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Abstract. Existing deterministic optimization methods suffer from decreased 
performance and increased risks under conditions of passenger flow uncertainty. To 
address these issues, a multi-scenario robust optimization method for coordinated 
optimization of train flow and passenger flow in regional rail transit systems is 
proposed. Firstly, samples of passenger travel demand, which are sampled from the 
potential passenger demand distribution, is used as multiple scenarios to 
characterize the uncertainty and diversity of passenger flow. Secondly, the mean-
variance theory is employed as the foundation to establish the robust optimization 
model and the model's performance is discussed using variance or integration of 
deviations as indicator of robustness. Finally, a genetic algorithm is applied to solve 
the model, and the data from the Chongqing regional rail transit system is used as a 
case study for validation. Experimental results demonstrate that the proposed robust 
optimization model outperforms the deterministic model in uncertain conditions, 
providing better optimization performance. 

Keywords. robust optimization, regional rail transit system, mean-variance model, 
coordinated optimization 

1. Introduction 

The regional rail transit system is a comprehensive rail transit system composed of 

various standard rail transportation modes within a city cluster or metropolitan area, 

serving the needs of the demands of regional economic integration. It is characterized by 

heterogeneity, integrity, interaction, and collaboration[1]. Regional rail transit typically 

includes different types (standards) of rail transit subsystems, such as high-speed or 

conventional railway systems, metro systems, monorail systems, maglev systems, and 

light rail transit (tram) systems.  

Compared to single-mode transportation systems, large-scale integrated 

transportation systems like regional rail transit exhibit a larger scale, higher complexity, 

and relatively greater risks. With further socio-economic development, changes in 
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population distribution, and evolving consumer demands, the current regional rail transit 

systems gradually fail to meet the public's increasing and diverse travel demands. To 

better meet this demand, we need to further enhance the performance of the optimization 

methods for regional rail transit systems. 

In the practical operation of rail transit, passenger flow demand is a significant  

factor that needs to be considered. The actual passenger demand is an uncertain     

variable until it occurs. Most existing studies on rail transit system optimization do not 

consider the uncertainty of passenger demand and rely solely on deterministic historical 

data, which may result in decreased optimization performance and even pose risks    

when applied in scenarios with uncertain passenger flow. In this paper, the uncertainty 

of passenger flow demand is characterized through multi-scenario sampling, where 

multiple scenarios are generated by randomly sampling from assumed distributions 

based on historical data. This paper aims to establish a robust optimization model for 

regional rail transit by adopting the mean-variance theory to improve the robustness     

and practical application utility of the optimization model under uncertain passenger 

flow. 

In summary, this paper contributes by using the mean-variance theory to establish a 

robust optimization model for train scheduling and passenger flow guidance in the 

regional rail transit system, addressing the impact of uncertain passenger flow and 

achieving better optimization performance than deterministic models.  

Section 2 provides a comprehensive review of the relevant literature. Section 3 and 

Section 4 analyze the problem and establish the deterministic optimization model and 

then the robust optimization model. Section 5 validates the models using the Chongqing 

regional rail transit system as a case study. Finally, Section 6 presents a summary for this 

paper. 

2. Literature Review 

2.1.  Uncertainty Optimization for Complex Engineering Systems   

In the field of rail transit optimization, most of the literature focus on optimization under 

deterministic conditions[2]-[6]. The optimization models established considering system 

uncertainty are referred to as uncertainty optimization models. Existing methods for 

addressing uncertainty optimization problems mainly fall into three categories: 

traditional robust optimization, stochastic optimization, and distributionally robust 

optimization.  

Traditional robust optimization typically addresses uncertainty by reformulating the 

model as a deterministic problem solvable by optimization solvers. This reformulation 

often involves the introduction of additional constraints or variables that capture the 

worst-case scenarios of the uncertainties, ensuring that the solution is feasible for all 

possible realizations within the predefined uncertainty set. The uncertainty is often 

described by a continuous random variable with no distribution. Valentina et al.[7] 

considered the uncertainty of passenger demand, established a robust optimization model 

with train timetables and train stopping plans as decision variables and train running time 

as the objective, and solved it using mixed-integer linear programming methods. 

