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Abstract. We examine the problem of forecasting the spatial extent of a just-

occurred traffic incident’s impact and the travel delay induced by it at certain 

future time points. We present and evaluate a machine learning-based solution for 
the above problem. The proposed solution is based on a standard classification 

model that takes in a variety of input features that include the incident attributes 

and features derived from traffic sensor data. We evaluate several versions of the 
solution by varying the classification model, the number of impact classes, the 

type of training data, and the time at which the prediction is made. This is done by 

conducting a series of experiments using a real-world traffic incident dataset along 
with the corresponding traffic sensor data. In particular, we investigate the issue of 

class imbalance in the incident dataset, the disparity in the class-wise prediction 

accuracies, the benefit of taking the incident’s early impact into account, and the 
relative importance of the input features. The findings of this study are potentially 

insightful to practitioners and researchers in the field of intelligent traffic 

management.  
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1. Introduction 

Traffic incidents are non-recurring events such as accidents and vehicle breakdowns 

that cause a temporary reduction in road capacity. Such incidents often lead to 

congestion and travel delay that evolve over a period following the incident occurrence. 

The ability to predict the impact of a just-occurred incident is useful for traffic 

authorities to optimally respond to the incident. Furthermore, forecasts about the 

impact of an incident are valuable for drivers to plan an optimal route in a dynamically 

evolving traffic situation. Currently, drivers are alerted through various channels about 

a delay-causing incident along their route. However, they are generally not provided a 

forecast of the incident’s impact at a future time when they would arrive at the affected 

area. Such a forecast is necessary to decide if an alternative route should be taken. For 

instance, if an incident at a location that is 30 minutes ahead on a driver’s route has 

resulted in a long delay currently, but the delay is predicted to be negligible after 30 

minutes, then the driver need not change the route. Furthermore, knowing the expected 

spatial extent of the impacted region helps the driver to decide where to detour from the 
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planned route. Navigation applications with access to incident impact forecasts can lead 

to significant savings in terms of time and fuel.            

Traffic simulation and analytical models have been traditionally used for 

predicting the impact of incidents [1] [2]. However, such models are limited in their 

ability to accurately predict the impact of incidents in the real-world. In recent times, 

the real-time availability of traffic data (including incident data) from various providers 

have made it feasible to apply data-driven solutions to the incident impact prediction 

problem. While many researchers have used machine learning models for incident 

impact prediction, most of them have focused on predicting the impact in terms of the 

incident duration [3]. This paper, on the other hand, deals with the problem of 

predicting the spatial extent of an incident’s impact on traffic and the incident-induced 

delay for an individual driver at certain future time points. We refer to the two 

abovementioned target variables simply as impact extent and delay, respectively.  

The main objective and contribution of this paper is to propose and evaluate a 

machine learning-based solution for predicting the incident impact extent and delay for 

a given prediction horizon. We model the prediction task as a classification problem 

where the target variables are expressed as semantically meaningful classes. We 

evaluate several variations of the proposed solution on a widely used real-world dataset 

in order to address the following research questions. 

i. What are the overall and class-wise prediction accuracies achievable for 

different number of impact classes? 

ii. Given the imbalanced nature of traffic incident datasets where most incidents 

have a negligible impact, does it help to balance the classes in the dataset used 

for training the prediction model? 

iii. Do the impact prediction accuracies improve if the prediction is delayed by a 

short period so that the initial effect of the incident is captured in the input 

features of the model? 

iv. Which input features are important for incident impact prediction? 

The paper is structured as follows: Section 2 contains a review of related work. 

Section 3 defines the impact extent and delay and shows how they are calculated from 

traffic speed data. Section 4 describes the proposed solution for incident impact 

prediction. Section 5 provides a detailed account of the experimental evaluation and the 

results obtained. Section 6 concludes the paper and indicates further research directions. 

