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Abstract. Predicting the intentions of other vehicles in traffic is a frequently ad-
dressed challenge in autonomous driving. Due to the complexity and diversity of ur-
ban traffic, it is a major challenge to develop prediction models that are able to gen-
erate reasonable predictions for a broad range of situations. Commonly employed
data-driven approaches encounter problems related to the lack of transparency
of black-box approaches and poor generalizability due to overfitting. Meanwhile,
most of the publications to date have focused on the modeling part, but investiga-
tions that provide transparency into the transferability of learned patterns and the
effect of different settings on generalizability are rarely addressed. This paper ad-
dresses these challenges by presenting an advanced evaluation method providing
insight into the ability of models to create plausible predictions even in exceptional
situations. The proposed method is applied to investigate variations in the provided
input information, varying diversity in training data, and different model parame-
ters. Among other things, our results show that providing semantic contextual in-
formation and enriching real training data with synthetic samples contributes to bet-
ter generalizability. Furthermore, the evaluation revealed weaknesses of commonly
used metrics, as the exclusive use of displacement errors can be misleading in terms
of generalizability and plausibility of results. In summary, this contribution paves
the way for reliable predictions in urban traffic by providing valuable insights and
a methodology for a critical evaluation of prediction models.

Keywords. Trajectory Prediction, Neural Networks, Intelligent Vehicles, Urban
Traffic, Human Factors, Big Data and Naturalistic Datasets

1. Introduction

Anticipating the intention of other vehicles in traffic is a common challenge in au-
tonomous driving, as understanding and incorporating the future movements of other
traffic participants is the basis for safe driving strategies and reasonable decision-making,
especially in urban traffic. Compared to the well-researched highway traffic, new mis-
sions arise in urban traffic, as vehicle movements strongly depend on the situational con-
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text, e.g., right-of-way regulations, reactions to other road users, or road network-specific
dependencies. This results in new challenges for representing and structuring scenario
information. The common objective in developing a prediction model is to generate accu-
rate predictions across the wide range of situations encountered in traffic. The number of
possibilities for addressing this challenge with common data-driven models is immense,
starting from how and which situational information is provided, among a wide range
of model architecture options, and finally the choice of learning parameters such as loss
functions, regularizations, and optimizers. This richness of opportunities meets difficul-
ties associated with data-driven approaches, namely overfitting and lack of transparency.
On one hand, black-box models provide little transparency, so that insights into accuracy
can only be gained in explicitly tested situations. In addition, data-driven models risk
overfitting the training data, resulting in poor results in unknown situations, i.e., low gen-
eralizability. Furthermore, the representativeness of situations that appear in a database
is always limited compared to all potentially occurring scenarios in urban traffic. Taking
these facts together, one usually does not know what relationships the model has actu-
ally learned, and both the evaluation and training of such models depend strongly on
the available datasets. Meanwhile, most state-of-the-art publications focus on problem-
solving and introduce new concepts of how to generate accurate predictions on individ-
ual datasets, but rarely address the question of how various conceptual choices affect the
generalizability of the model and rarely provide detailed evaluations. To address these
challenges, this paper presents an advanced evaluation method that provides insight into
the ability of models to generalize and generate plausible predictions even in exceptional
situations. The multi-level evaluation method aims to provide more transparency about
learned patterns and allow for more reliable and efficient model development. The eval-
uation method is applied to investigate the effects of differences in provided input infor-
mation, varying diversity in training data, and different learning parameters for a simple
exemplary prediction model. Accordingly, the following research questions are formu-
lated:

R1: How to measure the generalizability of data-driven prediction models?

R2: How and to what extent is the generalizability of a data-driven prediction model af-
fected by differences in the input information, variety of training data, and various learn-
ing parameters?

R3: Is it possible to combine real and synthetic traffic data samples to compensate for
underrepresented situations in the future?

The rest of the paper is organized as follows. Section 3 describes the evaluation method-
ology and the concept of variations in training data and input features. The subsequent
section describing the implementation (Section 4) contains all the necessary information
about the problem, data acquisition, and data processing to obtain the described features.
In addition, the applied metric is presented. All evaluation results are presented in Sec-
tion 5, discussing the impact of the training data, input features, and tuning parameters
on generalizability. Finally, a conclusion, future attempts, and specific limitations of the
methods are presented in Section 6.
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2. Related Work