Similarly, Qi[8] considered the uncertainty of passenger demand, established a robust 

optimization model with train timetables and train stopping plans as decision variables 
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and transportation capacity risk as the objective, and solved it using mixed-integer linear 

programming methods. 

In stochastic optimization methods, uncertainty is described by a unique distribution, 

and the optimization objective is the mean performance in a probabilistic sense. Gong et 

al.[9] considered the dynamic and stochastic nature of passenger demand, established a 

stochastic optimization model with the total number of service trains, headway settings, 

and speed curves as decision variables, and solved it using mixed-integer nonlinear 

programming and domain search algorithms. Dantzig[10] applied stochastic 

optimization to study modeling and solution of examples like minimum food 

consumption, factory shipment tasks, and three-stage problems. Kall et al.[11] proposed 

a method considering common stochastic variations of technical or economic parameters 

during the planning stage to obtain more reliable optimal solutions for engineering and 

economic problems.  

Compared to traditional robust optimization methods, distributionally robust 

optimization methods use a fuzzy set containing multiple probability distributions to 

prevent the solutions from being overly conservative. The solutions in distributionally 

robust optimization consider the worst-case distributions within the fuzzy set without 

being excessively conservative. Lu et al.[12] considered passenger flow uncertainty, 

established a distributionally robust optimization model with train timetables and 

passenger flow control as decision variables, and used local search algorithms and 

mixed-integer linear programming methods to solve it. Qu et al.[13] took into account 

uncertainties in station and boarding passenger data, established a distributionally robust 

optimization model with train departure intervals and stopping timetables as decision 

variables, and solved it using nested heuristic genetic algorithms. Hao et al.[14] proposed 

a scenario-based distributionally robust optimization method for taxi pre-allocation 

models, addressing the problem of spatial and temporal mismatch between taxi supply 

and passenger demand. Cheng et al.[15] aimed to improve the efficiency of drone 

delivery by considering weather factors and other covariate information. They 

established a distributionally robust optimization model, modeling the drone's flight time 

as a fuzzy set, resulting in enhanced drone delivery efficiency. 

Under the uncertainty conditions, most of the robust optimization methods 

mentioned above suffer from significant computational complexity, making it 

challenging to efficiently solve large-scale and highly constrained problems. When one 

incorporates coordinated optimization of both train flow and passenger flow within 

regional rail transit systems, the computational burden becomes even more pronounced. 

2.2.  The Railway Optimization Method Based on Multi-scenario Robust Optimization 

and Mean-variance Model 

In large-scale and complex scenarios, robust optimization models built with   

distributions may become computationally intensive or difficult to solve accurately.    

The multi-scenario robust optimization method is a sampling-based optimization 

approach based on stochastic optimization, providing an approximation for dealing    

with uncertainties. 

Several scholars have researched the multi-scenario robust optimization method for 

railway systems. Zhou et al.[16] investigated a robust optimization approach for high-

speed railway train scheduling based on multiple demand scenarios. Each operational 

day's passenger demand is represented as a demand scenario, and the objective is to 

minimize the maximum regret value. They used train scheduling as decision variables 
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and applied the min-max approach for optimization. Sun et al.[17] focused on the 

robustness optimization of railway network design under uncertain demand. They 

formulated three decision objectives: minimizing the total length of railway lines, 

minimizing the total passenger travel distance, and minimizing the total passenger 

transfer times. They established both the scenario model and min-max model and utilized 

a genetic algorithm for solving. Yang et al.[18] proposed an optimization model for the 

last train timetable based on the mean-variance theory. The model aimed to maximize 

the number of successfully transferring passengers and minimize the last train's running 

time. The departure schedule of the last train was considered as decision variables, and 

they employed a taboo search algorithm for optimization.  

Based on the literature review above, it can be observed that although there have 

been a series of studies on robust optimization models for train scheduling and   

passenger flow control under uncertainty in transportation systems, there are hardly any 

studies that consider passenger guidance as an optimization variable, and although the 

computational load of multi-scenario robust optimization methods is relatively small, 

they still haven't been applied to the coordinated optimization of vehicle flow and 

passenger flow. Therefore, this paper attempts to establish a multi-scenario robust 

optimization model for train scheduling and passenger guidance in regional rail transit 

systems based on the mean-variance theory and uses an efficient genetic algorithm for 

solving the problem.  

