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Abstract. This paper presents an online optimization method for metro network 
train scheduling and passenger flow assignment based on multi-agent reinforcement 
learning, aiming at minimizing traction energy consumption and average passenger 
waiting time. The problem is modeled as a multi-agent Markov decision process 
using a multi-agent actor-critic framework for network train scheduling and a deep 
deterministic policy gradient framework for passenger flow assignment. All agents 
interact with the same metro simulation environment, which generates train 
timetables and passenger flow assignments that meet complex constraints. Results 
of the case study on anonymized data of Chongqing Metro show that the proposed 
method outperforms baseline scenarios and is able to adjust train schedules and 
passenger flow assignments in real-time when passenger flow distribution fluctuates, 
demonstrating its effectiveness and robustness. 
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1. Introduction 

Metro systems play an important role in alleviating traffic congestion and improving the 

quality of life for people. However, the enormous energy consumption contributes to 

significant operating costs. At the same time, train schedules often fail to match dynamic 

passenger demand. During peak hours, overwhelming passenger flow frequently 

surpasses train capacity, whereas during off-peak hours, the low number of passengers 

may cause resource wastage. Therefore, it is vital to achieve a match between passenger 

demand and train scheduling to improve the energy efficiency of the metro system while 

maintaining high-quality passenger service. 

There have been a number of researches regarding the online optimization of train 

timetables or passenger flow. Many studies employ integer programming or mixed 

integer programming to solve real-time train scheduling problem [1,2,3]. Distinct from 

integer programming or heuristic methods, reinforcement learning yields not a specific 
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solution, but a trained model, which can rapidly generate a new solution when 

environment shifts, making it suitable for online optimization. Many scholars have 

developed reinforcement learning for train scheduling with a focus on minimizing energy 

consumption [4] or passenger waiting time [5]. Yang et al. [6] applied deep deterministic 

policy gradient algorithm (DDPG) to timetable rescheduling problem under disturbances 

with the goal of energy conservation. Ying et al. [7] proposed a proximal policy 

optimization method based on deep reinforcement learning to achieve integrated 

optimization of metro service scheduling and train composition on a single line. They 

later extended the problem to multiple lines in a metro network and employed a multi-

agent deep deterministic policy gradient algorithm to it [8]. Aiming at real-time 

passenger route guidance, Jia [9] implemented DDPG algorithm under the condition that 

guidance information is provided to every passenger, and mitigated the congestion 

problem in partial network. 

However, there is room for further optimization when considering the entire system, 

rather than optimizing the train schedule or passenger flow distribution unilaterally.  

Train flow, passenger flow, and energy flow form the heart of the dynamic operation of 

the metro system. They do not exist independently but instead interact with each other. 

Achieving integrated optimization of the train flow and passenger flow is the key to 

improving the overall efficiency of the metro system. Some studies propose train 

scheduling with collaborative passenger flow control on oversaturated metro lines, 

limiting the number of passengers from entering platforms to prevent congestion 

[10,11,12,13]. Shang [14] developed a train operation and passenger distribution space-

time network to optimize train skip-stopping pattern, schedules, and passenger flow 

control strategies. Liu et al. [15] proposed a mixed integer linear programming model for 

train scheduling, train connection, and passenger flow control issues. 

Other literature considers offering appropriate guidance for passengers during route 

selections and proposes the joint optimization of passenger flow assignment and train 

scheduling [16]. Zhang et al. [17] proposed a global safety evaluation method for 

regional rail transit systems and explored the collaborative optimization of passenger 

flow assignment and train scheduling from minimizing global risk. Zhao [18] considered 

the same problem from the perspective of energy consumption and passenger waiting 

time using CCGA combined with NSGA–II. However, most of the methods are suitable 

only for offline optimization. When disturbances occur in train operations or passenger 

flow, they are unable to adjust them in real-time. Therefore, further research is needed 

for online collaborative optimization of train scheduling and passenger flow assignment. 