2.1. Prediction Concepts

As vehicle trajectory prediction is a commonly addressed problem in autonomous driv-
ing, various concepts exist. Providing the entire range of currently published approaches
would exceed the scope of this paper, therefore an overview of the main concepts used
in state-of-the-art is given. One can categorize approaches by the model architecture,
provided input information, and levels of behavioral discretization, i.e. the model output.
Table 1 provides an overview of the named categories with corresponding references.
Regarding the model architecture, as trajectory prediction is mostly formulated as a se-
quential problem, several approaches utilize recurrent network structures, such as Recur-
rent Neural Networks (RNN) or Long short-term memories (LSTM) such as proposed
by Xia et al. [1]. Other promising concepts evolve Graph-neural networks (GNNs), as
these structures offer great potential in representing spatial dependencies between road
users, offer the possibility of handling dynamic input sizes, and are suitable to predict the
entire scene development instead of predicting each road user individually as presented
by Li et al. [2]. Other popular structures involve transformer networks [3] or variational
autoencoder (VAE) [4]. Some approaches combine different model architectures into one
prediction network, such as the SCALE-Net proposed by Jeon et al. combining a graph
approach with LSTM and multilayer perceptron (MLP) layers [5]. The choice of archi-
tecture strongly depends on the representation of the input data (e.g. object lists or image
data) and the concept of feature encoding.

Especially in urban traffic, driving behavior is affected by various influences. Conse-
quently, there are several approaches for incorporating contextual information into the
prediction. Concepts vary in terms of the information provided (e.g., static environment
information of the map or neighboring road users) and the format in which this informa-
tion is provided (on a semantic level [6], as raw data transformed into embeddings [7]).
Finally, the model output can vary in the level of discretization. Some approaches predict
the intention of other road users as maneuvers [8] or actions [9], while others directly
predict a trajectory deterministically [10] or in a probabilistic manner [11].

Table 1. Overview state-of-the-art prediction models

Model architecture CNN [12]
RNN, LSTM [13,14,1,15,16,17]
GNN, GCN [10,8.2]
Transformer [18,19,20,21,22,3]
VAE, CVAE [4,23]
RNN + GNN, GCN + LSTM + MLP [24,25,5,26,27]
Input information semantic representations for static environment [28,2,12,23,6]
raw representations of static environment or embeddings [4,13,1,11,20,26,21,29,15,7]
raw context information (position, dynamics of other road users) [24,10,25,8,18,30,19,3]
semantic context information (interaction partners, relationship) [31,5,16,17]

Model output

manoeuvre prediction

[8.32]

action prediction

191

deterministic trajectory prediction

[10,25,8,18,19,26,21,16,17,3]

probabilistic trajectory prediction

[4,13,28,1,11,30,20,5,29,12,15,23]
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2.2. Evaluation Strategies

The evaluation of black-box models is a crucial part of the development, as it is the only
chance to gain insight into the accuracy and reliability of the model. Table 2 shows a
selection of employed state-of-the-art metrics that are used for evaluating trajectory pre-
diction. The most common metrics for evaluating trajectory prediction are displacement
errors, average displacement error (ADE), and final displacement error (FDE), measured
as the L2 distance between the true and the predicted trajectory. Some approaches use
variations of ADE and FDE or root mean square error (RMSE) as a metric. These metrics
indicate how accurately the predicted trajectory matches the individual human-driven
trajectory. However, the use of displacement errors cannot provide information on how
functional or plausible the predicted trajectory was. Therefore, in some individual cases,
more sophisticated evaluation strategies are applied, e.g., taking into account functional
errors such as road violations [29] or unrealistic headways [8], as summarized in Ta-
ble 2. Next to the applied metric, another key element of the evaluation strategy is the
choice of test scenarios or test data. Most state-of-the-art approaches test their models
on a retained test split of the training data. Only, a few approaches test their models on
different datasets [18]. Furthermore, information about how close the used test data and
training data are is rarely discussed in most publications, leading to insufficient findings
regarding generalizability.

Table 2. Summary of Metrics for Trajectory Prediction

Metric [ [ Explanation [ Reference l
ADE & FDE Average Displacement Error & Final Displacement Error [24,4,13,14,28,1,33,34,35,30,19,
20,26,21,12,15,27,16,17,3,23]
variations of ADE & FDE normalized ADE & FDE, minimum ADE & FDE [24,1,2,18,29]
RMSE Root Mean Square Error [14,33,10,25,8,5,15]
Negative headway distance Occurrence of unrealistic states due to poor decision-making 8]
occurrence
Jerk sign inversion Quantifies oscillations in model’s acceleration predictions [8]
Miss Rate (MR) Proportion of unacceptable trajectories measured by a region of inter- [29,23,36]
est.
Off-road rate The ratio of predicted trajectories laying not entirely in the driveable [29]
area of the map to the total number of predicted trajectories
EMD distance Quantifies amount of probability mass that has to be moved from the [35]
predicted distribution to match the true distribution.
Hard Off-road Rate (HOR) The percentage of scenarios that have at least one off-road prediction [35]
in the trajectory points
Soft Off-road Rate (SOR) The percentage of off-road prediction points over all prediction points [35]
and the average over all scenarios.
Drivable Area Compliance Count of future trajectories within the drivable area divided by the [36]
(DAC) number of all possible trajectories.
TCC Temporal Correlation Coefficient (high TCC, meaning predictions [13]
cover the time-varying motion patterns well)
3. Method

This paper addresses the question of how different conceptual choices affect the general-
izability of a data-driven model for predicting trajectories. For this purpose, a multi-level
evaluation method is introduced to assess the generalizability of models by providing de-
tailed insights into the accuracy and plausibility of predictions at different levels of test
data. The focus lies on examining how different information categories of features repre-
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senting the situational context and the diversity of the training data contribute to gener-
alizability. Therefore, models with different combinations of training data and input fea-
tures are trained and analyzed. To gain insight into the magnitude of the effect compared
to simple parameter tuning, one of the combination models is trained with different sets
of learning parameters and evaluated using the same method.

