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Abstract. Efficient automatic detection of incidents is a well-known problem in the 
field of transportation. Non-recurring incidents, such as traffic accidents, car 
breakdowns, and unusual congestion, can have a significant impact on journey 
times, safety, and the environment, leading to socio-economic consequences. To 
detect these traffic incidents, we propose a framework that leverages big data in 
transportation and data-driven Artificial Intelligence (AI)-based approaches. This 
paper presents the proposed methodology, conceptual and technical architecture in 
addition to the current implementation. Moreover, a comparison of data-driven 
approaches is presented, the findings from experiments to explore the task using 
real-world datasets are examined, while highlighting limitations of our work and 
identified challenges in the mobility sector and finally suggesting future directions. 
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1. Introduction 

Automatic incident detection in intelligent transport systems (ITS) refers to the 

process of identifying incidents such as accidents, congestion, or road hazards in real-

time using advanced technologies and data analysis techniques. Incidents are referring 

to “any non- recurring event that causes a reduction of roadway capacity or an abnormal 

increase in demand” [1]. Incident detection thus constitutes an essential component of 

ITS, given that if non-recurrent incidents could be detected in a timely manner, 

preventive measures and appropriate actions to respond to the incident could be rapidly 

taken. ITS incident detection systems typically use data from sources such as traffic 

cameras, sensors, GPS devices, and social media feeds to monitor traffic conditions and 

identify anomalies or patterns that indicate the occurrence of an incident. These systems 

can also use Machine Learning (ML) and Deep Learning (DL) algorithms to learn from 

past incidents and improve the accuracy of the detection.  
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The present paper introduces the conceptual and technical framework, methodology 

and work undertaken in developing a real-time automatic incident detection system. 

Moreover, the background and related works are mentioned, while outlining the 

identified research gaps which our work aims to fulfill. Then, the methodology and initial 

findings from preliminary experiments are discussed. Finally, the paper outlines the 

limitations of our work in addition to the challenges encountered and proposes future 

research directions. 

2. Background and literature review  

2.1. Incident detection task 

When an incident occurs, the traffic undergoes a transition from an uncongested 

state to a congested state, leading to changes in vehicle speed and flow. Essentially, this 

transition creates a ripple effect known as a shockwave, which results in the formation 

of a queue after the bottleneck, typically at the location of the incident. This phenomenon 

is often visually represented in a space-time diagram, where the speed-time graph 

exhibits a cyclic pattern of acceleration and deceleration, as depicted in Figure 1. To 

effectively detect or predict an incident, it is crucial to consider anomalies that indicate 

the formation of queues both upstream and downstream from the incident location. 

Therefore, it is necessary to combine the time series data obtained from loop sensors with 

the spatial information of the traffic network. 

 
Figure 1. A time–space diagram for typical temporary capacity reduction (i.e., traffic accident) [2] 

2.2. Relevant works 

In recent years, research efforts have been proposed to deploy Automatic Incident 

Detection (AID) Systems onto urban roads, as effective incident detection in an 

automatic data-driven manner in ITS can improve traffic flow, reduce congestion and 

delays. Automatic Incident Detection Algorithms (AIDA), have been studied widely and 

are categorized by many systematic reviews (e.g., [3] [4] [5]). One such review 

categorizes these algorithms based on their data processing and methods used into four 

categories: comparative, statistical, artificial intelligence-based and video–image 

processing algorithms. [6] 
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In the type of comparative algorithms, the difference in the traffic flow parameters 

between two adjacent fixed detectors is calculated and compared. On the other hand, the 

statistical type of methods commonly employs the temporal characteristics of traffic flow 

data to build models based on the given statistical theory.  While traditional approaches 

(comparative and statistical algorithms) have been widely used in the past because of 

their simplicity and are considered effective in detecting incidents which cause 

significant changes in the traffic flow, a shift has been observed towards AI-based 

approaches, because of their flexibility and their superior performance. Moreover, being 

data-driven, they can fit a large quantity of traffic flow data to mine their intrinsic 

patterns [7]  and are able to capture both temporal and spatial information of traffic flow, 

a point proven important for improving the accuracy in incident detection [8]. Recently, 

a rise has been observed in research works which make use of video footage from CCTV 

cameras to identify incidents. Examples of such works which demonstrate the potential 

of using video streams and highlight the effectiveness of deep learning techniques in 

incident detection, are mentioned in various systematic reviews (e.g., [9] [10]).  Based 

on several reviews of the domain, it is observed that despite progress being made, AI-

based and generally data-driven incident detection algorithms are found to still have 

outstanding limitations and thus research gaps emerge. These gaps include obtaining a 

richer set of historical traffic incident data to train and test the models; constructing 

balanced datasets in which the number of incident samples equals the number of non-

incident samples; improving the real-time capability of the models; and effectively 

extracting the spatial and temporal correlations to improve performance. [11]. 