This paper introduces a collaborative online optimization method for train 

scheduling and passenger flow assignment based on multi-agent reinforcement learning.  

A multi-agent actor-critic framework is used for train scheduling and a deep 

deterministic policy gradient framework is adopted for passenger flow assignment. At 

each stage, the schedule control agents decide the dispatching time of the service, the 

travel times between stations and the dwell times at each station. The agent for passenger 

flow assignment provides the distribution ratio of different passenger routes. The goal is 

to minimize traction energy consumption and the average passenger waiting time. All 

agents interact with the same metro simulation environment, which generates train 

timetables and passenger flow assignments that meet complex constraints. The approach 

allows for real-time adjustments to timetables and passenger flow assignments in 

response to dynamic passenger flow. Case studies show that the proposed method 

outperforms baseline scenarios, demonstrating its effectiveness and robustness. 
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The rest of the paper is organized as follows. Section 2 provides a description of the 

metro system model. Section 3 presents the problem as a multi-agent Markov decision 

process and introduces the deep reinforcement learning framework. Section 4 tests the 

effectiveness of the approach under anonymized data from real-world scenarios of 

Chongqing metro. Section 5 presents conclusions and future work. 

2. Metro System Model 

2.1. Assumptions 

In order to simplify the metro system, we adopt the following assumptions: 

1. All passengers are assumed to follow the assigned route, thereby implementing 

passenger flow guidance strategy [18]. 

2. Passengers are assumed to arrive directly at the platform to wait for the train, 

with the walking time at the stations disregarded. 

3. The process of passenger embarkation and disembarkation is assumed to be 

instantaneous and not affected by the dwelling time of the trains [18]. 

4. All trains are assumed to run according to the timetable without encountering 

congestion or disturbances [8]. 

Parameters and symbols used in the metro system model are shown in Table 1. 

2.2. Metro Network Model 

For the metro network, ℒ � �1,2, . . . , 	
 denotes the set of service lines, where 	 is the 

total number of lines, and � ∈ ℒ symbolizes each individual line. Every line has two 

directions which share the same physical stations but possess different parameters and 

states when calculating passenger and train flow. To make a distinction, we use ℒ� �

��1, �2, … , �	
 to represent the set of lines in different directions, where �� ∈ ℒ� is the 

line index, �� � 1,2, … , 	  corresponds to the upward direction of the lines, and �� �

�1, �2, … , �	 represents their downward direction. 

We further define ℛ�� � �1��, 2��, … , R��
 as the set of stations on line �, where R�� is the 

total number of stations, and ��� ∈ ℛ�� stands for each station. The origin station in the 

upward direction on line �  is 1� , and the terminal station is R� . For the downward 

direction, it starts at 1�� and terminates at R��.  

 

Figure 1. Index of stations in the upward and downward directions on line � 
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Table 1. Parameters and symbols used in the metro system model 

Notation Definition 

ℒ� Set of service lines that indicates different directions 

�� Index of service lines that indicates different directions 

� Index of service lines that do not indicate different directions 

R�� Number of stations on line �� 
ℛ�� Set of stations on line �� 
��� Index of stations on line �� 
��  Index of train service on line � 

���,���
���	�


 Departure time of service ��  at station ��� 
���,���
	����� Arrival time of service ��  at station ��� 
���,���
����  Dwelling time of service ��  at station ��� 
���,���
���  Running time of service ��  between station ��� and station ��� + 1 

������ Metro operation start time 

���� Metro operation end time 

��	�
 The traction energy in the power supply zone j from the start of the simulation to time t 

� The sampling frequency of the OD matrix 

��,�
��
 The passenger waiting time at station ��� from the departure of the (i-1)-th train until the 

arrival of the i-th train 

�,�
��
 The number of passengers on board when the i-th train on line �� leaves station ��� 

�� Set of stations in section d 

��

�
 The average waiting time at each station of section d during ������� + 	� − 1
ϕ,������ + �ϕ� 