3.1. Evaluation Methodology

As stated in Section 2.2, the two key aspects for evaluating a data-driven predictive
model involve the used metrics and the choice of test data. Most publications use spatio-
temporal error measurements, ignoring the situational context when evaluating a trajec-
tory. However, using exclusively displacement errors cannot provide information on how
functional or plausible the predicted trajectory was. According to our previous work [31],
cases occur in which behavior deviates from the real trajectory but is still plausible, e.g., a
slightly longer time gap when turning without becoming critical, while other predictions
with similar error values enter non-driveable areas. Consequently, common error mea-
surements are not able to distinguish between false-bad and plausible-bad trajectories.
Meanwhile, it would be crucial for developing or tuning prediction models to identify the
situations in which the model produces non-plausible or non-functional results. In order
to address this scientific gap, a simple plausibility metric is formulated consisting of two
categories to evaluate the plausibility of predictions adapting and further developing so-
phisticated metric approaches from literature [29,35,36,13]. The metric incorporates the
following parts:

e spatial evaluation: maximal path deviation max_path_violation, road violation,
maximal road violation max_road _violation

* temporal evaluation: collision check, minimum distance to other traffic partici-
pants min_dist2others

To measure plausibility, a percentage score Sp is calculated based on these five compo-
nents. Binary aspects, such as collision or road violation checks, return True or False,
interpreted as 0 or 1. All distance measures are divided into bins and mapped to plausi-
bility values between O and 1. The final plausibility score Sp is the average of the indi-
vidual components. To further investigate spatial accuracy, the percentage of predictions
with path deviations greater than 5 meters is measured. Based on the plausibility metric
in conjunction with the common metrics ADE and FDE, model performance, involving
accuracy and plausibility, can be evaluated against test data. Since data-driven models
are based on black-box approaches, transparency in terms of model generalizability and
reliability is achieved by applying a trained model to test data. Accordingly, the selection
of test data is crucial for the significance of the evaluation. In this paper, a multi-level
method is proposed for critical evaluation, involving four levels of test data, illustrated
in Figure 1. The four levels present different challenges in terms of generalizability, as
they include situations that are further apart from the training data. Starting with un-
known situations at locations shown during training (L.1), new locations from real traffic
data (L2a), new locations from synthetic traffic data (L2b), and ending with testing in
an exceptional situation (L3), in which the ego vehicle has to pass a static obstacle with
oncoming traffic. For the L2a, L2b, and L3 levels, the proposed plausibility metric is ap-
plied. As the objective is to gain insight into how different settings affect model perfor-
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mance and which concepts contribute to improved generalizability, the following vari-
ants are investigated: Three variants of training data are trained over six variants of pro-
vided input feature settings. In addition, one of these models is trained with four different
variants of learning parameter sets. In total, this results in 22 models to be evaluated.

1

L1: UNKNOWN SITUATIONS
(SAME LOCATION)

L2a: UNKNOWN INTERSECTION Objective contextual

(REAL DATA) plausibility

L2b: UNKNOWN INTERSECTION GT accuracy
(ADE & FDE)

(SYNTHETIC DATA)

&

ABILITY TO GENERLIZE

Figure 1. Illustration of the evaluation concept measuring accuracy and plausibility of predictions on four
different levels of test data

3.2. Influence of Contextual Information

Given the high complexity and variability of urban traffic, it is important to ensure that
meaningful patterns are learned that can be applied to new situations. However, a model
can only learn such patterns from accessible information, which creates challenges in
terms of how and in which format the situational context can be represented for a model.
The present paper aims at investigating which types of information contribute to better
generalizability of a data-driven prediction model and to what extent model performance
is affected. As shown in Table 1, there are different types of information categories that
may influence driving behavior. Since temporal information is mostly generated by as-
sembling situational information into a time series, the present approach focuses on ex-
amining the provided situational context itself.