3. Architecture  

3.1. Conceptual architecture  

In Figure 2, the conceptual architecture of the real-time incident detection is 

demonstrated.  The input to our system comprises of network traffic data (i.e., speed, 

occupancy, flow) as measurements captured by Inductive Loop Detectors (ILD). The 

system then processes the data through a dedicated Machine Learning pipeline and is 

able to produce captured anomalies in both space and time dimensions, and thus to 

identify incidents in the network.  

 
Figure 2. Conceptual architecture of our system. 

 

The system consists of two main components to detect incidents specifically for 

roadways and highways: an offline training component and a real-time module. The main 
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data source which is used as input to our system are measurements from inductive loop 

detectors, whose purpose is to continuously monitor traffic, and which are commonly 

used because of their reliability, cost-effectiveness, and easy integration into existing 

infrastructure. In the context of our current work, the data obtained from our system is 

analyzed using data-driven approaches to detect patterns and anomalies within these 

traffic observations.  

3.2. Technical architecture  

In Figure 3, the technical architecture of the offline training module of our system is 

presented. The Data Layer currently contains inductive loop detector (historical and real-

time) measurements for speed, occupancy and flow in conjunction with the 

corresponding incident dataset. More information about these data sources and their pre-

processing and feature engineering is included in Section 4. As part of the ML/DL 

module, a suite of Machine Learning algorithms has been implemented for incident 

detection. These include both Supervised and Unsupervised approaches and are 

discussed in Section 4. Leveraging techniques such as Grid Search and Random Search, 

we conducted comprehensive hyperparameter tuning to optimize the performance all 

those algorithms. We would like to emphasize the adoption of two sophisticated cross-

validation techniques tailored for our system. Firstly, we employed Time-Series Cross-

Validation, an essential validation strategy for incident detection given the inherent 

temporal nature of our data. Unlike traditional K-fold or stratified cross-validation, this 

method respects the chronological order of the data, mitigating the risk of future data 

leakage into the training setThe temporal sequence of the data is strictly maintained, 

ensuring each training set is only constituted by data points preceding those in the 

validation set. Secondly, to further fortify the robustness of our performance estimates, 

we utilized Repeated Cross-Validation. This technique entailed repeating the entire 

cross-validation process numerous times, with different random seed settings for each 

iteration. The primary advantage of this method lies in its capacity to minimize the 

variability of performance estimates, thus providing a more reliable representation of the 

model's prospective performance on unseen data. The combination of these techniques 

underscores a comprehensive and tailored validation approach, significantly enhancing 

the reliability of our incident detection model during its offline training phase. 

Regarding the technical details, Python has been used for the development of the 

system. Moreover, several libraries, such as pandas, numpy, Tensorflow, Keras, scikit-

learn have been utilized for data manipulation, model training, testing and evaluation, 

and seaborn and matplotlib for visualization purposes (e.g., as part of the exploratory 

data analysis (EDA)). The architecture of the system is designed to be scalable and 

flexible in terms of type of measurements derived from loop detector data, allowing for 

easy expansion and customization to meet the needs of different roadways and networks. 
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Figure 3. Technical architecture for the offline mode. 

4. Implementation  

4.1. Offline training mode  

4.1.1. Inductive Loop detectors (ILD) dataset 

As mentioned in the previous section, our system uses primarily traffic observations 

for ILDs. For the city of Athens, a corridor of Attiki Odos (a modern motorway extending 

along 70 km and constituting the ring road of the greater metropolitan area of Athens) 

extending from the Athens airport to the suburb of Metamorfosi has been used as a study 

area in evaluating the efficiency of our developed system. Loop detector data from 591 

units were gathered from October 2020 to end of September 2021. These detectors have 

registered flow, occupancy, and speed in the original raw dataset. However, preliminary 

analysis of this data indicates that, as we will explain in more detail below, the raw data 

obtained from the sensors show many inconsistencies in measurements.  