3. Problem Analysis and Model Construction 

The deterministic model is based on the safety evaluation index system and    

optimization model structure proposed in reference[1]. Below, an explanation of the 

model is provided.  

3.1.  Parameter Description 

The parameters used in this model are shown in Table 1[1]. 

Table 1. The parameter description of the optimization model.[1] 

Parameter Description 

���  The set of all paths for Origin-Destination (OD) pairs from 
Station i to Station j 

���
�

 

The m-th path of  the OD pair from Station i to Station j 

�� 

Consequences of Interval k capacity risks 

�� 

Passenger demand volume on Interval k (people per hour) 

�� 

Transport capacity of Interval k 

�� 

Consequences of Station k capacity risks 

�� 

The throughput at Station p (people per hour) 

�� 

Passenger demand volume at Station p 

����
�

 Whether ���
� passes through Station k: 1 if yes, 0 if no  

	�  The seating capacity of the train on Line l 


�� 

Whether Interval k is on Line l: 1 if yes, 0 if no 

��  One-way travel time on Line l (minutes) 

����� 

Minimum train interval between consecutive departures of 
vehicles on Line l 

���	
  

Maximum train interval between consecutive departures of 
vehicles on Line l 

 

Total number of vehicles in the rail network 
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���  

Passenger demand from Station i to Station j 

����
�

 

Whether Station p is the origin station, destination station, 
or transfer station of path ���

�: 1 if yes, 0 if no 

���
�

 

The length of the m-th path from the origin station i to the 
destination station j 

������ 

The minimum length of the paths from the origin station i 
to the destination station j 

� 

The proportion of allowable deviation from the shortest 
path length for every path. 

3.2.  Establishment of Deterministic Optimization Model 

(1) Decision variables 

The decision variables in this model can be mainly divided into two parts. The first 

part includes the departure interval of trains on each route and the number of vehicles on 

each route. The second part is the allocation proportions of each OD demand to different 

paths. The mathematical expression is shown in Table 2[1]. 

Table 2. The description of the decision variables.[1] 

Parameter Description 

� The number of vehicles on Line l 

��  The train departure interval of  Line l (minute) 

���
�

 

The proportion of passenger demand allocated to path ���
� 

out of the total demand to ���  

(2) Optimization objective 

The optimization objective of this model is the global transportation capacity risk of 

the regional rail transit system, which is calculated by summing up the capacity risks of 

all stations and intervals in the network, as shown in Eq. (1).  

(3) Constraints 

The model's constraints mainly include the constraints on the number of vehicles per 

line, the constraints on the minimum and maximum intervals between train departures 

on each line, the constraints on positive allocation proportions for the passenger demand 

on each path and the constraints on the difference between the shortest and longest paths 

to prevent significant variations in their lengths. 

(4) Mathematical model[1] 

The deterministic optimization model is formulated as Eqs. (1) to (10). 

min  g(x��
�, t�, n�) = ∑ ω� × f(

��

��
)� + ∑ ω	 × f(


�

��
)	  (1) 

s. t.   �� = ∑ ∑ ∑ ��
� × �� × ���

�
��     �, � = 1,2, … , 	    
 = 1,2, … ,� (2) 

�� = ∑
��×��

��
× ���     � = 1,2, … ,� (3) 

�� ≥
��×�

��
 (4) 

�� ��� ≥ �� ≥ �� ��   (5) 
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∑ ��� ≤ � (6) 

�� = ∑ ∑ ∑ ��
� × �� × ���

�
��     � = 1,2, … , 	 (7) 

1 = ∑ x��
�

�  (8) 

0 ≤ x��
� ≤ 1                                                                                                   (9) 

���
����� ���

��� ���
≤ �                                                                                             (10) 

Eq. (1) represents the objective function, i.e., the global transportation capacity risk 

of the regional rail transit system. Here, the risk function is represented by f(x) =
�

���	
��
, and the risk consequence is denoted as ω

�
= min(y�, b�) ， ω

	
=

min(z	, C	)[1]. Eq. (2) is used to calculate the passenger demand on a particular interval. 

