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Abstract. As the rapid advancement of artificial intelligence (AI), information and 
communication technologies, autonomous driving system (ADS) has increased 
permeation into the traditional automotive industry in recent years. To reduce the 
Safety of the Intended Functionality (SOTIF) risk of autonomous driving system 
hence improving its dependability, SIL simulations are extensively exploited as 
virtual mileage test in compensation of the prohibitively expensive and inefficient 
road test. In SIL simulation, unprotect left-turn is an intricate traffic scenario to be 
reproduced due to the intensive interaction between vehicles at the intersection. 
However, most state-of-the-art commercial simulation software omit the interaction 
modeling. Thus, in this paper, we proposed a driver behavior modeling approach at 
unprotected left-turn scenarios to enhance the authenticity of SIL simulation. The 
left-turn scenario was modelled through three stages, including interaction selection, 
interaction decision and driver behavior modeling, of which a logit model and 
intelligent driver model (IDM) were used for the latter two stages. After model 
calibration, it proves this approach can generate highly authentic traffic flow with 
unbiased feature distribution towards the real-world, indicating its potential in SIL 
simulation performance improvement. 

Keywords. SOTIF, ADS dependability, SIL, Driver Behavior Model, Unprotected 
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1. Introduction 

The development of autonomous driving technologies has witnessed a rapid 

progress in decades. As a safety-critical AI system, it is extremely important to guarantee 

the dependability of the running vehicle deployed with ADS. Due to its superior 

effectiveness, software-in-loop simulation becomes one of the essential SOTIF 

procedures to discover potential hazardous scenarios and examine the inability of the 

system before released to public. It is reported more than 40% of collisions and 20% of 

fatalities occur at intersections while unprotected left-turn scenarios account for a high 
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portion [1][2][3]. Therefore, it is urgent to establish a highly authentic interactive 

behavior model at this scenario to improve validity of SIL analysis [4]. 

This challenge has motivated extensive research activity on the investigation of 

driver behaviors at unprotected left-turn intersections. Based on the literature review, it 

is found that there are 4 types of major simulation modeling schemes: data-driven 

learning method, optimization algorithms, multi-agent systems and traffic flow 

theoretical method [5][6]. Data-driven learning model is trained and implemented to 

simulate more human-like driving behaviors by feeding great amount of naturalistic 

driving data. It can be further categorized into machine learning [7], end-to-end deep 

learning [8], recurrent neural network [9] and deep reinforcement learning [10][11]. This 

type of method relies on the quantity, quality and diversity of training dataset, which 

would lead to performance deterioration in the presence of uncertainties. Multi-agent 

system takes account of complicated interactions between individual traffic participants 

and the surrounding environment [12]. Cellular automata is usually employed to model 

key parameters of the agent, formalized interactive rules including traffic rules, and 

predict the state transition during turning process [13][14]. Although multi-agent 

framework has been continuously developed over years, the calibration of large number 

of parameters and the lack of interpretability limits its implementation. Optimization 

algorithms define the cost function and constraints to determine the behaviors of each 

interactive participant [15]. The heuristic framework normally includes object model, 

kinematic and dynamic models, and proper optimization policies [16]. These 

independent models along with the specific constrains are utilized to simulate the passing 

situation at intersections practically. However, the obtained constrains would increase 

the complexity of solving the optimal as the non-convex quadratic programming (QP) 

problem leads to high computation cost and hence inefficient application [17]. Traffic 

flow theoretical method is widely adopted owing to its advantages of well-abstracted 

scenario representation, high adaptively to complex interactive behaviors, good 

simplicity and interpretability of the model, and low computational cost [18][19][20]. 

This study proposes an innovative framework to model driver behaviors at 

unprotected left-turn intersections with high accuracy and low computational cost. The 

interactive process consists of three stages as interaction object selection, interaction 

decision and driver behavior modeling, which is modelled by a logit model and an 

intelligent driver model (IDM) respectively. Logistic regression model predicts the 

potential conflict points between the interactive vehicles and the corresponding optimal 

yield/take right-of-way (ROW) possibilities. Based on the decided interactive behavior, 

the IDM model provides the constant-velocity or decelerated driving trajectories.  

The paper is organized as follows. The overall modeling process of unprotected left-

turn scenario is described in Section 2. Section 3 demonstrates driver modeling method 

and model details. Subsequently, Section 4 introduces the model calibration method and 

the calibration results. Section 5 demonstrates the efficacy of utilizing the developed 

model to perform SIL simulation to analyses SOTIF issues for autonomous driving 

vehicles. Finally, Section 6 summarizes the study and discuss the future work. 
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2. Overall modeling process of unprotected left-turn scenario 

To simulate the unprotected left-turn scenario, an overall modeling process was devised, 

which was composed of three stages: interaction object selection, interaction decision 

and driver behavior modeling. 