��
�
 The average load rate at each station of section d during ������� + 	� − 1
ϕ,������ + �ϕ� 

2.3. Train Operation Model 

We now present the discrete event model for train operations. Given the train service �� 
on line �, the departure time of such service at station ��� can be derived as 

                ���,���
��	
��

= ���,����
��	
��

+ ���,���
����� + ���,����

��� , ��� ∈ ℛ��, ��� ≠ 1�� (1) 

where ���,���
���  is the running time between station ��� and station ��� + 1 and ���,��

��	
��
 is 

the dwelling time at station ���. Similarly, the arrival time of service �� at station ��� can 

be determined as 

                       ���,���

����� = ���,����

��	
��
+ ���,����

��� , ��� ∈ ℛ��, ��� ≠ 1��  (2) 

We adopt the optimal speed curve of maximum acceleration, coasting and maximum 

braking [19] for train operations between stations, where it first reaches a predetermined 

speed with maximum traction force, then switches to coasting before applying maximum 

braking force until it stops. The running resistance is estimated by the Davis Formula 

[18]. Constant coefficients are used to calculate the motor and line losses. Then, the 

mechanical power of the train can be determined according to its dynamics, and the 

electric power ������ and ������, produced by trains in the traction and braking states 

respectively within power supply zone j at time t, can be derived. Let the proportion of 

regenerative energy directly used by other trains be 	�, the total traction energy 
���� in 

the power supply zone j from the start of the simulation to time t can be established as 
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���� = � ���������+ λ�������, 0����
�  (3) 

2.4. Passenger Flow Model 

Passenger flow can be modeled by OD demand, which describes the number of 

passengers from departure stations to destination stations. Let ϕ be the the sampling 

frequency, ������ be the metro operation start time, and B be the total duration, then the 

OD demand of line �  in the time period �� − �, �� can be represented by the matrix 

O���τ�, where τ ∈ {������ + ϕ,… ,������ + �ϕ}. From the OD matrix, we can calculate 

passenger entry rate  ����� ,������� from station ���  to station ����  on line �  at time t (unit: 

person/unit time). The number of passengers arriving at station ��� with a destination of 

station ����  is the time integral of ����� ,�������. If all passengers waiting at station ���  can 

board the train without causing overloading, then they all board. Otherwise, they board 

according to a certain ratio, so that the train is just fully loaded. 

Let ������� be the number of passengers waiting at station ��� at time t, the waiting 

time ��,���  for passengers at station ��� from the moment the (i-1)-th train departs until the 

arrival of the i-th train can be calculated as 

                                     ��,��� = � ���������
��,�
��

�	
���

�
��,�

��

�	
���  (4) 

In order to extract the characteristics of passenger flow distribution, we divide the 

network into different sections using transfer stations as segmentation points. The two 

ends of each section are the two closest transfer stations in the same direction on the 

same line. Let D be the total number of sections, �� be the set of stations in section d, �� 

be the total number of stations in section d, then the average waiting time ��
�
 and the 

average load rate ���  at each station of section d during ������� + �� − 1�ϕ,������ + �ϕ  
can be obtained as 

                                 ��
�
=

∑ � ��
��
�������	������

��	���������
�
��
∈��

��  (5) 

       ��� =
∑  �,�

��
�

�� ���!��
, ��,���
��	
��

∈ ������� + �� − 1�ϕ,������ + �ϕ , ��� ∈ �� (6) 

where !�
�

 represents the number of trains passing through section d during 

������� + �� − 1�ϕ,������ + �ϕ , "�,���  is the number of passengers on board when the i-

th train on line �# leaves station ���, and ""
# is the maximum number of passengers on a 

train. 

