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Abstract. This paper presents an online optimization method for metro network
train scheduling and passenger flow assignment based on multi-agent reinforcement
learning, aiming at minimizing traction energy consumption and average passenger
waiting time. The problem is modeled as a multi-agent Markov decision process
using a multi-agent actor-critic framework for network train scheduling and a deep
deterministic policy gradient framework for passenger flow assignment. All agents
interact with the same metro simulation environment, which generates train
timetables and passenger flow assignments that meet complex constraints. Results
of the case study on anonymized data of Chongging Metro show that the proposed
method outperforms baseline scenarios and is able to adjust train schedules and
passenger flow assignments in real-time when passenger flow distribution fluctuates,
demonstrating its effectiveness and robustness.
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1. Introduction

Metro systems play an important role in alleviating traffic congestion and improving the
quality of life for people. However, the enormous energy consumption contributes to
significant operating costs. At the same time, train schedules often fail to match dynamic
passenger demand. During peak hours, overwhelming passenger flow frequently
surpasses train capacity, whereas during off-peak hours, the low number of passengers
may cause resource wastage. Therefore, it is vital to achieve a match between passenger
demand and train scheduling to improve the energy efficiency of the metro system while
maintaining high-quality passenger service.

There have been a number of researches regarding the online optimization of train
timetables or passenger flow. Many studies employ integer programming or mixed
integer programming to solve real-time train scheduling problem [1,2,3]. Distinct from
integer programming or heuristic methods, reinforcement learning yields not a specific
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solution, but a trained model, which can rapidly generate a new solution when
environment shifts, making it suitable for online optimization. Many scholars have
developed reinforcement learning for train scheduling with a focus on minimizing energy
consumption [4] or passenger waiting time [5]. Yang et al. [6] applied deep deterministic
policy gradient algorithm (DDPG) to timetable rescheduling problem under disturbances
with the goal of energy conservation. Ying et al. [7] proposed a proximal policy
optimization method based on deep reinforcement learning to achieve integrated
optimization of metro service scheduling and train composition on a single line. They
later extended the problem to multiple lines in a metro network and employed a multi-
agent deep deterministic policy gradient algorithm to it [8]. Aiming at real-time
passenger route guidance, Jia [9] implemented DDPG algorithm under the condition that
guidance information is provided to every passenger, and mitigated the congestion
problem in partial network.

However, there is room for further optimization when considering the entire system,
rather than optimizing the train schedule or passenger flow distribution unilaterally.
Train flow, passenger flow, and energy flow form the heart of the dynamic operation of
the metro system. They do not exist independently but instead interact with each other.
Achieving integrated optimization of the train flow and passenger flow is the key to
improving the overall efficiency of the metro system. Some studies propose train
scheduling with collaborative passenger flow control on oversaturated metro lines,
limiting the number of passengers from entering platforms to prevent congestion
[10,11,12,13]. Shang [14] developed a train operation and passenger distribution space-
time network to optimize train skip-stopping pattern, schedules, and passenger flow
control strategies. Liu et al. [15] proposed a mixed integer linear programming model for
train scheduling, train connection, and passenger flow control issues.

Other literature considers offering appropriate guidance for passengers during route
selections and proposes the joint optimization of passenger flow assignment and train
scheduling [16]. Zhang et al. [17] proposed a global safety evaluation method for
regional rail transit systems and explored the collaborative optimization of passenger
flow assignment and train scheduling from minimizing global risk. Zhao [18] considered
the same problem from the perspective of energy consumption and passenger waiting
time using CCGA combined with NSGA-II. However, most of the methods are suitable
only for offline optimization. When disturbances occur in train operations or passenger
flow, they are unable to adjust them in real-time. Therefore, further research is needed
for online collaborative optimization of train scheduling and passenger flow assignment.