2.1. Interaction object selection 

In the process of selecting interaction targets, we first identified all vehicles that may 

potentially conflict with ego vehicle based on the road network topology. This process 

started from determining conflicts among internal connectors within the intersection 

based on the overlapped region between trajectories. For instance, as shown in Figure 1, 

Connector X and Connector Y were considered to have potential conflict. For the ego 

vehicle, we traversed potential conflict points and searched for opposing lanes that might 

lead to potential conflicts. Subsequently, the conflicting vehicles within these lanes were 

identified. 

 

Figure 1. Potential conflicts between vehicles. 

By constantly collecting real-time locations and heading angels of ego vehicle and 

potential conflict vehicles, the distance and angle between the pair of interactive vehicles 

were calculated. Two criteria were devised for interaction object selection, as shown in 

Figure 2: 

 Whether the object vehicle was in the view field of the ego vehicle, i.e. within 

the range of [-60°, 60°] in the front.  

 Whether the distance between the object and ego vehicles was less than 25 m. 
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Figure 2. Field of view of the ego vehicle: sector-shaped view with an angle of 120° and a radius of 25 m. 

The design of this field of view conformed to the real-world interaction process at 

the intersection, which not only enhanced the anthropomorphism of the modeling 

approach but also improved simulation efficiency by reducing redundant computations. 

2.2. Interaction decision 

At the 2nd stage, we utilized a logit model [21], a statistical model widely used for 

classification and predictive analytics, to determine the interaction mode: whether the 

vehicle take or yield the ROW of its interacting vehicles. The model estimated the 

probability of ego vehicle taking the ROW, based on key parameters including the speed, 

acceleration of ego vehicle and its distance to the conflict point, etc. 

2.3. Driver behavior modeling 

Once the interaction decision of ego vehicle had been determined, an intelligent driver 

model (IDM) [22] was used to model the driver behavior at vehicle control level. IDM 

describes the position and velocity dynamics of a single vehicle, which is widely used as 

a car-following model. For this reason, a virtual lead vehicle was introduced for vehicle 

behavior modeling, which was performed based on the interaction decision:  

 Yield ROW: a stationary virtual lead vehicle was placed at the conflict point, 

the yield behavior to interaction vehicles was thus modeled by yielding the lead 

vehicle.  

 Take ROW: the lead vehicle passed the intersection freely, and the take-way 

behavior was modelled by following the lead vehicle. 
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3. Driver modeling 

3.1. Logit model 

As introduced in Section 2.2, a logit model was established to predict whether the ego 

vehicle yields or takes the ROW during interacting, which was defined as follow: 

��� � ��
����

�  = �� + ���� + ��	� + ��
� + �	�
 + ��	
 + ��

                        (1) 

Where �  represents the probability of the vehicle taking ROW, and the key 

variables include following factors: the speed of ego vehicle V�, ego acceleration 	� , 

distance from ego vehicle to the conflict point d� , speed of interacting object V� , 

acceleration of interacting object 	
 , and distance from of interacting object to the 

conflict point d� .  ��  is a constant term, and ��(� = 1,2, … ,6)  are parameters to be 

estimated from experience. 

3.2. IDM 

As introduced in Section 2.3, IDM was used to model the driver behavior at the 

intersection. Thus, the acceleration of the vehicle was calculated as Eqs. (2) and (3). 

�  	 ∗ �1 − � �
��
�� − ��∗��,∆��� ���  

�∗�, ∆� �� + max �0, ��� �
��

+ � ∗  +
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where �  is the acceleration of ego vehicle, � is the desired speed, ∆ is the speed 

difference between ego and lead vehicle, � is the distance to lead vehicle (rear-end gap), �∗  is the desired distance to lead vehicle, T is the reaction time, 	  is the initial 

acceleration, � is the comfortable deceleration, � is the acceleration index, �� is the safe 

distance to stop and �� is a speed-dependent safe distance selection parameter.   

4. Model calibration 

4.1. Logit model calibration results 

The logit model was calibrated using naturalistic driving data collected at the Jianhe 

Road - Xianxia Road intersection in Shanghai. The long term driving data were first 

preprocessed to segments which were useful for model calibration, including the key 

driving factors of ego and interacting vehicles as shown in Eq. (1). Subsequently, the 

preprocessed date were used to calibrate the model parameters (��-��) through logistic 

regression. 