For passenger transfers, if a passenger traveling from station `a' to station `m' 

chooses the route `a-b-c-g-h-l-m' (see Figure 2), we divide it into three different routes 

`a-b-c', `c-g-h', and `h-l-m', generate three passengers each choosing the three routes 

separately, and add them to the OD matrix. 
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Figure 2. Diagram of passenger transfer model 

3. Metro System Model 

In this section, we model train scheduling and passenger flow assignment problems as 

Markov decision processes. We develop multiple agents each responsible for train 

scheduling in one direction on one line, along with another agent specifically for 

passenger flow assignment. All agents interact with the same metro simulation 

environment, which is built according to Section 2. The list of associated symbols is 

shown in Table 2. 

Table 2. Symbols used in the reinforcement learning model 

Notation Definition 

����
 State feature set of train scheduling on line �� at stage � 

����
 Action set of train scheduling on line �� at stage � 

�����
 State feature set of passenger flow assignment at stage � 

����	
 Action set of passenger flow assignment at stage � 

���� ,���
 The number of people boarding the n-th train of line �� at station ��� 

	�,��
	  

The proportion of passengers traveling from station i to station j assigned to 

the m-th route during 
�
���� � �ϕ, �
���� � �� � 1�ϕ� 

ω,� 
The attraction factor of section d to the passenger flow during 
�
���� �

�ϕ, �
���� � �� � 1�ϕ� 
���

	 The set of sections in the m-th route of the OD pair from station i to station j 

����
 Reward of train scheduling on line �� at stage � 

����	
 Reward of passenger flow assignment at stage � 

����� Minimum turnaround time for a train at the terminal station 

ℎ	��, ℎ	�� Minimum and maximum departure intervals of trains 

�	��, �	�� Minimum and maximum headways over all stations 

�	��, �	�� Minimum and maximum dwelling time of trains 

���� ,	��, ���� ,	�� 
Minimum and maximum running time of trains between station ��� and station 

��� � 1 

�	�� Maximum number of passengers on a train 

�� Maximum number of trains that can be dispatched on line � 
 

3.1. State Sets and Transitions 

We model train scheduling as a multi-agent Markov process, where each agent generates 

the timetable of all trains on one direction of a single line. Stage n describes the journey 
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of a train running from the origin station to the terminal station. For each line \(\hat{l}\), 

we define the state feature set of stage n as  

      $��� = {[���� ,��� ,, �����,��
��	
��

, ��
��
�,$

��

��� ,%��� ,��� ,, ���� ,$��
��	
��

, ���� ,$��

�����]|��� ∈ ℛ��}  (7) 

where ���� ,��� , is the passenger waiting time at station ��� from the departure of the (n-

1)-th train until the arrival of n-th train, �����,��
��	
��

 and �����,���
���  are the departure and 

running times of the (n-1)-th train in the opposite direction of line �#, and %��� ,��� , is the 

number of people boarding the n-th train of line �# at station ���. 
The train scheduling simulation is established with a variable step size and ����  is 

defined in $���%~����($��� ,&���) as the state transition function. The initial state is set to 

$�
��
= '. The agent gives action &�

��
to the environment, and the environment updates the 

next state $���%. The episode terminates when the arrival time of the last train at the 

terminal is greater than metro operation end time ����. 

For passenger flow assignment, we also model it as a Markov decision process. 

Stage n describes the passenger flow in ������� + �� − 1�ϕ,������ + �ϕ , where 

n=1,2,..,B. Given the total number of sections D, each stage n can be characterized by 

the average waiting time ��� and the average load rate ��� calculated in Eq.(5) and Eq.(6). 

                                 $�
�� = {[�,���,���]|� ∈ (1,��}  (8) 

We use the fixed step size of ϕ in the passenger flow assignment simulation and 

define �	&�  in $�
��%~�	&�($�
�� ,&����) as the state transition function. The initial 

state is set to $�
�� = ' and the episode terminates when n equals B. 

3.2. Action Sets 

The action set &���  of the schedule control agent of line �# includes the departure interval 

ℎ�
��
% between the n-th train and the (n+1)-th train, the running times and dwelling times 

of the (n+1)-th train at each station. 