As presented in our previous work [31], the key idea is to use prior knowledge to gen-
erate a scene representation incorporating raw and semantic information describing the
context of interactive traffic situations. This should provide the basis for a data-driven
model to apply transfer learning and allow for coping with the high variability of urban
traffic. Four information categories were defined: Ego-information (E), Map-information
(M), Partner-information (P), and Interaction-information (I), according to the specifica-
tions in Table 3. In the following, ego always refers to the vehicle being predicted. Part-

Table 3. Feature categories describing the driving situation.

l Category [ Related information occurring in features
Ego (E) position, velocity, acceleration, heading, type, dimensions
Map (M) turn direction, lane curvature, lane direction, center line coordinates ahead
Partner (P) position, velocity, acceleration, heading, type, dimensions of all identified interaction partners
Interaction (I) relationship, positioning and relative movement regarding the individual conflict zone for all identified
interactions

ners are all road users potentially affecting the behavior of the ego vehicle. The scene
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representation includes both easily accessible information such as positions or classifica-
tions of road users and information that requires prior interpretation. Such information,
obtained through interpretation, relies on heuristic recognition algorithms that attempt to
identify potential interactions between road users and describe the resulting interaction
at a feature level, e.g., relationships between road users. A key element of the heuristic
recognition algorithms is the fusion of time series and map data with the objective of
extracting additional contextual information such as right-of-way regulations or the lo-
cation of conflict zones. A detailed description of these algorithms can be found in our
previous work [31]. Based on this, models are trained with six different compositions of
situational information: EMPI, EMP, EMI, EI, EM, E.

3.3. Influence of Variety in Training Data

The performance of data-driven prediction models strongly depends on the data pre-
sented during training. On the one hand, it is crucial that the training data represent the
application domain as thoroughly as possible. On the other hand, the degree of variability
can influence the learning process. Furthermore, in data-driven modeling, we often face
the problem that some exceptional situations are underrepresented for adequate training.
However, the creation of new data, especially in exceptional situations, is either costly
or not possible due to the rarity or criticality of events in everyday traffic. As a result, it
would be beneficial if it were possible to augment existing datasets with manually de-
fined situations that are known to be underrepresented. The present paper investigates
how the variability of the training data affects the model’s ability to generalize. In addi-
tion, real traffic data is combined with synthetic traffic data from simulation to investi-
gate the possibility of augmenting existing real datasets through synthetic samples from
simulation. The following three levels of training data are investigated:

T1: Low variability: synthetic traffic data for training.

A simulation framework is used to create synthetic traffic data. Due to the limited possi-
bility of individualizing a driver model, less diversity in behavior occurs.

T2: Medium variability: real traffic data for training.

For real traffic data an open-source dataset covering typical interactive urban situations
is selected.

T3: High variability: a combination of real and synthetic traffic data.

4. Implementation
4.1. Problem Formulation and Model Architecture

The problem of trajectory prediction is formulated as follows. At time ¢ the model pre-
dicts the future trajectory ¥ =Y/ .Y/, ...7Y,’+de for the next 7.4 seconds for one

vehicle i based on the current scene X! from the individual perspective of vehicle i. The
future motion Y;' is a sequence of positions in a two-dimensional space: ¥ = (x!,y!). The
prediction horizon T}, Was set to 5 seconds. For labeling, the position of the respective
vehicle after 1,2,3,4,5 second in global XY coordinates is used. The current situation
from an ego perspective of vehicle i is represented as a concatenated feature vector X/ at
time 7. The vector X/ includes features describing the ego vehicle Xitegg’ and, depending
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on the setting to investigate, all features describing the map, potential conflict partners
with their state, and the individual interaction with the ego:
t t t t t

Xi = (X, Xip, X, Xiy,) (D
Since this work aims at investigating different levels of provided situational information,
the training samples do not contain any past information, and consequently, no recurrent
structures were used in the model architecture. For prediction, an MLP with four hidden
layers consisting of 512, 256, 128, and 64 neurons and 10 neurons representing the output
layer for the respective positions in XY for the next 5 seconds is created.

4.2. Data for Training and Testing

For training and evaluating the open-source drone dataset inD 2 [37] is used for repre-
senting real traffic. The dataset shows all key characteristics of interactive urban traffic
(e.g. shared spaces, non-deterministic regulations, and interactions with Vulnerable Road
Users (VRUs).) The dataset includes recordings of four German unsignalized intersec-
tions called Aseag, Bendplatz, Frankenburg, and Heckstrasse displayed in Figure 2. For
the medium level of variability in training data (T2), models are trained only on real data,
and recordings from Aseag, Bendplatz, and Frankenburg were selected for training, re-
sulting in 900.000 training samples. For the evaluation at level L1 (unknown situations),
one recording from each location was retained for testing and one as a validation set.
For representing a low level of variety in training data (T1), data on four synthetic in-
tersections was created with the help of the simulation framework Spider at BMW [38].
The choice of intersections intends to represent similar intersections compared to the
ones represented in the inD dataset involving different complex intersections and merg-
ing topologies. Since all drivers in the simulation are based on the same heuristic agent
model, but using different parameters, overall behavior shows less variety. For the low
level of variability in training data (T1), models are trained on intersections 1, 2, and 3.
Randomly selected vehicle IDs were chosen and retained for the validation set during
training and for testing on L1 (unseen situation). It has to be noted that the synthetic data
only contains vehicles and no VRUSs. The synthetic data is recorded at the same sampling
rate and shows the same characteristics as the inD dataset. The high degree of diversity
(T3) in the training data is achieved by combining synthetic and real data. For this pur-
pose, the real traffic data of Bendplatz and Aseag are combined with the synthetic data
of intersections 1 and 3. The data is combined in such a way that synthetic and real data
have a distribution of 50:50. For comparison, all training sets were set to have a simi-
lar number of samples. For evaluating at the L2 level, data from one real (L2a) and one
synthetic (L2b) location were used. For L2a, the models were tested on recording 30 of
the inD dataset, which represents a new intersection from reality (Heckstrasse). For L2b,
data from a different four-armed intersection was created (isec 4). To test model perfor-
mance in an exceptional situation (L3), the simulation framework was used to create a
special scenario in which the path of the ego is occupied by an obstacle on a two-lane
road with oncoming traffic. For data collection on L3, the vehicle is controlled by a real
human in simulation. Pictures of all test and training locations are shown in Figure 2.