The calibration results of the parameters are shown in Table 1, which achieved a 

fairly high McFadden R square of 0.959. 
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Table 1. Logit model calibration results (McFadden R square: 0.959) 

Parameters 

Regression Results 

Coefficient 
Standard 

Deviation 
z Wald χ2 p-value OR-value 

V� 4.16 0.65 6.39 40.55 0.000 64.16 
�� 5.09 0.95 5.37 28.82 0.000 161.97 
d� -1.31 0.21 -6.13 37.63 0.000 0.27 
�� -3.00 0.40 -7.55 56.96 0.000 0.06 
�� -8.54 1.30 -6.58 43.22 0.000 0.00 
d� 0.83 0.13 6.39 40.81 0.000 2.29 
�� 4.33 1.30 3.35 11.25 0.001 76.26 

Table 2 shows the 95% confidence interval of each parameter of the logit model 

during calibration. In order to enrich the effect of the decision model, the logit model 

parameters were randomly sampled from the 95% confidence interval during the long-

term traffic flow simulation. 

Table 2. 95% CI OR-value of logit model parameters 

Parameters OR-value 95% CI Parameters OR-value 95% CI 

V� 17.823 ~ 230.970 �� 0.023 ~ 0.109 
�� 25.283 ~ 1037.832 a� 0.000 ~ 0.003 
d� 0.177 ~ 0.410 d� 1.776 ~ 2.953 
�� 6.055 ~ 960.414   

4.2. IDM calibration and results 

The parameter calibration of microscopic traffic flow simulation is essentially a 

combinatorial optimization problem with a specified objective function, and the key to 

this problem is to determine the appropriate objective function. In this study, we 

exploited genetic algorithm (GA) for IDM parameter calibration [23], with the objective 

to minimize the deviation between the simulated and real-world vehicle distance at each 

simulation step. The objective function was defined as Eq. (4), with which GA gradually 

converged towards the optimal parameters combination. 

��� =
�
�  �∑ ����

�

��������
�
��	�



�
��
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�
����!
�
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As introduced in Section 2.3, the driver behavior was modelled in accordance with 

the interaction decision. Thus, the IDM was respectively calibrated in both scenarios. 

Since a virtual lead vehicle was introduced during calibration, a 6th parameter, 
� (initial 

distance between the ego and lead vehicle), was also determined during calibration. 

Similar to the calibration process of the logit model introduced in Section 4.1, the 

calibration data were acquired through preprocessing the naturalistic driving data 

collected at the Jianhe-Xianxia Road, with which the model parameters (��, �, 	, �, �, 
�) were calibrated. Table 3 presents the IDM parameters calibration results. 
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Table 3. IDM parameters calibration results (d0: Initial distance) 

Yield or take 

ROW 

Calibration Results 

S0(m) T(s) a(m/s2) b(m/s2) v0(m/s) d0(m) 

Yield 8.74 5.00 4.76 1.67 9.58 - 

Take 6.93 1.51 3.00 2.96 8.49 10 

5. SIL simulation analysis – highly authentic traffic flow 

To evaluate the human behavior modeling results at the unprotected left-turn, we 

deployed the well-calibrated driver behavior models to a long-term simulation. The 

simulation was generated, using in-house codes, at a virtual Jianhe Road-Xianxia Road 

intersection which was reproduced based on the real-world road dimension. We extracted 

the maximum acceleration of the left-turn vehicle before any vehicle passed the conflict 

region, which was defined as the overlapped region of the trajectories from the left-turn 

and go-straight vehicles. As presented in Figure 3, the distribution of the maximum 

acceleration from simulation was compared with that extracted from real-world data. It 

can be seen that both distributions had a fairly good match, fulfilling a Gaussian 

distribution with mean equal to 0.59 m/s2. Thus, the driver behavior modeling approach 

calibrated with real-world data can produce highly authentic traffic flow in the 

unprotected left-turn scenario with unbiased traffic feature distribution to the real-world. 

  

Figure 3. Comparison between the simulated and real-world traffic flow at Jianhe-Xianxia Road intersection 
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6. Conclusions 

In this paper, we proposed a driver behavior modeling approach at unprotected left-turn 

scenarios to enhance the SIL simulation for autonomous driving SOTIF risk reduction 

and ADS dependability analysis. The modeling process consisted of three stages: 

interaction object selection, interaction decision and driver behavior modeling. The 

driver behavior models were calibrated using real-world traffic data, which were 

deployed to generate traffic flow at a virtual intersection reproduced based on real-world 

dimension. From the modeling results, the following conclusions can be drawn:  

 The driver behavior modeling approach can produce highly authentic traffic 

flow with unbiased feature distribution to the real-world, it can be utilized to 

improve the SIL simulation authenticity and thus facilitating the reduction of 

autonomous driving SOTIF risk through virtual mileage test.  

Future work can seek further improvement in SIL simulation authenticity for SOTIF 

risk reduction, such as extending the driver behavior modeling approach to more traffic 

scenarios and developing more advanced driver behavior models. Potential research 

challenge could reside in improving the model generalization in different traffic 

scenarios. 
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