Eq. (3) calculates the capacity of the interval. Eqs. (4) and (5) are constraints on the 

departure interval of trains. Eq. (6) ensures that the total number of vehicles in the 

network does not exceed the available number of vehicles. Eq. (7) calculates the 

passenger demand at each station. Eqs. (8) and (9) are constraints on passenger flow 

distribution. Eq. (10) represents the constraint on path length. 

4. Robust Optimization Mathematical Model 

Existing decisions in regional rail transit rely on historical data as a basis. However, in 

practical optimization, there is a trade-off between the robustness of the model and the 

degree of optimization of the objective. To enhance the robustness of the aforementioned 

deterministic optimization model, specifically to optimize the robustness of long-term 

scale decisions, this paper applies the mean-variance theory to establish a robust 

optimization model for train scheduling and passenger flow guidance to obtain solutions.  

4.1.  Uncertain Passenger Demand 

This study adopts the method of multiple-scenario sampling to characterize the 

uncertainty in passenger demand in real-world scenarios. For the OD matrix, its three 

dimensions represent different time periods, origin stations (O), and destination stations 

(D). It is assumed that each element in the passenger OD demand matrix follows the 

same distribution. Multiple scenarios describing uncertain passenger demand are 

generated through random sampling. For instance, considering a historical OD demand 

data matrix element, assuming it follows a uniform distribution with a fluctuation of plus 

or minus thirty percent, multiple scenarios can be obtained by sampling from this 

distribution. 

J. Wang et al. / A Robust Optimization Method for Coordinated Optimization312



4.2.  Mean-Variance Theory 

The Mean-Variance Theory is a theory used to describe and analyze investment 

portfolios in financial markets. It is the core of modern portfolio theory, proposed by the 

American economist Harry Markowitz[19] in the 1950s.  

According to this theory, the return of an investment portfolio can be calculated as 

the weighted average of the returns of various assets in the portfolio. The mean represents 

the average return, and the variance represents the volatility of returns. Therefore, the 

Mean-Variance Theory can help investors strike a balance between risk and return to 

achieve the optimal investment portfolio. This allows them to choose the portfolio that 

best fits their risk preferences and return requirements. 

In this paper, the Mean-Variance Theory is utilized to balance robustness and 

efficiency. 

4.3.  Mean-Variance Theory Based Robust Optimization Model 

For all N sampled scenarios, let's assume that the passenger demand OD matrix for 

scenario n is denoted as ��, the probability of Scenario n occurring is denoted as 1/�. 

Therefore, the objective function for Scenario n (i.e., the global transportation capacity 

risk under this scenario) can be transformed from equation (1) to equation (11), where 

for different Scenario n, the passenger demand volume on Interval k is represented as ��
�, 

and the passenger demand volume on Station p is represented as z	
 .  

  gn(���
�, ��,��) = ∑ �� × �(

!�
�

"�
)� + ∑ �� × �(

#�
�

$�
)	  (11) 

Constraint (2) can be transformed into Constraint (12) and Constraint (7) can be 

transformed into Constraint (13). 

   ��
� = ∑ ∑ ∑ ��

� × ��
� × ���

�
��     �, � = 1,2, … , 	    
 = 1,2, … ,� (12) 

  ��
� = ∑ ∑ ∑ ��

� × ��
� × ���

�
��     � = 1,2, … , 	 (13) 

The overall robust optimization model's objective is composed of the mean and 

variance of  N scenarios. The mean calculation is as Eq. (14): 

E(g(����, �� ,��)) = E[��� × �(
��
	�)

�

+ ��� × �(

�
��)

	

]                                

          = E[��� × �(
��
	�)

�

] + E[��� × �(

�
��)

	

]        

         = � 1

N
��� × �(

��

	� )

�

�

��

+ � 1

N
��� × �(


�

��)

	

�

��

 

=
�

�
∑ (∑ �� × �(

��
�

��
) + ∑ �� × �(

��
�

��
)	� )�

��  (14) 