2. Related Work 

A few researchers have studied the problem of predicting the impact extent and delay 

caused by a traffic incident. Pan et al. [4] model the incident impact as a time-varying 

spatial span (i.e., impact extent) and present a clustering-based method for predicting it. 

Recently, Sun et al. [5] have proposed a graph neural network that incorporates a graph 

attention strategy for predicting the impact extent.   

Boyles and Waller [6] proposed analytical formulae based on shockwave theory 

for predicting the incident delay. One of the earliest data-driven methods for predicting 

the incident delay is by Garib et al. [7] who proposed a regression model trained on 

historical data. A disadvantage of this model is that it requires incident duration as an 

input for predicting the delay. Miller and Gupta [8] used several classification models 

including decision trees, a k-nearest neighbors classifier, and artificial neural networks 

to predict a cost proportional to the cumulative delay experienced by all affected 
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drivers. The cost of the delay is expressed as a class variable where each class covers a 

range of cost values. 

Some researchers have proposed deep learning models for post-incident prediction 

of traffic speeds (e.g., [9], [10]). The impact extent and delay for future time points can 

be calculated from the predicted speeds as explained in Section 3 or by using a method 

such as [11]. 

Our review of the literature on the topic of predicting the incident impact extent 

and delay shows that the effectiveness of state-of-the-art machine learning models for 

this specific task has not been adequately evaluated. The prediction accuracies reported 

by the studies leave room for improvement. Furthermore, it is necessary to empirically 

examine the research questions listed in the previous section. 

3. Preliminaries and Definitions 

The solution presented in this paper is limited to the problem of predicting the impact 

of traffic incidents that occur on a continuous stretch of a single freeway that has traffic 

sensors installed along it. We divide the freeway stretch into virtual segments such that 

a traffic sensor lies at the midpoint of each segment.  

Let us consider a traffic incident that occurs on segment ��. To be exact, �� is the 

segment associated with the sensor that lies immediately upstream of the incident 

location. Let � � ���� ���	� 
 � ����� be a contiguous sequence of segments comprising �� and 
 segments that are upstream of it. (���	 is the segment immediately upstream 

of �� and so on.) The value of 
 should be set so that the sequence � is long enough to 

cover all the segments that could be potentially impacted by the incident. We call � as 

the study extent. 
Let ����  denote the traffic speed of segment ��  at time step ��. Let �����  denote the 

normal speed, in non-incident conditions, of segment �� at time step ��. (�� corresponds 

to a time of the day.)  In this work, the normal speed ����� is set equal to the median 

speed of segment ��  at time step ��, calculated from historical data. Let ��  denote the 

length of segment ��. 
A segment is considered congested if its speed is less than or equal to a constant 

proportion of its normal speed. More formally, segment �� at time step �� is congested if 

���� � ������, where � is a constant between 0 and 1. (In this study, � is set to 0.7.) 

Based on the analysis presented in [4] and [12], the evolution of congestion in 

incident scenarios is expected to meet certain spatial and temporal constraints. 

Accordingly, we determine if a segment is impacted by an incident by applying the 

following two rules, in the given order: 

i. Spatial consistency rule: A segment �� in the study extent is considered to be 

impacted at time step ��  if it is congested at ��  or its immediate upstream 

segment is congested at ��. That is, segment �� is impacted at time step �� if ���� � ������ or ���	�� � �����	��. 
ii. Temporal consistency rule: If, after applying the spatial consistency rule, a 

segment �� is not impacted at time step �� but it is impacted at the previous 

time step ���	  and the subsequent time step ���	 , it should be considered 

impacted at time step ��. 
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Figure 1. Illustration of the impact extent of a traffic incident 

Consistent with the definitions in [4] and [8], we define the impact extent at any 

time step after an incident’s occurrence as the length of the contiguous sequence of 

impacted segments beginning with the segment on which the incident occurred and 

extending in the upstream direction. Figure 1 illustrates an example case where the 

impact extent consists of three impacted segments. To be clear, this study considers 

only the mainline freeway segments and not the ramps connected to the freeway. 