This paper introduces a collaborative online optimization method for train
scheduling and passenger flow assignment based on multi-agent reinforcement learning.
A multi-agent actor-critic framework is used for train scheduling and a deep
deterministic policy gradient framework is adopted for passenger flow assignment. At
each stage, the schedule control agents decide the dispatching time of the service, the
travel times between stations and the dwell times at each station. The agent for passenger
flow assignment provides the distribution ratio of different passenger routes. The goal is
to minimize traction energy consumption and the average passenger waiting time. All
agents interact with the same metro simulation environment, which generates train
timetables and passenger flow assignments that meet complex constraints. The approach
allows for real-time adjustments to timetables and passenger flow assignments in
response to dynamic passenger flow. Case studies show that the proposed method
outperforms baseline scenarios, demonstrating its effectiveness and robustness.
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The rest of the paper is organized as follows. Section 2 provides a description of the
metro system model. Section 3 presents the problem as a multi-agent Markov decision
process and introduces the deep reinforcement learning framework. Section 4 tests the
effectiveness of the approach under anonymized data from real-world scenarios of
Chongqing metro. Section 5 presents conclusions and future work.

2. Metro System Model
2.1. Assumptions

In order to simplify the metro system, we adopt the following assumptions:

1. All passengers are assumed to follow the assigned route, thereby implementing
passenger flow guidance strategy [18].

2. Passengers are assumed to arrive directly at the platform to wait for the train,
with the walking time at the stations disregarded.

3. The process of passenger embarkation and disembarkation is assumed to be
instantaneous and not affected by the dwelling time of the trains [18].

4. All trains are assumed to run according to the timetable without encountering
congestion or disturbances [8].

Parameters and symbols used in the metro system model are shown in Table 1.

2.2. Metro Network Model

For the metro network, £ = {1,2,..., L} denotes the set of service lines, where L is the
total number of lines, and [ € £ symbolizes each individual line. Every line has two
directions which share the same physical stations but possess different parameters and
states when calculating passenger and train flow. To make a distinction, we use £ =
{£1,42, ..., £L} to represent the set of lines in different directions, where [ € Lis the
line index, [ = 1,2,...,L corresponds to the upward direction of the lines, and [=
—1,-2, ..., —L represents their downward direction.

We further define R; = {1, 2, ..., R;} as the set of stations on line [, where R; is the
total number of stations, and r; € R; stands for each station. The origin station in the
upward direction on line [ is 1;, and the terminal station is R;. For the downward
direction, it starts at 1_; and terminates at R_;.

Upward direction of line [

-

L 4 3 Ry

s B

Ry Ry-1 R,-2 1,
-

Downward direction of line [

Figure 1. Index of stations in the upward and downward directions on line [
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Table 1. Parameters and symbols used in the metro system model

Notation Definition
L Set of service lines that indicates different directions
[ Index of service lines that indicates different directions
l Index of service lines that do not indicate different directions
R; Number of stations on line [
R Set of stations on line [
TP Index of stations on line [
k; Index of train service on line [
t,fle fl art Departure time of service k; at station r;
t“,rrrlm Arrival time of service k; at station 7;
t,‘fl“;‘l"” Dwelling time of service k; at station r;
t;:ﬂll Running time of service k; between station r; and station r; + 1
Thegin Metro operation start time
Tona Metro operation end time
Ei(t) The traction energy in the power supply zone j from the start of the simulation to time t
[0) The sampling frequency of the OD matrix
Wi The passenger waiting time at statiqn r; from t'he dep.arture of the (i-1)-th train until the
o arrival of the i-th train
Cir, The number of passengers on board when the i-th train on line [ leaves station r;
Ja Set of stations in section d
wl{ The average waiting time at each station of section d during (Tbegin + (= D, Tpegin +jcb]
pé The average load rate at each station of section d during (Tbegm + (= D, Tpegin + j¢o]

2.3. Train Operation Model

We now present the discrete event model for train operations. Given the train service k;
on line [, the departure time of such service at station rj can be derived as

depart depart dwell run N e N
by tiyri—1 +bgr, T tgr-0Ti ERpT#F L (1)

run

where t;7" is the running time between station { and station ; + 1 and glevart

k1 S
the dwelling time at station ry. Similarly, the arrival time of service k; at station rj can
be determined as

arrive _ depart run s .
Ciyry tiyr-1 + -0 T E R # )