’https://ind-dataset.com/
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VARIETY IN TRAINING DATA MULTI-LEVEL TESTING

T1: training on synthetic data L2a: testdata real L2b: testdata syn

isec 1 | isec 2 | | isec 3 | Heckstrasse isec 4

T2: training on real data L2a: testdata real L2b: testdata syn

| Bendplatz || Frankenburg || Aseag | Heckstrasse isec 4

T3: training on combined data (real & synthetic) L2a: testdata real L2b: testdata syn

| Bendplatz | Frankenburg || isec 1 || isec 3 Heckstrasse

Figure 2. Overview of all training and test locations
4.3. Data Processing for Feature Calculation

Following our previous published work, time-series and map data are fused, in order to
first identify potential interaction partners, and subsequently calculate interaction fea-
tures to describe complex situations on a semantic level [31]. The algorithm is initialized
with a maximal number of interaction partners, namely five vehicles and four VRUs. If
fewer partners occur in the scene, features are represented as -1 aiming at training the
model to ignore those since -1 is out of the normal feature range of [0 — 1]. When more
partners occur only the closest ones are considered. The static environment of the ego
vehicle is represented by semantic and raw features describing the lane the vehicle is
following by turn direction, curvature, and lane center Sm, 10m, and 15m ahead. The
different feature spaces show the following dimensions: EMPI: 209 features, EMP: 144
features, EMI: 96 features, EI: 78 features, EM: 31 features, and E: 13 features.

4.4. Training and Model Parameters

For training of all models regarding different feature settings and varying training data,
the Adam optimizer with a default learning rate of 0.001 was employed, mean squared
error (MSE) as loss function, and relu for activation by using Keras for model building
[39]. In order to investigate the influence of parameter tuning relative to changes in fea-
tures and training data, some variations were investigated, namely the choice of the loss
function, activation function, optimizer, and batch normalization shown in Table 4. All
models were trained with a batch size of 50 for maximal 80 epochs using early stopping
with a minimum delta of 0.00001 and patience of 15 epochs.
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Table 4. Tuning parameter-sets [39]

Setting ID Batch Norm. Loss Function Optimizer Activation
1 True Mean Absolute Error sgd sigmoid

2 True Mean Squared Error sgd sigmoid

3 True Mean Squared Error adam relu

4 False Mean Absolute Error adam relu

4.5. Metric Calculation

The evaluation method presented earlier returns the following measures for each model:

* Overall score S, overall accuracy score Sscc, overall plausibility score Sp, overall
ADE & FDE calculated across all test levels

* ADE & FDE individually on test data of L1, L.2a, L.2b, and L3

* Sp individually on test data L2a, L.2b, and L3

In order to evaluate the accuracy of the proposed models, ADE and FDE for accuracy are
calculated using L2 distance according to the general state-of-the-art [40]. Model perfor-
mance is measured as a combined measure considering accuracy and plausibility, result-
ing in Sp. For model accuracy evaluation Sscc, ADE and FDE are converted to a score
under consideration of benchmark results according to Equation (2), where ADEg = 2m
and FDEg = S5m [41].

ADEg FDEp. 1
-=)-100 2
ADE T FDE) 2 @

Sace = (

For calculation of the overall accuracy Sacc, all displacement errors are combined, while
the displacement errors of L2a, L2b, and L3 are weighted double to assign a higher
priority to results on data further away from training. The score is calculated according
to Equation (3). Total FDE is calculated accordingly.

ADEp; +2-(ADE2, +ADEj, +ADEp3)
7

ADE = 3)
The score for the final model performance Sy is the calculated mean of plausibility Sp
and accuracy score Sacc.

5. Results

All results for all model variants are provided in Tables 5 and 6, whereby Table 5 shows
the results for all different feature settings and levels of variability in training data. While
Table 6 provides the evaluation of different learning parameters for models trained on
the full feature space EMPI on the real dataset (T2).

