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Abstract. This study proposes a vision-based high-speed localization estima-  

tion method for location based visual inspection of specific cracks in tunnels on 

Japanese expressways where global navigation satellite systems are not applicable. 

The method relies on recognizing lighting facilities installed in tunnels by using 

random sample consensus (RANSAC), enabling stable and accurate localization 

estimation in the horizontal direction. To correspond with traveling at high speed, 

single instruction/multiple data (SIMD) conversion realized 8 times faster than con- 

ventional image processing. The evaluation experimental results on expressway 

demonstrate that the proposed method achieves a maximum error of 31 mm in esti- 

mating lighting facilities position with an average error of 16 mm. The theoretical 

value derived from tunnel completion drawings has a maximum difference of 177 

mm from the total value by this method, indicating that the results of accurate on- 

site measurements should be prioritized over completion drawings. In conclusion, 

the proposed method has considerable potential for practical application in tunnel 

inspection and maintenance. 
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1. Introduction 

 

At the end of March 2021, more than half of Japanese total expressway length, measur- 

ing at 9,231.7 km, had been in service for over 30 years [1]. Maintaining the safety of 

deteriorated infrastructure by conducting appropriate repairs and updates is more cost- 

effective than rebuilding expressways [2]. In this regard, detailed inspections, including 

close visual and hammering inspections, are conducted every five years for tunnels to 

prevent long-term interruptions of the existing transportation infrastructure. However, 

detailed inspections involve road restrictions and work conditions at high elevations, 

causing problems for drivers and challenges in ensuring the safety of inspectors. Hence, 

to improve the frequency of the inspection, several inspection systems have been pro- 
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posed as substitutes for detailed inspections and to confirm deformation by photograph- 

ing the surface of the tunnel lining. However, these systems generally require specialized 

inspection vehicles [3,4]; they also face limitations such as slow driving speed during 

imaging compared to the legal speed limit on expressways [5] and the need for global 

navigation satellite system (GNSS) calibration for each image acquisition [6]. 

Whereas, a tunnel inspection device [7] was proposed that can be mounted on a road 

patrol vehicle to enable tunnel inspection during daily patrols. This device can capture 

images while compensating for motion blur and discover cracks of width 0.2 mm in tun- 

nel ceilings at a distance of 2–5 m, while traveling at 100 km/h. However, its high spatial 

resolution comes with the trade-off that its field of view is limited, and compensating for 

the orientation of the inspection camera against changes in the driving position caused 

by the driver’s operation is required to reliably capture known cracks. Both GNSS and 

odometer-based solutions are inadequate for addressing the problem at hand. GNSS can- 

not be utilized within tunnels, while odometers have errors of a few percent, which can 

be influenced by variables such as speed, tire condition, and barometric pressure. 

Therefor vision-based localization was conducted to obtain the driving position in 

real-time and control the orientation of the inspection camera. This research proposed 

a method for localization estimation by recognizing the lighting facilities in the tunnel 

using the device illustrated in Fig. 1. This device has two cameras to inspect tunnel 

visually and recognize road for localization, and the rotary actuator to change the angle 

of view to allow capturing the entire wall surface. Its feasibility for practical scenarios in 

the expressway tunnel inspection is validated. 

 

 

2. Related Research 

 

Lane recognition is a vehicle localization estimation method that has found applications 

in various fields of advanced driver-assistance systems (ADAS) such as automatic driv- 

ing, with ongoing research in these fields. Light detection and ranging (LiDAR) [8,9] 

conducts 3D measurements by conducting 1D or 2D scanning with a rotating mirror for 

1D information in the depth direction. Thus, increasing the scanning density for inter- 

rupted or adjacent lanes requires increasing the number of scans or installing a large 

number of LiDAR devices. However, a higher scanning density requires more time for 

scanning and also increases the latency between the start and end of scanning, making 

accurately measuring objects moving at high speeds difficult. Therefore, LiDAR is not 

 

 
 

Figure 1. Overview of the inspection device for mounting on a patrol vehicle. 
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suitable for use on expressways. The development of solid-state LiDAR without rotating 

parts has shown progress, but the standard frame rate is 30 Hz or less, and emphasis is 

placed on improving reliability. Millimeter-wave radar [10] does not require mechanical 

movement for 3D scanning and can perform stable measurements at a distance of 100 

m or more under varying environmental conditions. However, unlike LiDAR, which can 

simultaneously acquire luminance values and depth information, only the shape is mea- 

sured; thus, its application conditions are limited. Moreover, a special lane with a reflec- 

tive convex part (rib) is required for lane recognition, and the data update speed takes 

approximately several tens of milliseconds. 