                        &�
��
= {[ℎ�

��
%, ����%,$��

��� , ����%,$��
����� ]|��� ∈ ℛ��, ��� ≠ R��}   (9) 

The action set &�
�� of the agent for passenger flow assignment is denoted as 

                                    &�
�� = {ω�,�|� ∈ (1,��} (10) 

where ω�,�  is the attraction factor of section d to the passenger flow during 

������� + �ϕ,������ + (� + 1)ϕ . We further convert it into the proportion of each OD 

demand choosing each route. We denote the number of routes of the OD pair from station 

i to station j as )��, the set of stations in the m-th route as ���", and the proportion of 

passengers assigned to the m-th route in stage n as ��,��" . To satisfy ∑ ���"
'��
"( = 1, we 

have 
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                                      ��,��" =
∑ )�,��∈���

�

∑ ∑ )�,��∈�
��



 ��

!�

 (11) 

3.3. Reward Functions 

The optimization goal for train scheduling is to minimize total traction energy 

consumption and the average passenger waiting time. We design the reward ����
*  related 

to the energy consumption on line   and the reward ����
�associated with passenger waiting 

time. Given the coefficients % and %+, the reward function ����  for line �# can be written 

down as 

                                       ��
��
= %��

��

* + %+��
��

� (12) 

For the reward ����
�, we define +���  as the total number of passengers waiting on the 

platform when the n-th train arrives at each station, ����  as the sum of ���� ,���  at each 

station, �� as a specified waiting time benchmark, %, and %- as the weighting factors, 

then the reward can be represented as 

                                        ∆���� = ���� −��+���   (13) 

                  ����
� = sgn ,∆����-+��� .�� ,%, /∆����/− 1-+ %-+���  (14) 

For the reward ����
* , we define 
���  as the total traction energy from the start of the 

simulation to time ���� ,���

�����, 
�
&�(���� ,���


�����) as the known traction energy of the baseline 

scenario without optimization up to time ���� ,���

�����, then the reward can be derived as 

                                    ��
��

* = 1 −
*�
��

*���	.��
��
,"
��

����#	/
 (15) 

The objective for passenger flow assignment is to minimize total passenger waiting 

time. We consider the reward function ����� for passenger flow assignment at stage n as 

                   ����� = b0 ∑ ∑ ��
&�,�12�(��(��3 − ∑ ∑ ��12�(��(��3  (16) 

where ��1  is the average waiting time of each station in section d during 

������� + �0 − 1�ϕ,������ + 0ϕ , ��
&�,�1  is the corresponding known waiting time of 

the baseline scenario, and b0  is a coefficient. The reward �����  reflects the gap in 

passenger waiting time between the optimized passenger flow and the original flow 

during ������� + �� − 1 − 1�ϕ,������ + �ϕ . 
Finally, we aim to minimize the cumulative rewards of train scheduling and 

passenger flow assignment over all stages. 
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3.4. Constraints 

There are a series of constraints set for the optimization model. We first have the 

boundaries for train departure intervals as 

                         ℎ"�� ≤ ����,��
��	
��

− ���,��
��	
��

≤ ℎ"
#, ∀��� > �� (17) 

where ℎ"��  and ℎ"
#  are the minimum and maximum departure intervals 

respectively. We also set a limit Q� for the number of trains that can be dispatched on 

line � and ""
# for the maximum number of passengers on a train. Furthermore, there is 

a minimum turnaround time ����� for a train (denoted as 2�) after it arrives at the terminal 

station. 

                             �4�,���,��
��	
��

≥ �4�,��,���

����� + �����, ∀��� > ��  (18) 

We introduce �"��  and �"
#  as the minimum and maximum headway over all 

stations, which is the time interval between the departure of the previous train and the 

arrival of the next train at the same station. 