We adopt the optimal speed curve of maximum acceleration, coasting and maximum
braking [19] for train operations between stations, where it first reaches a predetermined
speed with maximum traction force, then switches to coasting before applying maximum
braking force until it stops. The running resistance is estimated by the Davis Formula
[18]. Constant coefficients are used to calculate the motor and line losses. Then, the
mechanical power of the train can be determined according to its dynamics, and the
electric power P} (t) and PJ(t), produced by trains in the traction and braking states
respectively within power supply zone j at time t, can be derived. Let the proportion of
regenerative energy directly used by other trains be A, the total traction energy E/(t) in
the power supply zone j from the start of the simulation to time t can be established as
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Ei(t) = fot max(PTj W) + AP (W), 0)du 3)
2.4. Passenger Flow Model

Passenger flow can be modeled by OD demand, which describes the number of
passengers from departure stations to destination stations. Let ¢ be the the sampling
frequency, Thegin be the metro operation start time, and B be the total duration, then the
OD demand of line [ in the time period (7 — ¢, T] can be represented by the matrix
0D, (1), where T € {Tpegin + &, ..., Thegin + BP}. From the OD matrix, we can calculate
passenger entry rate odri‘r{ (t) from station r; to station r; on line [ at time t (unit:

person/unit time). The number of passengers arriving at station r; with a destination of
station 17 is the time integral of Odrz,r{(t)‘ If all passengers waiting at station r; can

board the train without causing overloading, then they all board. Otherwise, they board
according to a certain ratio, so that the train is just fully loaded.

Let Ny, (t) be the number of passengers waiting at station r; at time t, the waiting
time Wi, for passengers at station r; from the moment the (i-1)-th train departs until the

arrival of the i-th train can be calculated as

tfiepart

Wi,rz = ftd'e;art nri (t)dt (4)

l—1,r1

In order to extract the characteristics of passenger flow distribution, we divide the
network into different sections using transfer stations as segmentation points. The two
ends of each section are the two closest transfer stations in the same direction on the
same line. Let D be the total number of sections, J; be the set of stations in section d, Ry
be the total number of stations in section d, then the average waiting time wé and the
average load rate pé at each station of section d during (Tbegin + (= Db, Tpegin + jcl)]
can be obtained as

Theginti®
i Zrielq fTbegin+(j—1)¢nTz(t)dt .
Wy = Rq (5)
j_ Zici'rz depart . .
Pg =" "3 t € (Tbegin + (] - 1)(1): Tbegin +]¢]'Ti e]d (6)

j ’ i’rA
RiCmaxQy l

where Qi represents the number of trains passing through section d during
(Tbegm + G = Db, Tpegin + jcl)], Cir, is the number of passengers on board when the i-

th train on line [ leaves station 11, and Cpqy 1s the maximum number of passengers on a
train.

For passenger transfers, if a passenger traveling from station ‘a' to station 'm'
chooses the route ‘a-b-c-g-h-1-m' (see Figure 2), we divide it into three different routes
‘a-b-c', “c-g-h', and ‘h-l-m', generate three passengers each choosing the three routes
separately, and add them to the OD matrix.
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Figure 2. Diagram of passenger transfer model

3. Metro System Model

In this section, we model train scheduling and passenger flow assignment problems as
Markov decision processes. We develop multiple agents each responsible for train
scheduling in one direction on one line, along with another agent specifically for
passenger flow assignment. All agents interact with the same metro simulation

environment, which is built according to Section 2. The list of associated symbols is
shown in Table 2.

Table 2. Symbols used in the reinforcement learning model

Notation Definition
Sny State feature set of train scheduling on line [ at stage n
an, Action set of train scheduling on line [ at stage n
Snpsg State feature set of passenger flow assignment at stage n
Appse Action set of passenger flow assignment at stage n
by, r, The number of people boarding the n-th train of line [ at station ;
m The proportion of passengers traveling from station i to station j assigned to
nij the m-th route during (Tbegin + 1, Thegin + (1 + 1]
® The attraction factor of section d to the passenger flow during (T,,egm +
m b, Thegin + (n + 1)b]
D} The set of sections in the m-th route of the OD pair from station i to station j
Ty Reward of train scheduling on line [ at stage n
Tipsg Reward of passenger flow assignment at stage n
gturn Minimum turnaround time for a train at the terminal station
Ronins Pmax Minimum and maximum departure intervals of trains
Umin» Umax Minimum and maximum headways over all stations
Imin» Imax Minimum and maximum dwelling time of trains
Ao i oo Minimum and maximum running time of trains between station r; and station
v v ri+1
Crnax Maximum number of passengers on a train
Q Maximum number of trains that can be dispatched on line [