The variance calculation is as Eq. (15): 
Var(g(����, �� ,��)) = E[(g(����, �� ,��) − E(g(����, �� ,��)))�]                                
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                           =
1

N
�((��� × �(

��

	� )

�

+ ��� × �(

�

��)

	

− E(g(����, �� ,��)))�)

�

��

 

                             =
�

�
∑ ((∑ �� × �(

��
�

��
)� + ∑ �� × �(

��
�

��
)	 −

�

�
∑ (∑ �� ×�
�
��

�
��

                                 �(
��
�

��
) + ∑ �� × �(

��
�

��
)	 ))�) (15) 

In the literature (e.g., [18]), the mean and the variance are often linearly combined 

into a single objective for optimization. However, in this paper, the mean and the 

variance are separated into two objectives, establishing a multi-objective robust 

optimization model, expressed mathematically as Eqs. (16) and (17). The reason for this 

separation is that addressing them as two distinct objectives provides a more intuitive 

understanding and representation compared to a single-objective approach. 

min  g�(��
�, �� ,��) = E(g(��

�, �� ,��)) (16) 

min  g�(��
�, �� ,��) = Var(g(��

�, �� ,��)) (17) 

s. t. Eqs. (12) − (13)  

       Eqs. (3) − (6)  

       Eqs. (8) − (10)  

Taking into account the specificity of the problem and the directionality of the 

optimization objectives, since the main goal of the optimization model is to minimize the 

global capacity risk, it is acceptable for some scenarios to have risks smaller than the 

average risk. Therefore, only the deviation of scenarios with risks greater than the 

average risk needs to be focused on. As a result, the variance objective in Eq. (17) can 

be further optimized as a one-sided deviation integral, which is expressed as Eq. (18): 

min g%(��
�, �� ,��) = E[(g(��

�, �� ,��) − E(g(��
�, �� ,��))) × 1&(���

�,��,��)'((&(���
�,��,��)

]

 (18) 

The term 1(·) represents the indicator function, which outputs 1 when the input is 

true and 0 when the input is false. It can be observed that in the robust optimization 

model, due to the large problem scale, numerous constraints, and the complexity of the 

objective functions sampled from multiple scenarios, conventional optimization 

algorithms are not suitable for efficient solution. 

In contrast, heuristic algorithms, such as genetic algorithms, are more suitable for 

such problems as they can often find relatively good solutions in a shorter time.  

4.4.  GA and NSGA-II 

Genetic Algorithm is an evolutionary computation technique used to solve optimization 

problems based on natural selection and genetics. NSGA-II[20] is a multi-objective 
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genetic algorithm proposed by Deb et al. in 2002. It can optimize multiple objective 

functions simultaneously and generates Pareto-optimal solutions. NSGA-II improves 

non-dominated sorting and diversity preservation. It uses a fast non-dominated sorting 

algorithm for classification and incorporates crowding distance to maintain diversity. 

NSGA-II improves convergence speed and accuracy through various measures. 

5. Case Study and Result Analysis 

The data for this numerical example is sourced from the experimental data presented in 

reference[1]. The implementation of the experimental algorithms and program 

development were conducted using Python 3.8 in this study.  

5.1.  Case Description of  Chongqing Regional Rail Transit 

This case study considers the Chongqing regional rail transit system, which includes nine 

rail lines. A set of OD passenger flow demand historical data that has been de-identified 

based on real data is used as input to the model. The operational period considered is 

from 18:00 to 21:00. For this case, only 17 OD pairs with significant passenger demand 

and multiple intermediate station paths are taken into account. The detailed data is listed 

in[1]. 

Since there is only one set of three-hour OD passenger flow demand data for the 

scenario, random sampling is employed to generate multiple scenarios of OD passenger 

flow demand data for robust optimization. Based on the description of passenger flow 

demand in Section 4.1, multiple scenarios are generated by randomly sampling from the 

assumed passenger flow distribution. 

5.2.  Design of Experiments 

The proposed robust optimization model is compared with the deterministic model 

established in Section 3.2, which uses a single set of historical data as input to obtain a 

unique solution or decision. 

