduced to effectively capture long-term dependencies in speech signals and provide

more comprehensive contextual information for better modeling of speaker
characteristics; a channel attention module is added after each convolutional layer to

allow the network to focus more on voiceprint features that have not been discovered or

activated at the same or similar time nodes, thus strengthening the importance of voice

features corresponding to each channel; a novel cross-layer propagation and aggregation

mechanism is used to promote information exchange between different layers and

improve model performance. Experimental results show that the proposed system

achieves a recognition rate of 97.26% in a noise-free environment and over 96% in a 15

dB noisy environment. In addition, in a 15 dB noisy environment, the proposed model

outperforms the TDNN model by 1.9% and the ECAPA TDNN model by 1.4%.
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