                   �"�� ≤ ����,���

����� − ���,���

��	
��
≤ �"
#, ∀��� > �� (19) 

The dwelling time of trains has to satisfy the minimum and maximum bounds of 

+"�� and +"
#. Similarly, there are boundaries for the running time of trains between 

station ���and station ��� + 1, noted as ���� ,"�� and ���� ,"
#. 

                                       +"�� ≤ ���,���
����� ≤ +"
#  (20) 

                                      ���� ,"�� ≤ ���,���
��� ≤ ���� ,"
# (21) 

In terms of passenger flow assignment, we believe the longest feasible path for each 

OD should be at most three stops or one transfer station longer than the shortest path to 

avoid assigning passengers to excessively long paths. In addition, because the 

distribution ratio ��,��"  needs to be non-negative, if ∑ ∑ 3�,��∈2
��



'��
	( = 0  in Eq. (11), all 

passenger flows will be allocated to the shortest path. 

3.5. Multi-agent Reinforcement Learning Framework 

Due to the dimension explosion problem in train scheduling and passenger flow 

assignment, it is difficult to find an optimal solution. Here, we propose a multi-agent 

reinforcement learning framework to solve the train scheduling problem, and a deep 

deterministic policy gradient framework for passenger flow assignment. 

Regarding train scheduling, we use a multi-agent framework based on the actor-

critic algorithm (MAA2C). We adopt two actor networks for each line responsible for 

the scheduling of trains in the upward and downward direction respectively. The two 

actors work cooperatively, sharing the same reward and critic network. During training, 
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the decentralized actors receive local states from the environment and derive a set of 

actions with the goal of finding the optimal policy that maximizes future rewards. The 

centralized critic is used to estimate the state value function from a global perspective. 

During execution, only the actors are required to generate actions, while the critic is no 

longer needed. This framework with centralized training and decentralized execution not 

only makes it possible to maintain the association and synergy between the two agents 

but also speed up the execution process [20]. 

We further extend the single-line MAA2C network to multiple lines, thus forming 

the framework for network train scheduling (See Figure 3). Given that the trains running 

on different lines are not shared, train schedules on one line have negligible impact on 

the energy consumption or passenger waiting times on other lines. Therefore, we 

consider scheduling on different lines as independent tasks, with the MAA2C network 

for each line trained separately. Although the networks of different lines do not share the 

same parameters, states or actions, they all interact with the same environment. The 

training process of the networks is the same as the A2C algorithm in [21]. 

 

Figure 3. The MAA2C framework for network train scheduling 

For passenger flow assignment, we adopt a deep deterministic policy gradient 

algorithm (DDPG), the training process of which is the same as the DDPG algorithm in 

[22]. The DDPG network for passenger flow assignment and the MAA2C networks for 

train scheduling operate independently, and do not share parameters, states or actions. 

However, they all interact with the same environment, deriving their corresponding 

states from the same passenger flow distribution and timetables, so as to achieve the 

collaborative optimization of train scheduling and passenger flow assignment. 

4. Numerical Experiments 

4.1. Experiment Settings 

The reinforcement learning framework is tested with anonymized data from real-world 

scenarios of Chongqing Metro Line 1, Line 2, and Line 3. The metro network topology 

is presented in Figure 4 with a total of 84 stations and 20 sections. The sampling 

frequency of the passenger flow data is 15 minutes, and the operating hours are from 

6:00 am to 23:00 pm [17, 18]. 
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Figure 4. The metro network topology of Chongqing Metro Line 1, 2, 3 

In the experiment, we set the maximum passenger capacity ���� to 1440. For each 

line, the maximum number of trains that can be dispatched Q� is set at 50. The minimum 

and maximum departure intervals ℎ�	
 and ℎ��� are set as 170s and 480s respectively. 