We define the incident-induced delay at a time step as the extra travel time 

experienced by an individual driver traversing the impact extent at the time step due to 

the reduction in speeds caused by a traffic incident with respect to the normal speeds. 

Most studies (e.g., [8],[11]) calculate the total delay experienced by all the drivers over 

the entire duration of the incident. We are interested in the delay experienced by an 

individual driver at a particular time as such a measure is more useful for drivers and 

navigation applications for route planning. 

Let us suppose that the impact extent of an incident occurring on segment �� 

corresponds to a contiguous sequence of � � � impacted segments, ���� ���	� 
 � �����. 
The above-defined delay at time step �� can be calculated as 

�� � ����  ���!���!�� "
���!����!�� � #$%

�

!&'
%% (�) 

where the variables are as defined earlier. 

4. Incident Impact Prediction  

4.1 Problem Definition 

We aim to forecast the impact of a just-occurred traffic incident at a future point of 

time in terms of the spatial extent of the incident-induced congestion (“impact extent”) 

and the delay experienced by an individual driver in traversing that extent (“delay”). As 

other researchers have observed [8], predicting the impact of traffic incidents in the 

form of exact values is quite difficult. In many scenarios, it is sufficient for the users to 

know the predicted impact as a range of values. Therefore, we express the target 

variables, namely, the impact extent and the delay, as class variables where each class 

corresponds to a range of values. The classes are given meaningful names such as 

negligible, moderate and long.  

In this study, we define the incident impact prediction problem as follows: Given 

the attributes of an incident that occurred at time step ��  and the traffic variables 

measured at the incident location, predict the impact extent and the delay, respectively, 

at time step ���*, where + is the prediction horizon in number of time steps. 
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4.2 Input Features 

The features used as input to the impact prediction models in this study can be grouped 

into four types: temporal, spatial, incident and traffic. The input features are listed in 

Table 1 along with a brief description of each of them. It is worth noting a detail 

regarding the traffic features: The speed difference and occupancy features are 

calculated for the two segments in the study extent that are closest to the incident 

location, and their maximum is taken. The speed change and occupancy change 

features are calculated based on the speed difference and occupancy values at the 

current and the previous time steps.  

4.3 Prediction Models 

As the target variables to be predicted are expressed as class variables, we perform the 

predictions using standard classification models. We use and evaluate a decision tree 

classifier and a random forest classifier for predicting the impact extent class and the 

delay class.  

Decision tree-based classification uses a divide and conquer strategy in which the 

data space is recursively partitioned until all or most data points in each partition have 

the same class label. A classification criterion such the Gini impurity measure or 

entropy is used to determine the quality of the partitions. The performance of a decision 

tree classifier can be optimized by choosing an optimal set of hyperparameters such as 

the maximum depth of the tree and the classification criterion. In this work, we use a 

decision tree algorithm named Classification and Regression Trees (CART) [13]. A 

main advantage of decision tree classifiers is that they are easy to interpret by 

visualizing the trees. However, they are sometimes prone to overfitting the training 

data, leading to lower prediction accuracy against new unseen data. 

Table 1. Input features used for incident impact prediction in this study 

Feature name Feature type Description 
Time of the day Temporal The time elapsed since midnight in hours (continuous). 

Weekday Temporal 1 if the day is a weekday, 0 otherwise. 

Location Spatial The distance from the start of the freeway stretch to the 
incident location in km. 

Accident Incident 1 if the incident involves an accident, 0 otherwise. 

Injury Incident 1 if injury is reported, 0 otherwise. 

Ambulance Incident 1 if an ambulance is requested, 0 otherwise. 

Hit and run Incident 1 if it is a hit-and-run accident.  

Speed difference (current) Traffic The difference between the speed at prediction time and 

the normal speed.  

Speed difference (previous) Traffic The difference between the speed at the previous time 

step and the normal speed. 