3.1. State Sets and Transitions

We model train scheduling as a multi-agent Markov process, where each agent generates
the timetable of all trains on one direction of a single line. Stage n describes the journey
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of a train running from the origin station to the terminal station. For each line \(\hat{I}\),
we define the state feature set of stage n as

_ depart run depart . arrivei|... K
sni - {[Wni,rz,’ tn—i_l'l—i’ tn_z—l,r_i' bni,rz,' tni‘ri ) tﬂ.z,rz ]lrl € Rl} (7)

where Wn,ro, is the passenger waiting time at station r; from the departure of the (n-

1)-th train until the arrival of n-th train, t2¢?"

Tl_z—l,l_
running times of the (n-1)-th train in the opposite direction of line I, and b"m: is the

' and t:ll_t?—l,r_i are the departure and

number of people boarding the n-th train of line [ at station T}.

The train scheduling simulation is established with a variable step size and P"i is
defined in snz+1~Pnz(snz' anz) as the state transition function. The initial state is set to
So, = 0. The agent gives action a,,to the environment, and the environment updates the
next state Sy, 1. The episode terminates when the arrival time of the last train at the
terminal is greater than metro operation end time T,,,4.

For passenger flow assignment, we also model it as a Markov decision process.
Stage n describes the passenger flow in (Tbegin + (= 1P, Tpegin + ncl)] , where
n=1,2,..,B. Given the total number of sections D, each stage n can be characterized by
the average waiting time wj and the average load rate p]} calculated in Eq.(5) and Eq.(6).

Snpsg = (M wa, pglld € [1,D]} ®)

Mpsg

We use the fixed step size of ¢ in the passenger flow assignment simulation and
define By, in snpsg+1~Ppsg (Snpsg’anpsg) as the state transition function. The initial
state is set to 5o, = 0 and the episode terminates when n equals B.

3.2. Action Sets

The action set a,, of the schedule control agent of line [ includes the departure interval
h"i“ between the n-th train and the (n+1)-th train, the running times and dwelling times
of the (n+1)-th train at each station.

a,

— dwell
1= {[hnz+1' tr‘rl;lrl,riitn;-ﬁ,ri]lri € Ri' rp#F Ri} 9

The action set Ay, of the agent for passenger flow assignment is denoted as

anpsg = {wn,dld € [LD]} (10)

where w,, 4 is the attraction factor of section d to the passenger flow during
(Tbegin + 1P, Tpegin + (n + 1)(1)]. We further convert it into the proportion of each OD
demand choosing each route. We denote the number of routes of the OD pair from station
i to station j as M;;, the set of stations in the m-th route as D;}’, and the proportion of
. . . Mij
passengers assigned to the m-th route in stage n as xp;;. To satisfy Zmzl xip =1, we
have
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ZdeD{’}“’n'd

m _

Xnij = 13; (11)
p=1 Zdeufj “na

3.3. Reward Functions

The optimization goal for train scheduling is to minimize total traction energy
consumption and the average passenger waiting time. We design the reward rfi related

to the energy consumption on line and the reward r,{‘z’ associated with passenger waiting
time. Given the coefficients b; and b,, the reward function T for line [ can be written
down as

To, = blr,f; + bomy) (12)

For the reward r,{’iv , we define Gn; aS the total number of passengers waiting on the
platform when the n-th train arrives at each station, W, as the sum of Wy, at each

station, wy as a specified waiting time benchmark, b; and b, as the weighting factors,
then the reward can be represented as

AWni = an - Wognz (13)

r,‘{‘{ = sgn (Aan) Gn, €XP (b3 |Awnz| — 1) + b4gni (14)

For the reward rfz, we define Enz as the total traction energy from the start of the

simulation to time t,‘fir, E‘i"e, Epase (t,‘f; ;Li”e) as the known traction energy of the baseline

scenario without optimization up to time t,‘flr g;”‘f, then the reward can be derived as

E Eny
Tni =1- arrive (15)
Ebase(tni,Ri )

The objective for passenger flow assignment is to minimize total passenger waiting

time. We consider the reward function Tipse for passenger flow assignment at stage n as

rnpsg = b5 Z?:n—d 23=1 Wllmse,d - Z?:n—S Zg:l Wzli (16)

where w), is the average waiting time of each station in section d during
(Tbeg,-n + (= D, Tpegin + iq)], Whasea is the corresponding known waiting time of
the baseline scenario, and bg is a coefficient. The reward Tnpsg reflects the gap in
passenger waiting time between the optimized passenger flow and the original flow
during (Tyegin + (1 — 8 — D, Tpegin + n).