Vision-based lane recognition is originally affected by the brightness of the sun and 

weather [11]; however, it is unaffected in tunnels and is suitable for imaging. Eliminating 

the need for specialized vehicles requires a method that does not require camera calibra- 

tion for loading and unloading equipment. The method by Adachi et al. [12] achieves 

vehicle localization under simple conditions without using camera parameters; however, 

in an actual expressway tunnel, recognizing lanes in a stable manner is challenging be- 

cause of the co-existence of multiple lanes and dashed lines. Methods for dealing with 

diverse environments on expressways were proposed in a study by Hayakawa et al. [13], 

but it is not applicable in places where the lane becomes blurred due to aging or dirt. 

Although recognizing method of damaged stop lanes is proposed by Ito et al. [14], the 

method cannot correspond with complete disappearance of the lanes. Hence, more stable 

localization estimation method is required. 

Lighting facilities are installed in tunnels and have features similar to those of lanes. 

In recent years, exhaust gas regulations and the shift to electric vehicles (EVs) have 

enabled cleaner air inside tunnels, thereby resulting in cleaner lighting covers, and partial 

lights are no longer turned off owing to dimming control by switching to LED lighting. 

Thus, lighting features can be used as stable features instead of lanes. 
 

 
 

Figure 2. Overview of lighting recognition using RANSAC 
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3. Principle 

 

3.1. Lighting Recognition 

 

Lighting recognition enables real-time self-localization of vehicles and dynamically ad- 

justs the inspection area based on their position. Lighting installed in rows on tunnel 

ceilings, at a certain height from the road surface, can be treated as a straight dotted line 

because expressway tunnels are typically designed with minimal curvature to maintain 

driving speed. This is recognized as two straight lines in the same manner as in lane 

recognition. 

First, feature points are extracted from the image acquired by the forward-facing 

camera in Fig. 1. Unlike lanes, lighting produces equal strength edges on the long and 

short sides, detected using horizontal differentiation filter. Therefore, diagonal edges are 

obtained using the following linear filters on the left and right sides of the image: 

 

 (1)

 

 

 (2)

 

The obtained edge images’ brightness, which changes from dark to light above a 

certain threshold, is extracted as a feature point. Since these feature points contain distur- 

bances, fitting to a linear model is performed to eliminate their influence. By using ran- 

dom sample consensus (RANSAC) [15], it is possible to efficiently exclude disturbances 

and recognize illumination robustly with a small amount of computation. 

As shown in Fig. 2, straight line fitting using RANSAC involves randomly selecting 

two points from among the feature points (red circles in Fig. 2) and setting the parameters 

of the straight line passing through those two selected points (yellow stars in Fig. 2) as 

candidates. The count of the feature point group G that is at a distance from this straight 

line that is less than or equal to the threshold is set as c (orange lines in Fig. 2). The G that 

maximizes the c is obtained through multiple trials, and a straight line from the feature 

points contained in G is obtained using the least squares method. Thus, only the feature 

points with the disturbance removed can be fitted to the straight line model. If this trial 

is performed on n feature points obtained from the image, then all combinations will be 

nCr. RANSAC guarantees that a correct fitting result can be obtained with probability 

p in N trials, as represented by (3), where e is the probability that a feature point is an 

outlier. 

 
 (3)
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3.2. Localization Estimation 

 

Localization estimation involves recognizing the left and right lighting as straight lines; 

this can be achieved based on the method reported by Adachi et al., [12] as demonstrated 

in the following section, and updated for lightning recognition as shown in Fig. 3. 

First, a homography matrix is obtained, which transforms the intersections of the left 

and right straight lines and the top and bottom straight lines of the image to coordinates 

normalized to (0,0), (1,0), (0,1), and (1,1). Furthermore, assuming that the camera is hor- 

izontal to the road surface, the straight lines at the left and right edges of the images are 

perpendicular to the road surface. The two straight lines contain the legs of the trapezoid 

representing the field of view of the camera on the road surface. By transforming them 

into a normalized coordinate system using the obtained homography matrix, the X co- 

ordinate of the intersection of the two straight lines indicates the position of the camera 

relative to the illumination. Even if the camera is tilted forward or backward, this inter- 

section will only move along the Y axis, while the X coordinate remains the same. Thus, 

the camera position can be estimated accurately, even with the camera tilted upward or 

the limited region of interest (ROI) capturing only lighting near the vehicle. 