In addition to comparing the results with the deterministic model, the robust 

optimization model is further analyzed through three categories of control variable 

experiments: 

(1) Comparison of Different Robust Indicators: In measuring the robustness of the 

model, two indicators are used: variance and one-sided deviation integral. Variance 

considers the extent to which actual objectives deviate from the mean in both directions, 

while one-sided deviation integral only considers deviations in the direction of 

minimizing the objective. 

(2) Comparison of Different Sampled Scenario Numbers: The number of sample 

scenarios used to generate the multi-scenario data for the robust optimization model input 

affects the performance of the model output and the computational time. 

(3) Comparison of Different Distribution Assumptions: Since the actual OD 

demand is unknown, different distribution assumptions are considered to validate the 

model:  
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  Uniform Distribution: The passenger demand departing at time i from station j 

to station k in any scenario is assumed to follow a uniform distribution with the 

historical demand M)�*[i, j, k]  as the midpoint, 0.7M)�*[i, j, k]  and 

1.3M)�*[i, j, k]  as the upper and lower bounds, respectively. 

M[i, j, k]~U(0.7M)�*[i, j, k],1.3M)�*[i, j, k]) , which means that the passenger 

demand fluctuates within ±30% of the historical data. 

 Normal Distribution: For the passenger demand departing at time i from station 

j to station k in any scenario, referring to the 3-sigma rule, assume M[i, j, k] is 

likely to fall between [0.7M)�*[i, j, k],1.3M)�*[i, j, k]]. Thus, the demand for any 

scenario is assumed to follow a normal distribution with the historical demand 

M)�*[i, j, k]  as the mean and 0.1M)�*[i, j, k]  as the standard deviation, 

M[i, j, k]~N(M)�*[i, j, k], (0.1M)�*[i, j, k])�).  

  Poisson Distribution: For any scenario, assume the passenger demand 

departing at time i from station j to station k follow a Poisson distribution with 

the historical demand M)�*[i, j, k] as the mean, M[i, j, k]~P(M)�*[i, j, k]). 

5.3.  Experimental Results and Robustness Analysis 

For each distribution assumption, the robustness analysis is performed by using a 

randomly sampled test set of 50 scenarios, following the sampling method described in 

Section 4.1. The objective is to validate the solutions obtained from the optimization 

model and assess the transportation capacity risk magnitude of the proposed schemes on 

the test set, as well as the variance across the 50 scenarios. 

(1) Comparison between Deterministic Model and Robust Optimization Model 

The deterministic model takes as input a single set of historical OD passenger 

demand data, representing the actual passenger flow demand within a three-hour time 

segment. On the other hand, the input for the robust optimization model consists of 50 

sets of OD passenger demand data, randomly sampled from a uniform distribution. Each 

set of data also covers a three-hour duration. The robust optimization model is 

established using mean and variance metrics and is referred to as the baseline robust 

optimization model. 

For both the deterministic model and the robust optimization model, the algorithm 

is employed with 3000 iterations. The encoding method is real-integer encoding, with a 

population size of 5000. The simulated binary crossover operator and polynomial 

mutation operator are used. 

In one of the experiments, the results of the passenger flow distribution obtained by 

the genetic algorithm for the deterministic model are shown in Table 3, while the results 

for the train interval and the number of vehicles are presented in Table 4. The global 

capacity risk value for the non-optimized approach is 539421.38. The genetic algorithm's 

solution yielded an capacity risk value of 471701.77, resulting in a reduction of 12.55% 

compared to the non-optimized approach. 

Table 3. The passenger flow allocation results obtained by the deterministic model. 