Finally, we aim to minimize the cumulative rewards of train scheduling and
passenger flow assignment over all stages.
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3.4. Constraints

There are a series of constraints set for the optimization model. We first have the
boundaries for train departure intervals as

depart depart
hmin < tk;’ﬂz - tkl,li < himax, Yk > Ky (17)

where h,;, and h,,, are the minimum and maximum departure intervals
respectively. We also set a limit Q; for the number of trains that can be dispatched on
line ! and C,,,, for the maximum number of passengers on a train. Furthermore, there is
a minimum turnaround time t*“"™ for a train (denoted as q;) after it arrives at the terminal
station.

depart arrwe turn !
bty = Lk + ¢ Yk >k, (18)

We introduce u,,;, and u,,,, as the minimum and maximum headway over all
stations, which is the time interval between the departure of the previous train and the
arrival of the next train at the same station.

arrive depart 1
Umin < tk’rl tklfz < Upaw VK > Ky (19)

The dwelling time of trains has to satisfy the minimum and maximum bounds of
Imin aNd Gay- Similarly, there are boundaries for the running time of trains between
station r;and station 7; + 1, noted as drz‘min and drz,max.

dwell
Gmin = tkl‘f\;? < Imax (20)
drl min = tlc;l;ll < dri,max (21)

In terms of passenger flow assignment, we believe the longest feasible path for each
OD should be at most three stops or one transfer station longer than the shortest path to
avoid assigning passengers to excessively long paths In addition, because the

distribution ratio x,;; needs to be non-negative, if Zp 1 D o?, Wpqg =0 inEq.(11),all

passenger flows will be allocated to the shortest path.
3.5. Multi-agent Reinforcement Learning Framework

Due to the dimension explosion problem in train scheduling and passenger flow
assignment, it is difficult to find an optimal solution. Here, we propose a multi-agent
reinforcement learning framework to solve the train scheduling problem, and a deep
deterministic policy gradient framework for passenger flow assignment.

Regarding train scheduling, we use a multi-agent framework based on the actor-
critic algorithm (MAA2C). We adopt two actor networks for each line responsible for
the scheduling of trains in the upward and downward direction respectively. The two
actors work cooperatively, sharing the same reward and critic network. During training,
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the decentralized actors receive local states from the environment and derive a set of
actions with the goal of finding the optimal policy that maximizes future rewards. The
centralized critic is used to estimate the state value function from a global perspective.
During execution, only the actors are required to generate actions, while the critic is no
longer needed. This framework with centralized training and decentralized execution not
only makes it possible to maintain the association and synergy between the two agents
but also speed up the execution process [20].

We further extend the single-line MAA2C network to multiple lines, thus forming
the framework for network train scheduling (See Figure 3). Given that the trains running
on different lines are not shared, train schedules on one line have negligible impact on
the energy consumption or passenger waiting times on other lines. Therefore, we
consider scheduling on different lines as independent tasks, with the MAA2C network
for each line trained separately. Although the networks of different lines do not share the
same parameters, states or actions, they all interact with the same environment. The
training process of the networks is the same as the A2C algorithm in [21].

Line 1 Line 2 Line m
Critic ANN for line 1 Critic ANN for line 2 H  Critic ANN for line m

Actor ANN [l Actor ANN ] Actor ANN Bl Actor ANN § Actor ANN
For downward For upward For downward d For upward For downward
direction of line 1M direction of line 2 direction of line 2 H direction of line 3

Simulation Environment of the Metro System

Figure 3. The MAA2C framework for network train scheduling

For passenger flow assignment, we adopt a deep deterministic policy gradient
algorithm (DDPGQ), the training process of which is the same as the DDPG algorithm in
[22]. The DDPG network for passenger flow assignment and the MAA2C networks for
train scheduling operate independently, and do not share parameters, states or actions.
However, they all interact with the same environment, deriving their corresponding
states from the same passenger flow distribution and timetables, so as to achieve the
collaborative optimization of train scheduling and passenger flow assignment.