The obtained camera position is the relative position wherein the left lighting is 0 and 

right lighting is 1, and this can be used to determine the rotation for photographing cracks 

while considering the actual dimensions in the tunnel and the mounting position of the 

camera. Additionally, camera parameters are not required for localization, eliminating 

the need for camera calibration in lighting recognition. 

 

3.3. High-Speed Implementation 

This algorithm was implemented in C++, with the upper half of the 1280 × 1024 image 

defined as the ROI for localization. The average process time was 10 ms. This time was 
not sufficient for LiDAR, which requires a long time for scanning. The bottlenecks en- 

countered were 1) image filtering, 2) feature point extraction, and 3) RANSAC, which 

were all highly parallel processes. However, in case inspection and self-location estima- 

tion are performed on the same PC, large number of multi-threading may affect the per- 

formance of inspection. Hence, optimization of individual bottleneck is desirable. The 

 

 
 

Figure 3. Relationship of lighting facilities and camera in normalized coordinate system. Xc indicates the 

distance between left-side lighting and a camera. 
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proposed method utilized the filter feature, the data structure was optimized, and sin- 

gle instruction/multiple data (SIMD) conversion was utilized using built-in functions to 

boost the speed. 

 

3.3.1. Improvement of Computational Efficiency of Image Filtering 

The filter FL for the left side of the image was considered. As shown in Eq. 1, each co- 

efficient p was any real number, so this value can be set to ±1 by adjusting the thresh- 

old value for extracting a feature point. Essentially, the result can be obtained only by 

addition and subtraction of integers of six elements, and the computation amount can be 

greatly reduced compared to performing convolution as a 4 × 4 linear filter. Furthermore, 
based on SIMD, with one command, multiple pixels in the horizontal direction are read 

from memory simultaneously as vector data (a), the column position is shifted by shift- 

ing the number of bytes according to the row, and the results of conducting four vector 

additions and one vector subtraction are written to memory. As the shift fills the outside 

of the range with 0, we used a command that simultaneously reads out the pixels further 

behind and concats and shifts the two vectors (b). Additionally, a possibility of overflow 

exists due to addition (c) and subtraction (d); thus, the shifted result is converted to an 

integer type that is one value larger to ensure accuracy. Arithmetic right shift is con- 

ducted on the final addition/subtraction result to a degree sufficient for comparison with 

the threshold, and by converting to the original integer type with a pack instruction with 

saturation processing, the resulting edge image has the same size as the input image. A 

schematic diagram of vector operation about FL is shown in Fig. 4. Herein, processing is 

conducted in parallel with four pixels, thus, only 62.5% of the read data is used, which 

is inefficient. However, when using 256-bit SIMD instructions such as advanced vector 

extensions (AVX) for an image with eight bits per pixel, addition and subtraction are 

performed in 16 bits. Thus, 16 pixels are processed in parallel, and by conducting loop 

unrolling once, pack instructions and writing to eight bits can allow for parallel process- 

ing of 32 pixels. At this time, 128-bit vector readout is conducted twice per row, and 

32-bit scalar readout and conversion to 128-bit are conducted once. Consequently, the 

 

 

 
Figure 4. Schematic diagram of vector operations using SIMD equivalent to conventional matrix calculation 

about FL. 
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efficiency of data reading during parallel processing has been significantly improved to 
approximately 91.7% (91.7% − 62.5% = 29.2% improvement). 

3.3.2. Feature Point Extraction 

In terms of feature point extraction, SIMD conversion was applied by comparing the fil- 

tering results with a threshold value. Note that, when storing the coordinates of the fea- 

ture points in an array, the data structure must be set either as an array of two-dimensional 

vectors (i.e., array of structures (AoS)) or a structure with an array of X coordinates and 

an array of Y coordinates (i.e., structure of arrays (SoA)). [16] 

3.3.3. RANSAC 

SIMD conversion of RANSAC is parallelized for each candidate straight line. Linear 

parameters require floating-point arithmetic, and eight elements can be processed in par- 

allel when handling 32-bit single precision with 256-bit SIMD commands. Therefore, 

combinations of two feature points selected by random numbers are handled in paral- 

lel with eight candidates. The operations for each candidate are independent, which al- 

lows for a simpler and more efficient parallelization of the aforementioned data structure 

(SoA). Moreover, AoS is more advantageous than SoA in processes involving reading 

the coordinates of feature points from an array using random numbers as indices. This 

is due to the limitation of AVX2 gather instructions. The gather instructions specify an 

index with vector data and reads out data at an arbitrary position from the array at once. 