Occupancy (current) Traffic The difference between the occupancy at prediction time 

and the normal occupancy.  
Occupancy (previous) Traffic The difference between the occupancy at the previous 

time step and the normal occupancy. 
Speed change Traffic The change in speed in the current time step with respect 

to the previous time step. 

Occupancy change Traffic The change in occupancy in the current time step with 
respect to the previous time step. 
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A random forest model [14] consists of multiple decision trees and outputs the 

class determined by most of the trees. Each decision tree in the random forest operates 

on a random sample of the training data (sampled with replacement) and uses a random 

subset of input features. This helps to create an ensemble of uncorrelated decision trees, 

which decreases the model’s chances of overfitting and improves its ability to 

generalize to unseen data. Random forest models also have the ability to determine the 

importance of features. While random forest models are generally preferred to decision 

trees due to their lower risk of overfitting, they are more complex and difficult to 

interpret compared to decision trees. 

5. Experiments and Results 

5.1 Dataset and Data Preparation 

We use historical traffic and incident data from the California Performance 

Management System (PeMS) [15] for the experiments in this study. Specifically, we 

use 7 months of historical data from September 2022 to March 2023, excluding 7 

holidays that fell during this period. We confine this study to a 30-mile (≈ 48 km) 

stretch of the US-101 (southbound) freeway between postmiles 390 and 420 in the San 

Francisco Bay Area, shown in Figure 2. 

 

Figure 2. The US-101 freeway stretch considered in this study (Image source: PeMS [15], base map: HERE) 

Traffic data (speed and occupancy), aggregated at 5-minute intervals, from 78 

sensors installed on the mainline of the freeway stretch are considered. As mentioned 

in Section 3, we divide the freeway stretch into virtual segments so that each segment 

is uniquely mapped to a sensor. The average length of the segments is 0.62 km. We 

calculate historical median speeds for each segment for each time of the day for two 

groups, namely, weekdays and weekends. 

We process the incident data and exclude some incidents based on a few criteria. 

Incidents that occurred on the first 8 km of the considered stretch are excluded to allow 

sufficient space for the upstream impact of each incident to be captured. There are 

many duplicate records in the PeMS database due to multiple agencies handling the 

same incident. Such duplicates are eliminated. Each incident in the database has a 

description that indicates the type of the incident. We consider the following 6 types 

that account for 93% of the total incidents: "Traffic collision - no injuries", "Traffic 

collision - unknown injuries", "Traffic collision - ambulance requested", "Hit and run - 

no injuries", "Hit and run - with injuries", and "Traffic hazard". Various minor types 

(e.g., “wrong way driver”) that account for a small number of incidents are filtered out. 
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Finally, we exclude incidents that occur close to each other, both spatially (within 1.6 

km) and temporally (within 30 minutes). We do so because it is difficult to distinguish 

the impact of one incident from another in such situations. After executing the above 

steps, the incident dataset consists of 966 incidents. 

For each incident, we determine the features listed in Table 1. The temporal, 

spatial and incident features are derived from the incident dataset. The binary values of 

the four incident features are assigned based on the above-mentioned description of the 

incident in the dataset. The traffic features are calculated based on the speed and 

occupancy values of the relevant segments at the prediction time step and the previous 

time step. For each incident, the ground truth values of the impact extent and delay for 

different prediction horizons are calculated by applying the method described in 

Section 3 to the segment speeds at the time step for which the prediction is made. 

Figure 3 shows the ground truth values of impact extent and delay following the 

occurrence of a sample incident (traffic collision with unknown injuries) on a weekday 

morning at postmile 401.5 of the US-101 (southbound) freeway. It can be seen that the 

impact extent and delay are zero at the time of the incident, but they increase and 

subside over the next the next 60 minutes. 