5.1. Influence of Variability in Training Data and Provided Situational Information

The results show a clear benefit of more variability in training, as models trained on T3
provide the best results for Sp, Sp, and Sycc across all test levels, illustrated in Figure 3
(right). In terms of plausibility and accuracy at different test levels, T3 either outperforms
the other data variation settings or shows similarly accurate results. Models trained on
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T1 show significantly higher error values when testing on unseen real data (L2a) and in
the edge case (L3), illustrated in Figure 3 (left) and Table 5. Meanwhile, the low level
of variability in the behavior data of T1 is beneficial when predicting clean synthetic
behavior on test level L2b compared to the models trained on real data (T2). However,
even on the clean synthetic behavior data of L2b, the models trained on T3 outperform
models trained on T1. This indicates potential in combining real and synthetic data for
handling underrepresented situations in the future. When considering the overall plau-
sibility scores Sp of all models, a model trained on T3 shows the best overall plausibil-
ity score of 73%, followed by a model trained on T2 with 72%, while models trained
on T1 only reach a maximum of 66% shown in Table 5. Regarding variations in the in-
put information provided, results show that contextual features provide a clear benefit in
terms of generalizability when training on T3. The best-performing model includes all
contextual features (EMPI), as shown in Figure 4 and Table 5. Models trained on T1 and
T3, show the overall best plausibility on the feature setting EMI but the differences in
So and Sycc when comparing the feature settings, do not show a clear tendency. When
considering the ability of models to generate reasonable predictions in exceptional situ-
ations (L3), the feature setting EMI clearly outperforms the others when training on T1
or T2, while models trained on T3 show the best results when all features are included
(EMPI). The models trained only on synthetic data (T1) show the poorest results overall.
Considering different feature settings, no clear tendency could be found. Overall plau-
sibility Sp, shows the best results on feature setting EMI, and overall accuracy Sacc is
best on feature setting E. But when it comes to the edge case scenario (L.3), one can see a
clear advantage of including context features during learning (up to 20% more accuracy
and plausibility). The fact that models trained on synthetic data show less benefit from
the inclusion of contextual features can be explained by the driver model used to create
the synthetic data. The driver models are not able to interact and rarely respond to the
behavior of others but follow predefined heuristic rules. Consequently, driver behavior
in this dataset is less context-dependent compared to real traffic data. In addition, the in-
teraction and partner feature spaces contain features for VRUSs that are not present in the
synthetic data. The empty features might hinder the training process. In general, a high
dependency between the training data and the role of provided input information can be
observed.

Influence of Variability in Training Data Influence of Variability in Training Data
on Model Accuracy on Model Performance
12 T1: ADE So
T2: ADE s,
mmm T3: ADE
== T1: FDE

acc
- s,
= T2: FDE
8 W T3: FDE 60
a0
a
20
2
0

L2a (Heckstr.) L2b (isec_5) L3 (edge case) T1 (syn) T2(real) T3(combined)

ADE & FDE in [m]
Score [%]

°

Figure 3. Influence of Variability in Training Data on Model Performance. Left: Accuracy measured by ADE
and FDE on different test-levels with best feature setting of training data category. Right: Scores for accuracy,
plausibility, and overall for different training data
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5.2. Influence of Individual Feature Categories

The effect of map and interaction features on spatial, and temporal performance is an-
alyzed to gain further insight into the impact of individual feature categories. In Figure
5 (left), it can be observed that interaction and partner features contribute on average to
better temporal plausibility of the results, measured by the frequency of collisions. In ad-
dition, the best feature settings with and without map features at all training levels show
an advantage of including map features regarding spatial plausibility of predictions, mea-
sured by the frequency of road violations and the percentage of path deviations over 5
m. However, the positive effect of including map features on better spatial perspective
results is smaller than expected. Considering the individual values presented in Table 5 it
can be observed that the spatial plausibility, measured on synthetic test data, partly shows
better values without map features. This aspect should be investigated further. Semantic

Influence of Feature Setting on Model Accuracy Influence of Feature Setting on Model Accuracy
on L2a (Heckstr.) trained with T3 on L3 (edge case) trained with T3
10 ADE 12 ADE
- FDE m FDE

ADE & FDE in [m]
ADE & FDE in [m]
o

0
EMPI EMP EMI El EM E EMPI EMP EMI El EM E

Figure 4. Influence of Different Feature Settings on Model Accuracy

features are associated with a higher computational effort in data pre-processing. There-
fore, the influence of interaction features representing situational context is analyzed in
more detail. When testing on L3, a clear advantage of semantic interaction features can
be observed. The same tendency, but with a smaller effect, is observed when testing on
real (L2a) and synthetic data (L2b). In general, the inclusion of partner and interaction
features contributes to better temporal accuracy in prediction as shown in Figure 5 (right).
Again, a strong dependency between training data and the utility of each feature cate-
gory can be observed. In addition, a lower benefit of contextual features is observed for
models trained on synthetic data (T1), which can again be explained by a lower context
dependence of behavior due to heuristic model strategies for artificial drivers.