If random numbers are generated and used as indices, the coordinates of candidate fea- 

ture points can be read at high speeds as vector data. However, in AVX2, 256-bit gather 

instructions can only be conducted on eight 32-bit elements, four 64-bit elements, or two 

128-bit elements. As 16-bit integers for each of the X and Y coordinates are sufficient for 

the coordinates of the feature point due to the size of the image, data for one feature point 

can be represented by 32 bits. Therefore, storing the coordinates of feature points in an 

array in 32-bit units as AoS enabled optimal reading using the gather command. Consid- 

ering these advantages, we assumed the strategy of reading AoS data from memory and 

then converting it to SoA. 

Consequently, the processing time was 1.2 ms on average, which was 8 times faster 

than the original method without high-speed implementation, and sufficiently faster than 

LiDAR and millimeter-wave radar. 

 

4. Experiments 

 

The availability of the proposed method is verified in the real environment. Through this 

experiment, the accuracy of the local estimation is evaluated and discussed. 

4.1. Experiment Condition 

 

As mentioned previously, this experiment is conducted in the real environment, Chuo 

Expressway Enasan Tunnel, and at three points on the driving lane side, which featured 

the crack to be inspected. The Enasan Tunnel completion drawing is shown in Fig. 5. 

As an evaluation experiment of the proposed method, images were captured by 

two cameras for lighting recognition (SP-5000M-CXP4, JAI) and visual inspection (SP-
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12000M-CXP4-XT, JAI). while the vehicle was halted within area in the expressway tun- 

nel, and simultaneously, the distance from the device to the tunnel lining was measured 

using a distance sensor (DT50-2, SICK) mounted on the inspection device. 

 

4.2. Lighting Recognition Results 

 

First, localization estimation was conducted on the captured image using the line fitting 

in the proposed method as shown in Fig. 6 (a) and (b). Even if the lorry is appeared, the 

recognition was successful; However, in case the lorry blocks all the lighting facilities, 

the recognition will be failed. This point is discussed in Sec. 5. 
 

 
 

Figure 5. Tunnel dimensions around crack. 

 

 

 
 
Figure 6. Line fitting results with recognized left and right straight line at crack 1. (a) Without adjacent vehi- 

cles. (b) With an adjacent lorry. 

 

 

Y. Moko et al. / High-Speed Localization Estimation Method Using Lighting Recognition96



4.3. Local Estimation Results 

 

4.3.1. Preparing the Distance Value to Compare 

It is desirable to obtain the true value of the lighting position from a stopped inspection 

vehicle through three-dimensional measurement for the left and right lighting using a 

laser. However, as an active sensing method using a laser could be dangerous for general 

vehicles, fully restricting the road is necessary to measure. To enable a comparison with 

the localization estimation value, the distance between the measurement object and the 

camera was separately measured in order to determine the accuracy of the distance sen- 

sor’s measured value; the distance from the tunnel center to the tunnel side was calculated 

based on the tunnel completion drawing. 

Subsequently, a 3D model of the general shape of the tunnel and the lighting di- 

mensions and installation positions was created based on the tunnel completion drawing, 

and the lighting observed using the camera of the inspection device was reproduced as 

a CG-rendered image. Using these parameters as initial values, a exhaustive search for 

(x, y) and (pitch, yaw) was performed by template matching, setting the ROI as the area 

in the images where the lighting is visible. Thereafter, localization estimation involves 

calculating the horizontal distance from the tunnel center to the camera based on the 

distance between the left and right lighting. In particular, as the measured value of the 

distance sensor is the distance from the tunnel wall to the distance sensor, direct compar- 

isons could not be performed. However, the total value of both is expected to be constant, 

regardless of the vehicle position. Additionally, by taking into account the mounting po- 

sition of the distance sensor, it became possible to compare the overall value between the 

distance from the tunnel center to the tunnel side. 

4.4. Experiment Results 

 

Table 1 summarizes the numerical values at each point. a) is distance between device and 

tunnel center by the proposed localization estimation, b) is true distance value described 

in 4.3.1, c) is distance between device and tunnel side measured by a distance sensor. 