4. Numerical Experiments
4.1. Experiment Settings

The reinforcement learning framework is tested with anonymized data from real-world
scenarios of Chongqing Metro Line 1, Line 2, and Line 3. The metro network topology
is presented in Figure 4 with a total of 84 stations and 20 sections. The sampling
frequency of the passenger flow data is 15 minutes, and the operating hours are from
6:00 am to 23:00 pm [17, 18].
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Figure 4. The metro network topology of Chongqing Metro Line 1, 2, 3

In the experiment, we set the maximum passenger capacity C,,, to 1440. For each
line, the maximum number of trains that can be dispatched Q; is set at 50. The minimum
and maximum departure intervals h,,;, and h,,,, are set as 170s and 480s respectively.
The minimum and maximum headways u,,,;,, and u,,,, over all stations are set as 120s
and 720s. The minimum train dwelling time g,,;, is set to be 20s, and the maximum
Jmax 18 set to be 35s. The cruising speed between stations ranges from a minimum of
20m/s to a maximum of 25m/s, from which the minimum and maximum running times
drz,min and drz‘max can be derived based on the station distances. The minimum

turnaround time t*“'™ is set as 218s.

All experiments in this study are carried out on a Windows machine with 32.0GB of
memory, an Intel Xeon E5-2678 v3 CPU with 12 cores and 24 logical processors, and a
NVIDIA GeForce RTX3090 GPU with 10496 CUDA cores. All algorithms and
programs are coded in Python 3.8 and Tensorflow 2.4.0.

4.2. Results

Figure 5 illustrates the reward curve of the training process with a total of 400 episodes
performed. The vertical axis depicts the cumulative reward of all agents per episode, and
the horizontal axis represents the number of episodes. Within one episode, each schedule
control agent conducts about 120-170 steps. In each step, it generates the arrival and
departure time for the next train at all stations. The agent for passenger flow assignment
conducts 68 steps in one episode, generating the attraction factors of each section within
the next 15 minutes. Despite the potential of a drop in the middle of the curve leading to
a sub-optimal solution, the agents can navigate their way out of it and eventually identify
a better outcome. After about 150 episodes, the reward begins to stabilize, although
minor fluctuations may occur due to random exploration.

Figure 6 presents the curves of passenger demand and the corresponding departure
intervals for Line 3 in both upward and downward directions. During the peak hours
around 8:00 am and 18:00 pm, passenger demand spikes to its maximum, and the
departure interval derived by the agent decreases in response to this, effectively reducing
passenger waiting time. In addition, the running times are shortened and the train speed
increases during these periods, further reducing passenger waiting times. In off-peak
periods, the agent increases the departure interval to minimize traction energy
consumption of the metro system.
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Figure 6. Passenger demand and the corresponding departure intervals derived by the agent on Line 3

To further compare the effects of our optimization, we design five scenarios as

follows:

1. Baseline: Trains adopt a fixed timetable, and all passengers follow the shortest
path without any guidance. The operating speed of trains follows a curve of
maximum acceleration up to 21.75m/s, at which point it enters a coasting state,
before finally decelerating at the maximum rate. Train departure interval is
fixed at 418s and the dwelling time at each station is set to 30s.

2. PG: The passenger flow assignment agent trained under baseline train schedules
is applied. The departure interval is fixed at 418s, the dwelling time at 30s, and
the cruising speed between stations is set to 21.75m/s.

3. TS: The schedule control agents trained in joint optimization are applied
without passenger flow assignment. All passengers follow the shortest path.

4. TS+PG: The schedule control agents trained in joint optimization and the
passenger flow assignment agent trained under baseline train schedules are
applied. In other words, train scheduling and passenger flow assignment are
optimized separately, then simply superimposed.

5. TSPG: The schedule control agents and the passenger flow assignment agent
both trained in joint optimization are applied.