The minimum and maximum headways ��	
 and ���� over all stations are set as 120s 

and 720s. The minimum train dwelling time ��	
 is set to be 20s, and the maximum 

���� is set to be 35s. The cruising speed between stations ranges from a minimum of 

20m/s to a maximum of 25m/s, from which the minimum and maximum running times 

��
��
,�	
  and ��

��
,���  can be derived based on the station distances. The minimum 

turnaround time ���
 is set as 218s. 

All experiments in this study are carried out on a Windows machine with 32.0GB of 

memory, an Intel Xeon E5-2678 v3 CPU with 12 cores and 24 logical processors, and a 

NVIDIA GeForce RTX3090 GPU with 10496 CUDA cores. All algorithms and 

programs are coded in Python 3.8 and Tensorflow 2.4.0. 

4.2. Results 

Figure 5 illustrates the reward curve of the training process with a total of 400 episodes 

performed. The vertical axis depicts the cumulative reward of all agents per episode, and 

the horizontal axis represents the number of episodes. Within one episode, each schedule 

control agent conducts about 120-170 steps. In each step, it generates the arrival and 

departure time for the next train at all stations. The agent for passenger flow assignment 

conducts 68 steps in one episode, generating the attraction factors of each section within 

the next 15 minutes. Despite the potential of a drop in the middle of the curve leading to 

a sub-optimal solution, the agents can navigate their way out of it and eventually identify 

a better outcome. After about 150 episodes, the reward begins to stabilize, although 

minor fluctuations may occur due to random exploration. 

Figure 6 presents the curves of passenger demand and the corresponding departure 

intervals for Line 3 in both upward and downward directions. During the peak hours 

around 8:00 am and 18:00 pm, passenger demand spikes to its maximum, and the 

departure interval derived by the agent decreases in response to this, effectively reducing 

passenger waiting time. In addition, the running times are shortened and the train speed 

increases during these periods, further reducing passenger waiting times. In off-peak 

periods, the agent increases the departure interval to minimize traction energy 

consumption of the metro system. 
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Figure 5. The reward curve of the training process 

  
(a)Upward direction                                                        (b)Downward direction 

Figure 6. Passenger demand and the corresponding departure intervals derived by the agent on Line 3 

To further compare the effects of our optimization, we design five scenarios as 

follows: 

1. Baseline: Trains adopt a fixed timetable, and all passengers follow the shortest 

path without any guidance. The operating speed of trains follows a curve of 

maximum acceleration up to 21.75m/s, at which point it enters a coasting state, 

before finally decelerating at the maximum rate. Train departure interval is 

fixed at 418s and the dwelling time at each station is set to 30s.  

2. PG: The passenger flow assignment agent trained under baseline train schedules 

is applied. The departure interval is fixed at 418s, the dwelling time at 30s, and 

the cruising speed between stations is set to 21.75m/s. 

3. TS: The schedule control agents trained in joint optimization are applied 

without passenger flow assignment. All passengers follow the shortest path. 

4. TS+PG: The schedule control agents trained in joint optimization and the 

passenger flow assignment agent trained under baseline train schedules are 

applied. In other words, train scheduling and passenger flow assignment are 

optimized separately, then simply superimposed. 

5. TSPG: The schedule control agents and the passenger flow assignment agent 

both trained in joint optimization are applied. 

Table 3 shows the traction energy consumption and the average passenger waiting 

time of the five scenarios. Compared with baseline timetable, those after the trial-and-

error learning of the agents show improvements in both of these indicators. With the 
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implementation of passenger flow assignment, the average passenger waiting time in 

scenario TS+PG decreased by 1.5% compared to scenario TS, which shows the 

effectiveness of passenger flow assignment. Both indicators of scenario TS+PG are 

higher than those of scenario TSPG, indicating that the simple superposition of the two 

separate optimizations may lead to worse solutions if they are not well-matched with 

each other. Therefore, it is necessary to optimize train scheduling and passenger flow 

assignment jointly to achieve better results. 