First, the comparison with CG values reveals that the maximum error is 31 mm at crack 

3 between Tab. 1 a) and b). Additionally, Table 1 d) are 4,990 mm, 4,972 mm, and 4,980 

mm, which are each within a maximum difference of 11 mm between the average value 

of 4,981 mm of the three values and d) at crack 2.1 d) at crack 2. The theoretical value T 

of d), the distance between the tunnel center and tunnel side, is obtained by the following 

equation (4) from the tunnel completion drawing, assuming that the camera height is the 

same as the springline height. 
 

 

 (4)

 
 

The theoretical value of the d) value is 5,149 mm, with a maximum difference of 177 

mm from Tab. The comparison with CG values (Tab. 1 b)) and the stability of the total 

value (Tab. 1 d)) indicate that the localization estimation was successful, with an error 

in the order of several centimeters. The horizontal field of view of the inspection camera 
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is 528 mm at a distance of 5,000 mm ahead of the camera, which suggests sufficient 

accuracy. Fig. 8 shows the state of lighting recognition while driving. Straight line fitting 

that connects the feature points of the tunnel lighting is conducted at correct positions on 

the left and right, enabling localization to be stably estimated. 

Table 1. Accuracy Verification Compared to Measured Values 
 

 
Point 

a) 

Estimated 

value [mm] 

b) 

Pseudo true 

value [mm] 

c) 

Measured 

distance [mm] 

d) 

a+c 

[mm] 

Crack1 1731 1712 3259 4990 

Crack2 2334 2342 2638 4972 

Crack3 2396 2365 2584 4980 

 

 

 
 
Figure 7. Experimental results in parked condition at crack 1 in Table. 1; each images are level-corrected to 

improve the image visibility for humans. 

 
 
 

5. Discussion 

 

As shown in Fig. 6 (b), a lorry did not cause decrease of accuracy to recognize light- 

ing facilities; however, in case the lorry blocks all of them, one of the fitting lines will 

disappear totally, and cause a severe recognition error. To validate the error rate of the 

phenomenon, Fermi estimation was implemented instead of actual measurement because 

of limited time of the traffic restriction. 25,000 * 0.38 = 9,500 vehicles per day between 

the exits across the Enasan Tunnel, or 0.11 large vehicles per second [17]. If lorries were 

equally spaced in both lanes, the distance between lorries in the overtaking lane would 

be 100 [km/h] / (0.11/2) [vehicles/s] = 505 [m]. Probability of lorries per unit length is 1 

/ 505 [m] = 0.00198 [units/m]. Suppose the location where the lorry fails to be present is 

10m in front of the patrol vehicle. Probability of a lorry being there 0.00198 * 10 = 1.98 

%. Namely, the error occurs only once in 50 times. 
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Figure 8. The result of alignment by CG at crack 1. 

 

Additionally, the estimation values from lighting estimation based on three points 

with the CG alignment result constructed from the tunnel drawing had a maximum error 

of 31 mm, whereas a maximum error of 11 mm was derived based on the average value 

of the three points. Moreover, the theoretical value of the total value calculated from the 

tunnel completion drawing was 5,149 mm, with a maximum difference of 177 mm from 

the total value. 

The difference between the theoretical value and measured value is likely attributed 

to the difference between the actual tunnel and the completion drawing due to factors 

such as tunnel deformation. Additionally, the tunnel is not a perfect circle; however, 

rather a slightly crushed ellipse; thus, the radius shown in the completion drawing is 

not constant. This finding indicates that the results of accurate on-site measurements 

should be prioritized over the completion drawings when actually operating the system. 

Although a distance sensor was attached to the device for verification purposes in this 

experiment, this equipment is essentially unnecessary. Thus, this equipment should be 

removed to simplify the device configuration and reduce power consumption. 
 

 

6. Summary 
 

This study proposed a stable and high-speed vision-based localization estimation method 

that solved the problem of lane recognition in tunnel environments on Japanese express- 

ways where GNSS is not applicable. This was achieved by recognizing the lighting fa- 

cilities installed in tunnels. 

The proposed method only conducted localization estimation in the horizontal di- 

rection; however, localization estimation could be performed in the traveling direction at 

high speeds by counting and tracking each lighting on a recognized straight line. As the 

cracks to be inspected were located at various positions in the tunnel, the camera angle 

must be accurately pointed toward a specific crack at an arbitrary timing and angle while 

driving. The combined strategy of lighting recognition and lighting counting proposed in 

this study enables more frequent inspections of the tunnel lining to detect cracks that lead 
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to flaking. Thus, this strategy can enhance tunnel infrastructure safety while reducing 

costs. Overall, the study offers an innovative and efficient solution for tunnel inspection. 
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