 

(a) Impact extent                          (b) Delay 

Figure 3. The ground truth impact extent and delay for a sample incident 

5.2 Experimental Setup 

We use the implementations of the decision tree and random forest classification 

models in the Scikit-learn machine learning library. During the training of the model, 

we use grid search cross-validation to determine the optimal values of two 

hyperparameters of the models, namely, the maximum depth of the tree and the 

classification criterion. 

Out of the 996 incidents in the incident dataset (in chronological order), we use the 

first 724 incidents (75%) for training the impact prediction models and the remaining 

242 incidents for testing the models. We adopt this approach of chronologically 

splitting the data into training and test sets as it is consistent with real-world scenarios 

where models are trained using data available up to a time and applied to data that 

comes thereafter. 

We evaluate the effectiveness of the models for predicting the impact extent and 

delay at two prediction horizons: 15 minutes and 30 minutes. (We experimented with 

prediction horizons beyond 30 minutes, but found the results unsatisfactory.) In the 
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first set of experiments, we express the target variable as one of three classes. For 

impact extent, the three classes are defined as: negligible (impact extent ≤ 0.5 km), 

moderate (0.5 km < impact length ≤ 3 km) and long (impact extent > 3 km). For delay, 

the three classes are defined as: negligible (delay ≤ 0.5 minutes), moderate (0.5 minutes 

< delay ≤ 5 minutes) and long (delay > 5 minutes). In the second set of experiments, 

the predicted variable is expressed as one of two classes: negligible and significant. 

The definition of the negligible class is the same as in the first set of experiments, but 

the moderate and long classes defined above are combined to form the significant class.  

An analysis of the ground truth values of the target variables in the incident dataset 

shows that the distribution of the classes is imbalanced with over 85% of the incidents 

belonging to the negligible class. We examine if the effect of imbalanced classes on the 

model performance could be handled by balancing the training dataset through 

oversampling and undersampling. We investigate if better prediction accuracies could 

be achieved by delaying the prediction by one time step so that the input traffic features 

reflect the early impact of the incident. We also examine which of the input features are 

significant. 

We quantify the prediction accuracy of the models using two variants of the F1 

score, namely, the weighted-average (WA) F1 score and the macro-average (MA) F1 

score. This is done by calculating the F1 score for each class and taking the weighted 

average and the macro average, respectively. The WA F1 score could be misleadingly 

high for test sets where a vast majority of samples belong to one class that is predicted 

well, but the other classes are predicted poorly. The MA F1 score indicates the average 

F1 score for all the classes irrespective of how many samples belong to each class. 

5.3 Results and Discussion 

In the first set of experiments, three classes are considered: negligible, moderate 

and long. Let us examine a sample case in which the impact extent is predicted for the 

15-minutes prediction horizon using the random forest classifier. In this case, the 

prediction is performed at the time step during which the incident occurs. Table 2 

shows the prediction result for this sample case in the form of a confusion matrix. It 

can be seen that while the model performs well for the negligible class (205 out of 210 

samples predicted correctly), it is not quite effective for the other two classes. The F1 

scores for the negligible, moderate and long classes are 0.95, 0.51 and 0.18, 

respectively. The WA F1 score and the MA F1 score for this sample case are 0.88 and 

0.55. The substantial difference between the two scores indicates that the model 

performs quite differently for different classes. 

Table 3 shows the overall results for predictions made at the incident time step. 

Not surprisingly, predictions for the 15-minutes horizon are more accurate than the 

predictions for the 30-minutes horizon. While the random forest classifier performs 

marginally better than the decision tree classifier, the MA F1 score remains quite low. 