Table 3 shows the traction energy consumption and the average passenger waiting

time of the five scenarios. Compared with baseline timetable, those after the trial-and-
error learning of the agents show improvements in both of these indicators. With the
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implementation of passenger flow assignment, the average passenger waiting time in
scenario TS+PG decreased by 1.5% compared to scenario TS, which shows the
effectiveness of passenger flow assignment. Both indicators of scenario TS+PG are
higher than those of scenario TSPG, indicating that the simple superposition of the two
separate optimizations may lead to worse solutions if they are not well-matched with
each other. Therefore, it is necessary to optimize train scheduling and passenger flow
assignment jointly to achieve better results.

Table 3. Test results of different scenarios

Plans Full-day traction energy consumption/kWh Passenger average
Line 1 Line 2 Line 3 All waiting time/min
Baseline ~ 650281%% 6713240% 10455140% 23671140% 5.7340%
PG 6512210-15% 6702310-16% 1046781012% 23682310:05% 5.681087%
TS 57900”0.96% 61057l9.05% 104850l0.29% 221967l6.23% 5.21l9.08%
TS+PG 5821041048%  604574994% 10399310-53% 2226604-94% 5.1341047%
TSPG 5872940-69% 59831 11088% 1034324107 2219921622% 5.1141082%

The proposed collaborative optimization approach in this study, while generally
requiring longer computing time for training compared with unilateral optimizations,
takes into account the interaction between trains and passenger flow during training,
ultimately yielding better optimization results. This demonstrates the effectiveness of the
proposed multi-agent reinforcement learning framework in joint optimization.
Additionally, it shows that collaborative optimization is not merely a simple aggregation
of individual optimizations of separate parts. The interaction between trains and
passenger flow can influence the optimization effect. There is indeed room for
optimization in the metro system as a whole.

4.3. Robustness and Real-Time Analysis

One of the advantages of reinforcement learning is that they can generate optimal policies,
rather than solutions. The passenger flow changes every day, and it would be time-
consuming to retrain the model each time [23]. If the trained agent is able to respond to
the current demand changes without needing to retrain, its robustness can be verified, as
well as its practical value in engineering applications. Here, we generate a surge in
passenger flow to test the robustness. We assume a tenfold increase in the passenger flow
at GM Station on Line 3 from 10:30 am to 12:00 am, while the passenger flow during
other time periods and at other stations remains unchanged. Figure 7 shows the curves
of the shifted passenger demand and the corresponding departure intervals derived by
the agents trained on the original passenger flow. In response to the changes in passenger
demand, the departure interval of the shifted passenger flow decreases to a certain extent
after 10:30, and gradually returns to the original interval by 12:00. This suggests that the
reinforcement learning networks are capable of capturing the complex state transitions
and related interactions of train and passenger flows during training, generating reliable
state estimation and train schedules in response to demand changes.

Finally, we evaluate the real-time performance of the proposed approach. For
generating a set of actions based on the current state, it takes an average of 0.06s for a
train scheduling agent and an average of 0.07s for the passenger flow assignment agent.
The reinforcement learning agent can adjust the timetable of the next train in real-time,
thus is capable of online optimization.
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Figure 7. Shifted passenger demand and the corresponding departure intervals derived by the agents

5. Conclusion

This study introduces a multi-agent deep reinforcement learning framework for
collaborative online optimization of networked train scheduling and passenger flow
assignment. Our approach is able to adjust train schedules and passenger flow
assignment strategies in real-time when passenger flow fluctuates, thereby effectively
reducing traction energy consumption and the average passenger waiting time. The train
and passenger flow simulation is based on a discrete event system and the optimization
problem is modeled as a multi-agent Markov decision process, using a multi-agent actor-
critic algorithm for train scheduling and a deep deterministic policy gradient algorithm
for passenger flow assignment. The simulation environment and the agents are tested
under anonymized data from real-world scenarios of Chongqing Metro Lines 1, 2, and 3.
The results show that our agents can outperform baseline scenarios, demonstrating its
effectiveness, robustness and real-time performance.

For future research, we hope to expand our experiment to the entire network of
Chongqing Metro to test the versatility of our approach. Beyond train scheduling and
passenger flow assignment, there is potential for further optimization within the urban
rail transit system such as train operation and train composition. How to incorporate more
factors and combine them for an integrated optimization is a direction worth exploring.
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