Table 3. Test results of different scenarios 

Plans 
Full-day traction energy consumption/kWh Passenger average 

waiting time/min Line 1 Line 2 Line 3 All 

Baseline 65028↓0% 67132↓0% 104551↓0% 236711↓0% 5.73↓0% 
PG 65122↑0.15% 67023↓0.16% 104678↑0.12% 236823↑0.05% 5.68↓0.87% 
TS 57900↓10.96% 61057↓9.05% 104850↓0.29% 221967↓6.23% 5.21↓9.08% 

TS+PG 58210↓10.48% 60457↓9.94% 103993↓0.53% 222660↓5.94% 5.13↓10.47% 
TSPG 58729↓9.69% 59831↓10.88% 103432↓1.07% 221992↓6.22% 5.11↓10.82% 

 

The proposed collaborative optimization approach in this study, while generally 

requiring longer computing time for training compared with unilateral optimizations, 

takes into account the interaction between trains and passenger flow during training, 

ultimately yielding better optimization results. This demonstrates the effectiveness of the 

proposed multi-agent reinforcement learning framework in joint optimization. 

Additionally, it shows that collaborative optimization is not merely a simple aggregation 

of individual optimizations of separate parts. The interaction between trains and 

passenger flow can influence the optimization effect. There is indeed room for 

optimization in the metro system as a whole. 

4.3. Robustness and Real-Time Analysis 

One of the advantages of reinforcement learning is that they can generate optimal policies, 

rather than solutions. The passenger flow changes every day, and it would be time-

consuming to retrain the model each time [23]. If the trained agent is able to respond to 

the current demand changes without needing to retrain, its robustness can be verified, as 

well as its practical value in engineering applications. Here, we generate a surge in 

passenger flow to test the robustness. We assume a tenfold increase in the passenger flow 

at GM Station on Line 3 from 10:30 am to 12:00 am, while the passenger flow during 

other time periods and at other stations remains unchanged. Figure 7 shows the curves 

of the shifted passenger demand and the corresponding departure intervals derived by 

the agents trained on the original passenger flow. In response to the changes in passenger 

demand, the departure interval of the shifted passenger flow decreases to a certain extent 

after 10:30, and gradually returns to the original interval by 12:00. This suggests that the 

reinforcement learning networks are capable of capturing the complex state transitions 

and related interactions of train and passenger flows during training, generating reliable 

state estimation and train schedules in response to demand changes. 

Finally, we evaluate the real-time performance of the proposed approach. For 

generating a set of actions based on the current state, it takes an average of 0.06s for a 

train scheduling agent and an average of 0.07s for the passenger flow assignment agent. 

The reinforcement learning agent can adjust the timetable of the next train in real-time, 

thus is capable of online optimization. 
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Figure 7. Shifted passenger demand and the corresponding departure intervals derived by the agents 

5. Conclusion 

This study introduces a multi-agent deep reinforcement learning framework for 

collaborative online optimization of networked train scheduling and passenger flow 

assignment. Our approach is able to adjust train schedules and passenger flow 

assignment strategies in real-time when passenger flow fluctuates, thereby effectively 

reducing traction energy consumption and the average passenger waiting time. The train 

and passenger flow simulation is based on a discrete event system and the optimization 

problem is modeled as a multi-agent Markov decision process, using a multi-agent actor-

critic algorithm for train scheduling and a deep deterministic policy gradient algorithm 

for passenger flow assignment. The simulation environment and the agents are tested 

under anonymized data from real-world scenarios of Chongqing Metro Lines 1, 2, and 3. 

The results show that our agents can outperform baseline scenarios, demonstrating its 

effectiveness, robustness and real-time performance. 

For future research, we hope to expand our experiment to the entire network of 

Chongqing Metro to test the versatility of our approach. Beyond train scheduling and 

passenger flow assignment, there is potential for further optimization within the urban 

rail transit system such as train operation and train composition. How to incorporate more 

factors and combine them for an integrated optimization is a direction worth exploring. 
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