As seen in the sample case above, this is due to the model not performing well for the 

moderate and long classes, which could be attributed to the imbalanced training dataset 

with a small number of incident samples belonging to the said classes. 
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Table 2. The confusion matrix for a sample case (15-minutes-ahead prediction of impact extent made at the 

incident time step using the random forest classifier) 

  Predicted class 
  Negligible Moderate Long 

A
ct

ua
l 

cl
as

s Negligible 205 5 0 

Moderate 11 11 2 

Long 4 3 1 

 

We attempt to address the above issue by training the models with a balanced 

training set where each class is made to have an equal number of incident samples 

through oversampling and undersampling. Table 4 shows the results obtained with the 

balanced training set for predictions made at the incident time step. A significant 

improvement in MA F1 score and a marginal decrease in the WA F1 score is observed 

for the random forest classifier. The minor drop in the WA F1 score is due to a 

marginal decrease in the model’s performance for the negligible class, which account 

for a vast majority of samples in the test set. This is to be expected because the 

negligible class has a smaller number of samples in the balanced training set compared 

to the original training set. Interestingly, using the balanced training set to train the 

decision tree classifier does not help much. 

Table 3. Results for impact extent and delay prediction (3 classes) made at the incident time step, based on 

the original training set 

  Decision tree classifier Random forest classifier 
Target 

variable 
Prediction 

horizon (min.) 
WA F1 score  MA F1 score  

 
WA F1 score  MA F1 score  

 
Impact extent 15 0.87 0.49 0.88 0.55 

Impact extent 30 0.87 0.34 0.88 0.32 

Delay 15 0.90 0.50 0.92 0.52 

Delay 30 0.90 0.35 0.90 0.32 

Table 4. Results for impact extent and delay prediction (3 classes) made at the incident time step, based on 

the balanced training set  

  Decision tree classifier Random forest classifier 
Target 

variable 
Prediction 

horizon (min.) 
WA F1 score MA F1 score WA F1 score MA F1 score 

Impact extent 15 0.84 0.51 0.89 0.63 

Impact extent 30 0.83 0.42 0.87 0.52 

Delay 15 0.84 0.44 0.87 0.47 

Delay 30 0.84 0.39 0.87 0.48 

Table 5. Results for impact extent and delay prediction (3 classes) delayed by 5 minutes, based on the 

balanced training set.  

  Decision tree classifier Random forest classifier 
Target 

variable 
Prediction 

horizon (min.) 
WA F1 score MA F1 score WA F1 score MA F1 score 

Impact extent 10 0.88 0.56 0.89 0.63 

Impact extent 25 0.89 0.52 0.89 0.53 

Delay 10 0.91 0.53 0.92 0.77 

Delay 25 0.88 0.42 0.90 0.57 

Table 5 shows the results obtained by delaying the prediction by one 5-minute time 

step. The balanced training set is used for training the models. To be consistent with the 
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previous experiments, we predict the impact extent and delay for time points that are 15 

minutes and 30 minutes after the incident time step. However, as the prediction is now 

made 5 minutes after the incident time step, the corresponding predictions horizons are 

10 minutes and 25 minutes, respectively. It can be seen from Table 5 that the delayed 

prediction leads to improvements in both WA F1 score and MA F1 score for both the 

classifiers. This is not surprising as the input traffic features, based on the speed and 

occupancy measurements in the time step following the incident occurrence, are likely 

to be good indicators of the incident’s severity. 

Despite the improvements observed in Table 4 and Table 5, the difference between 

the WA F1 score and the MA F1 score remains high. We find that this is mainly 

because the models still struggle to correctly predict the small number of samples in the 

test set that belong to the moderate and long classes. 

In the second set of experiments, the models predict the impact extent and delay as 

either negligible or significant. Table 6 shows that the MA F1 scores are substantially 

better than the corresponding scores obtained with three classes. Similar to the first set 

of experiments, the overall performance of the random forest classifier is better than the 

decision tree classifier. In contrast to the three-class scenario, Table 7 shows that in the 

two-class scenario, training the models with the balanced training set results in a 

reduction in both the WA F1 score and the MA F1 score for both classifiers. Table 8 

shows the results obtained by delaying the two-class prediction by one 5-minute time 

step. The original (imbalanced) training set is used for training the models. The delayed 

prediction improves the WA F1 score as well as the MA F1 score for both the classifiers. 