OD Number Path1 Path2 Path3 Path4 Path5 

1 35.09% 12.94% 28.26% 11.89% 11.82% 
2 39.81% 2.83% 0.00% 56.56% 0.80% 
3 31.24% 2.24% 24.32% 13.44% 28.75% 
4 0.00% 39.50% 38.26% 21.82% 0.42% 
5 0.00% 0.00% 25.89% 38.21% 35.90% 
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6 0.00% 56.94% 1.18% 3.14% 38.74% 
7 100.00% - - - - 
8 100.00% - - - - 
9 48.97% 6.56% 40.33% 4.14% 0.00% 

10 49.40% 6.06% 12.27% 32.27% - 
11 18.81% 16.99% 0.00% 21.24% 42.95% 
12 72.05% 26.71% 12.40% - - 
13 31.29% 0.00% 37.80% 30.91% 0.00% 
14 0.00% 34.71% 26.97% 37.38% 0.93% 
15 11.91% 0.00% 35.09% 0.00% 53.00% 
16 39.52% 0.00% 23.24% 29.58% 7.67% 
17 49.15% 0.01% 0.00% 50.85% 0.00% 

Table 4. The train departure interval and train amount results obtained by the deterministic model. 

Line Name Departure Interval Train Amount 

Chengdu-Chongqing High-Speed Railway 15min 32 
Line 1 6min22s 40 
Line 2 2min 66 
Line 3 3min3s 65 
Line 5 10min 18 
Line 6 4min43s 46 

Line 10 8min35s 15 
the Loop Line 5min6s 24 

Chongqing-Wanzhou Suburban Railway 50min 15 

 

The robustness analysis results of the deterministic model solutions and the solutions 

on the Pareto front obtained by applying the NSGA-II algorithm to solve the robust 

optimization model are presented in Figure 1. The red points represent the robustness 

analysis results of the unique solution obtained from the deterministic model, while the 

blue points represent the robustness analysis results of the solutions on the Pareto front 

obtained by the robust optimization model. It can be observed that there exist solutions 

on the Pareto front that perform better than the deterministic model in terms of both the 

mean and variance of the testing results. Moreover, all the solutions on the Pareto front 

exhibit better performance in terms of testing variance than the deterministic model. This 

indicates that these solutions not only achieve lower capacity risk but also possess 

stronger robustness in practical applications. 

One of the solutions on the Pareto front is highlighted in Figure 1 (red circled), and 

its variable values are shown in Tables 5 and 6. The comparison between this solution 

and the deterministic model in terms of objective function values for the 50 testing 

scenarios is presented in Figure 2. It can be observed that the robust optimization model 

achieves a lower average level and a smaller fluctuation compared to the deterministic 

model, indicating a superior performance. 

(2) Comparison between Different Robust Metrics 

In this section, the experiment adopts the one-sided deviation integral as the 

robustness metric and compares the results with those using variance. The other 

parameters of the algorithm remain the same as before. The obtained results are shown 

in Figure 3. The light blue Pareto front represents the results obtained by using the one-

sided deviation integral as the robustness metric in the robust optimization model. It can 

be observed that most of the points in the light blue set are better than the blue set, 

indicating that the solutions obtained by using the one-sided deviation integral as the 

robustness metric generally perform better in the test. 
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Figure 1. The robustness analysis of the robust 
optimization model sloved by NSGA-II with 
uniform distribution assumption and 50 sampled 
scenarios. 

 

Figure 2.  Comparison of robustness analysis 
results for one of the solution obtained from the 
robust optimization model with uniform 
distribution assumption and the deterministic 
model solution across multiple scenarios.

Table 5. One of the passenger flow allocation results obtained by the robust model. 

OD Number Path1 Path2 Path3 Path4 Path5 

1 46.24% 0.70% 8.91% 43.46% 0.68% 
2 47.38% 10.66% 0.02% 32.23% 9.71% 
3 21.32% 13.50% 19.88% 40.61% 4.69% 
4 5.41% 7.27% 16.05% 39.39% 31.88% 
5 38.63% 7.27% 3.13% 8.77% 42.20% 
6 25.53% 25.55% 0.03% 0.45% 48.44% 
7 100.00% - - - - 
8 100.00% - - - - 
9 38.21% 22.03% 6.15% 23.67% 9.94% 

10 44.49% 4.78% 44.71% 6.02% - 
11 21.70% 13.72% 14.59% 9.29% 40.70% 
12 76.68% 22.49% 0.83% - - 
13 29.93% 33.01% 27.66% 8.16% 1.25% 
14 23.13% 25.67% 17.89% 0.00% 33.31% 
15 23.89% 6.69% 37.83% 25.73% 5.86% 
16 32.67% 14.34% 19.42% 31.52% 2.05% 
17 6.86% 9.50% 29.90% 49.61% 4.13% 

Table 6. One of the train departure interval and train amount results obtained by the robust model. 