5.3. Impact of Tuning Parameters

The results of the exemplary parameter tuning variants are provided in Table 6 and show
similar effect sizes on accuracy and plausibility as differences in the provided input in-
formation, varying in a range of £10%. Looking at the effects of variability in the train-
ing data, one can observe a much larger effect up to £25%. Results show that the param-
eter tuning has a large impact on the generalizability of the model since variant ID 4, for
example, shows the best results on test level L1 while providing weak generalizability.
Meanwhile, variant ID 2 provides the lowest accuracy on test level L1 but outperforms
variant ID 4 on all other test levels.
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Influence of Interaction and Partner Features Influence of Map Features
on Temporal Plausibility on Spatial Plausibility
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Figure 5. Influence of Interaction features on Temporal Plausibility (left) and Influence of Map Features on
Spatial Plausibility (right)

5.4. Measuring Generalizability and Plausibility

Generalizability is assumed to be measurable by testing model performance on different
traffic situations and scenarios in varying distances (test-level L1 - L3) from situations
shown during training [42]. For the various settings shown in Table 5 and Table 6, the
model showing the best performance on test level L1 is usually not the model providing
the best performance on L2 or L3, emphasizing the necessity of a critical evaluation strat-
egy. In particular, for the parameter settings, the model with the best results on data close
to the training (1) showed the weakest plausibility and accuracy overall, indicating poor
generalizability. Consequently, an evaluation strategy that considers a wide range of test
data is crucial even in an early stage of development. When considering plausibility in
relation to accuracy, the results with the best accuracy do not necessarily show the best
plausibility. In particular, when testing with real data (L2a), one can see large differences
between accuracy and plausibility. Therefore, in Figure 6, two situations with three dif-
ferent model variants (EMPI, EMI, EM) trained on T3 are illustrated to provide some
qualitative results. Considering ADE and FDE, the feature setting EMI and EM show
similar poor accuracy. However, when measuring the plausibility score Sp or on a subjec-
tive qualitative basis, the EMI model shows way more reasonable learned patterns. This
indicates that the plausibility metric is a more appropriate method to identify situations
in which a model shows weak performance.

6. Conclusion, Limitations and Future Work

This method presents a multi-level evaluation method providing detailed insights into the
generalizability of data-driven trajectory prediction models addressing research question
R1. Testing at different levels highlights the criticality of selected test data with respect
to the validity and significance of evaluation results. Since not only the accuracy but also
the plausibility of results is considered, the proposed methodology allows the identifica-
tion of samples showing inconsistent predictions. Such insights are crucial during the de-
velopment process to develop reliable solutions. Two phenomena were observed: firstly,
the plausibility of results does not necessarily correlate with accuracy; secondly, the best-
performing setting on test data that is close to the training data is not necessarily the best
setting in terms of generalization. Taking those facts together, a multi-dimensional evalu-
ation involving a broad range of test data is crucial for determining the best model setting
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Models trained on EMPI, EMI, EM - results on unseen location: Heckstrasse (rec:30): Models trained on EMPI, EMI, EM - results on unseen location: Heckstrasse (rec:30):
EGO ID292 at frame 19009 EGO ID34 at frame 3243

EMI:

collison_check:True
min_dist2: lher.s- 5.541

1_¢ H i3 road_violation_check : True iy
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Figure 6. Qualitative Evaluation of Plausibility vs. Accuracy on L2a (real data: Heckstrasse) from models
trained on T3

and should be considered in early stages of development. Considering research questions
R2 and R3, the evaluation showed a large impact of the variability in training data on
model performance and at the same time the potential to augment existing real datasets
with synthetic samples. This is a highly valuable insight as it demonstrates the possibility
of using simulation to create specific situations to compensate for those that are under-
represented in the real training data. Of course, the extent to which human-like behavior
can be generated by simulation in such situations depends strongly on the quality of the
driver models in use. When investigating individual feature settings, advantages of pro-
viding features describing the situational context were identified. Next to interesting in-
sights regarding the effect of training data, input information, and learning parameters on
generalizability, the evaluation has shown that such model aspects can not be considered
independently. There are strong inter-dependencies between data, model structure, and
learning parameters, which make it challenging to derive general valid conclusions. This
fact highlights the necessity of a complex and critical evaluation method to provide more
transparency and reliable solutions when using black-box models. However, as the com-
plexity of the evaluation method increases, so does the interpretation of results. There-
fore, scores have been introduced to allow for easy assessment and comparison. How-
ever, these scores combine and average the individual results, which can lead to smooth-
ing effects. A simple model approach for prediction is employed, dispensing on the con-
sideration of temporal context or probabilistic outputs. However, such aspects are com-
monly addressed in state-of-the-art approaches and should be combined with the pro-
posed methods in the future. Since the L3 test data contains only a small number of sam-
ples (600) to exemplify what such a level of testing might look like, more exceptional sit-
uations should be designed and included in testing at L3 to provide extensive insights for
evaluating model performance. Furthermore, the plausibility metric employed is based
on simple functional indicators. A more sophisticated plausibility metric is planned for
the future, which will include additional parameters to investigate human similarity and
situational plausibility of the results by considering parameters such as Post Encroach-
ment Time (PET) and dynamic motion values such as ranges of accelerations driven by
humans in similar situations.
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7. APPENDIX