Table 6. Results for impact extent and delay prediction (2 classes) made at the incident time step, based on 

the original training set 

  Decision tree classifier Random forest classifier 
Target 

variable 
Prediction 

horizon (min.) 
WA F1 score MA F1 score WA F1 score MA F1 score 

Impact extent 15 0.89 0.76 0.91 0.80 

Impact extent 30 0.89 0.65 0.92 0.71 

Delay 15 0.91 0.76 0.92 0.77 

Delay 30 0.91 0.67 0.91 0.63 

Table 7. Results for impact extent and delay prediction (2 classes) made at the incident time step, based on 

the balanced training set 

  Decision tree classifier Random forest classifier 
Target 

variable 
Prediction 

horizon (min.) 
WA F1 score MA F1 score WA F1 score MA F1 score 

Impact extent 15 0.86 0.74 0.88 0.77 

Impact extent 30 0.86 0.61 0.86 0.64 

Delay 15 0.85 0.68 0.88 0.72 

Delay 30 0.86 0.62 0.88 0.62 

Table 8. Results for impact extent and delay prediction (2 classes) delayed by 5 minutes, based on the 

original training set 

  Decision tree classifier Random forest classifier 
Target 

variable 
Prediction 

horizon (min.) 
WA F1 score MA F1 score WA F1 score MA F1 score 

Impact extent 10 0.93 0.85 0.94 0.87 

Impact extent 25 0.92 0.72 0.93 0.77 

Delay 10 0.94 0.86 0.95 0.88 

Delay 25 0.92 0.68 0.93 0.73 
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Figure 4. The relative importance of features determined by the random forest classifier for two-class 

prediction of impact extent 

Figure 4 shows the importance of each input feature, determined by the random 

forest classifier, for predicting the impact extent for the two-class prediction. (The 

findings are broadly similar for predicting delay and for the three-class prediction.) It 

can be seen that traffic features are much more important than the other types of 

features for incident impact prediction. Among the traffic features, speed features are 

more important than occupancy features. The incident features seem to be of low 

importance. It may be argued that in reality, the impact of an incident depends more on 

the level of traffic at the time than the attributes of the incident. For example, an 

incident that occurs on a freeway during a light-traffic period is unlikely to cause any 

significant congestion or delay irrespective of the incident’s attributes.   

6. Conclusions 

A forecast of the impact of an ongoing traffic incident in terms of the impact extent and 

travel delay at a future time is valuable for drivers aiming to minimize their travel times 

and fuel consumption. In this study, we have proposed a solution using standard 

machine learning models for predicting the impact extent and delay, respectively, as 

one of multiple classes. We have used a dataset containing data of 966 real-world 

traffic incidents on a freeway stretch and the corresponding traffic sensor data to 

evaluate multiple variations of the proposed solution. We find that a random forest 

model, which is less prone to overfitting, achieves better prediction accuracy compared 

to a decision tree model. The prediction models do not perform well for the classes that 

are severely underrepresented in the training data. Balancing the training data mitigates 

this issue to an extent for three-class prediction but not for two-class prediction. The 

results also show that delaying the prediction by one time step so that the initial effect 

of the incident is captured in the input traffic features improves the prediction accuracy. 
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When the target variables are expressed as one of two classes, negligible and 

significant, the prediction models perform significantly better than the three-class 

scenario. Such a binary classification is useful for identifying false alarms so that 

drivers need not react to alerts about incidents that are expected to have negligible 

impact at a future time of interest. 

Future extensions of this work could focus on improving the prediction accuracy 

through the use of a better set of features and a larger, more balanced training dataset. 

Some intuitively useful incident features such as the number of lanes blocked and the 

involvement of a tow truck could not be included in this study due to the difficulty in 

automatically extracting them from free-text incident logs. The effectiveness of such 

features as well as other feature types such as weather conditions could be evaluated in 

future. It would also be interesting to study the effect of using a larger training dataset 

where all the impact classes are adequately represented. 
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