Line Name Departure Interval Train Amount 

Chengdu-Chongqing High-Speed Railway 15min 32 
Line 1 2min39s 45 
Line 2 3min37s 35 
Line 3 2min3s 100 
Line 5 6min54s 11 
Line 6 8min12s 23 

Line 10 6min3s 23 
the Loop Line 7min41s 41 

Chongqing-Wanzhou Suburban Railway 50min 15 

(3) Comparison between Different Sampled Scenario Numbers 

This section conducted experiments with additional settings of 25, 100 and 150 

sampling scenarios, in addition to the original 50 sampling scenarios used before. The 

other parameters of the algorithm remain the same as before. The results obtained are 

presented in Figure 4. From the figure, it can be observed that the solutions obtained with 

50 and 100 sampling scenarios exhibit better dominance compared to using only 25 or 

150 sampling scenarios. Using too few sampling scenarios can lead to underfitting, while 
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using too many can result in overfitting, both of which lead to suboptimal performance 

in the optimization process. 

The comparison in Figure 4 reveals that the optimal number of sampling scenarios 

lies between the extremes of 25 and 150, and utilizing 50 or 100 sampling scenarios 

seems to strike the right balance between model complexity and robustness. These 

findings emphasize the importance of selecting an appropriate number of sampling 

scenarios to achieve an effective and robust optimization result. 

 

Figure 3. Robustness analysis and comparison 
between two different robust metrics. 

 

Figure 4. Robustness analysis and comparison 
among different number of sampled scenarios. 

(4) Validation of the Robust Optimization Model under Different Distribution 

Assumptions 

For the assumption of passenger OD demand distribution, this section validates the 

effectiveness of the robust optimization model using normal and poisson distributions, 

in addition to the uniform distribution. The robustness analysis results for the normal and 

poisson distributions are shown in Figures 5-6 and Figures 7-8, respectively. Both the 

solution and testing phases employ the same distribution assumption. 

From the results, it can be observed that under the assumptions of normal and 

poisson distributions, the robust optimization model presented in this study, solved using 

a genetic algorithm with the same number of iterations and other parameters, can still 

obtain solutions that outperform the deterministic model in terms of average performance 

and robustness. 

6. Conclusions 

In conclusion, this research introduces a multi-scenario robust optimization method for 

coordinating train flow and passenger flow in regional rail transit systems. By 

considering passenger flow uncertainty through multiple sampled scenarios, our 

approach effectively captures diversity and uncertainty in demand.The robust 

optimization model, based on the mean-variance theory, is established, and a genetic 

algorithm efficiently solves it. Experimental results using the Chongqing regional rail 

transit system validate our model's superiority over deterministic methods under 

uncertain conditions, providing improved optimization performance and risk reduction. 

Overall, this study has achieved certain results, yet there are areas for improvement. 

Specifically, two main directions for further research enhancement are identified . First, 

the passenger flow data considered in this paper is static OD data. Future research should 
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delve into dynamic passenger flow data. Second, the robust optimization method used in 

this paper simplifies the problem. While this method reduces computational effort, it 

does come at the expense of precision. Subsequent studies should explore more superior 

robust optimization methods. 

 

Figure 5. The robustness analysis of the robust 
optimization model sloved by NSGA-II with 
normal distribution assumption and 50 sampled 
scenarios. 

 

Figure 6. Comparison of robustness analysis results 
for one of the solution obtained from the robust 
optimization model with normal distribution 
assumption and the deterministic model solution 
across multiple scenarios. 

 

Figure 7. The robustness analysis of the robust 
optimization model sloved by NSGA-II with 
poisson distribution assumption and 50 sampled 
scenarios. 

 
Figure 8. Comparison of robustness analysis results 
for one of the solution obtained from the robust 
optimization model with poisson distribution 
assumption and the deterministic model solution 
across multiple scenarios. 
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