Table 5. Results for all model variants across different training data and varying feature settings on all test-
levels. First five columns provide results summarized across all test levels. The rest provides results for the
individual test levels. Best results within the training dataset in bolt, best result per column bolt and underlined.

So  Sacc Sp FDE ADE| LI LI | L2a 12a 12a | L2b L2b IL2a | L3 L3 L3
[%] [%] [%] [m] [m]| FDE ADE FDE ADE Sp FDE ADE Sp FDE ADE Sp
[m]  [m]| [m] [m] [%] [m]  [m] [%] [m]  [m] [%]

T1 EMPI| 49.34 4046 5823 993 655| 238 1.34| 1226 827 51.79| 7.87 440 72.92| 1343 9.58 49.97
EMP 50.31 40.87 59.74 9.96 6.34| 2.0 1.20| 1341 842 5823 7.82 4.04 7325 1257 9.13 4775
EMI 54.57 4256 66.57 9.72 594 | 239 1.38| 1459 970 56.57| 852 447 71221 9.70 593 71.92

EI 50.56 34.62 66.50 11.73 7.51| 2.40 1.26| 20.88 1631 60.71| 6.86 3.40 7827 12.12 595 60.52
EM 43.96 34.63 5330 1193 731 | 2.19 1.26| 13.60 948 47.58| 9.86 583 64.50| 17.22 9.65 47.81
E 54.02 4442 6361 9.55 548| 2.60 145 12.04 7.36 5741| 7.05 347 81.72| 13.03 7.63 51.70

T2 EMPI| 5584 4893 6275 887 482 472 288| 7.87 385 7247| 11.05 592 61.54| 975 5.68 5426
EMP | 58.72 53.68 63.75 8.62 4.05| 3.90 195| 879 4.17 7242| 10.75 497 64.10| 870 4.06 54.73
EMI 57.65 4337 7193 10.60 5.05| 3.97 209 9.70 455 7052 1891 858 62.08 6.52 3.52 83.19

EI 53.66 47.74 5959 956 4.64| 460 220 10.84 477 61.75| 11.02 568 57.33| 928 4.67 59.70
EM 55.96 4558 66.34 8.83 580| 3.94 220 9.17 491 67.28 1273 978 59.39| 7.02 450 7234
E 58.10 4742 6878 8.64 541 | 451 226| 9.10 430 73.12| 1137 988 60.88| 7.51 3.63 7235

T3 EMPI| 71.83 70.63 73.03 6.50 3.11| 270 133| 6.58 3.16 67.40| 7.50 3.35 7449| 7.32 371 77.21
EMP 6624 62.11 7037 7.24 3.62| 3.12 1.73| 813 412 6520{ 791 372 69.29| 7.74 398 76.62
EMI 61.79 5281 70.77 848 429 | 281 1.54| 887 4.01 6685 7.18 338 7572| 1223 6.84 69.73

EI 66.75 63.05 7046 7.08 3.60| 285 1.65| 7.74 390 63.73| 597 2.88 82.70| 9.67 5.00 64.96
EM 6127 5298 69.56 8.13 450 291 1.64| 9.18 520 68.96| 994 521 7021 790 4.50 69.51
E 60.79 54.56 67.02 8.19 4.16| 2.74 1.62| 1021 533 59.00| 6.76 3.05 81.74| 10.31 5.38 60.32

Table 6. Results for different learning parameters on all test-levels according to Table 4

ID| S9 Spcc Sp FDE ADE| L1 LI | L2a L2a L2a | L2b L2b L2a | L3 L3 L3
[%] [%)] [%) [m] [m] | FDE ADE| FDE ADE Sp FDE ADE Sp FDE ADE Sp
[m]  [m] [m]  [m]  [%] [m]  [m] [%] [m]  [m]  [%]

55.87 4542 6631 9.26 543 | 522 254| 7.07 3.65 74.27| 1138 570 62.76| 11.35 839 61.91
53.67 4476 62.58 9.27 562 | 573 294 | 796 441 6455 9.68 520 62.67| 11.94 859 60.51
55.84 4893 6275 8.87 4.82 | 472 288 | 7.87 385 7247| 11.05 592 61.54| 9.75 5.68 54.26
4592 35.60 56.25 11.64 7.08 | 391 1.89| 1245 7.75 59.06| 1589 827 57.90| 10.44 7.83 51.79

N N