                 

Figure 4. The network of our study area. 
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A detailed analysis of flow, occupancy and speed readings yield very low reliability 

for occupancy and speed. This estimation is based on statistical analysis of the time-

series, unknown values (NANs), zeros, negative values and outliers. Out of the total 591 

detectors provided, only 196 are regarded as reliable enough to be used as part of the 

experiments conducted. This led us to establish a direct communication with the data 

providers and have managed to obtain a list of the most reliable sensors, which are the 

ones included in our experiments and training. From the total amount of 26,331,086 

readings provided (one every minute from the selected period), several filters were 

applied to remove detectors which were not in the station aggregation file, flow reliability 

outliers, flow-occupancy-speed mismatches, detectors with more than 50% not-a-

number entries (NaNs), stuck values (constanxt readings across time), isolated values, 

and atypical profiles. Several types of imputation of missing/unreliable data were carried 

out on approximately 35% of the readings, namely: polynomial, time k-nearest neighbor 

(KNN), free-flow speed imputation, spatial KNN, PPCA-based imputation, and 

weekday-based imputation. After vigorous analysis, due to the low reliability in terms of 

occupancy and speed values, the variable selected to be used for experiments was the 

flow. Finally, the data have been transformed and stored in parquet files, each of which 

contains the monthly observations of one of the traffic characteristics.  

4.1.2. Labeled incidents dataset 

In addition to the Inductive Loop Detectors dataset, which comprises of the 

measurements of network-related attributes (i.e., speed, occupancy and flow), the 

labelled incidents dataset provided to us by Attikes Diadromes, the operator of our study 

area, plays a pivotal role in the experiments conducted for the purpose of automatic 

incident detection. This dataset, comprising 34,652 incident occurrences in total and 34 

feature columns, serves as a critical resource for evaluating the performance of our 

models, as it represents the ground truth against which our models will be assessed. By 

leveraging this dataset, we can measure the accuracy and effectiveness of our incident 

detection techniques, enabling us to make informed decisions and ensure the quality of 

the obtained predictions. 

The feature columns of this dataset include information regarding 'timestamp', 

'source', 'start_time', 'end_time', 'direction', 'intersection', 'toll_station', 'branch', 

'position_(pk)', 'type', 'subcategory', 'outcome', 'deaths', 'injured', 'queue_start_time', 

'queue_end_time', 'queue_length_cars', 'queue_length_time', 'weather' among others. 

However, it is worth noting that certain inconsistencies were identified within the dataset, 

based on a conducted Exploratory Data Analysis. Specifically, incidents that had no 

discernible impact on traffic were still labeled as incidents. To ensure fairness in our 

experiments, a filtering process has been implemented to remove such instances, thus 

maintaining consistency in the type of loop detector input data used for analysis, based 

on the following: 

 Notably, it was observed that two specific branches of the highway recorded the 
highest number of incidents, with 13,829 and 13,757 incidents respectively. Since 
the majority of the incidents occurred on the main branches of the highway, a 
decision was made to exclusively focus on those. 

 Moreover, a filtering process was applied to include only specific incident types 
for the scope of our experiments. Specifically, the labelled incidents dataset 
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exclusively encompasses incidents categorized as Traffic Congestion and Traffic 
Accident, as they are the primary focus of our investigation. 

 Finally, the incidents were further filtered based on the observed queue length of 
cars. In collaboration with stakeholders, we obtained valuable feedback 
recommending a reduction in the threshold for queue length to 50 meters, as 
opposed to our initial proposal of 200 meters. This adjustment was made based 
on their expertise and supported by the understanding that queues of 200 meters 
are exceptionally uncommon in the specific highway, even in the event of an 
unplanned incident. 

 

To summarize, after this filtering process, the dataset used primarily originates from a 

closed-circuit television (CCTV) system, encompassing a total of 1,786 incident 

occurrences for the two main branches and more specifically 763 reported incidents for 

the same time period as the traffic measurements. Following data cleaning and filtering, 

it was necessary to transform the dataset into a format suitable for utilization by Machine 

Learning algorithms, either for training purposes in the Supervised approaches or for 

evaluation purposes in the Unsupervised methods.  

We would like to acknowledge the existence of certain limitations in the steps 

outlined, particularly concerning data filtering, as well as inherent limitations associated 

with the collected data itself. Several factors contribute to these limitations, which are 

discussed herein. Firstly, some incidents may not have been captured and registered 

within the dataset. Although our analysis indicates that all incidents were recorded 

manually, with most being identified through CCTV cameras, the potential for 

incomplete incident registration remains. Secondly, there is a possibility of inaccurate 

timing in the recorded incidents. It is feasible that an event occurring at a specific 

timestamp could be recorded or logged at a later timestamp. Such inaccuracies have 

notable repercussions on the evaluation of our algorithms. Lastly, the filtering process 

we employed is not immune to errors. While the selection criteria were based on the 

expertise of stakeholders and dataset characteristics, there is a chance that some incidents 

with significant traffic implications may have been inadvertently overlooked and not 

accounted for in our analysis. 

4.1.3. Method Selection and Experiments 

For the evaluation of the algorithms selected in our research, a one-month dataset from 

May 2021 was utilized. Our experiments encompassed both supervised and unsupervised 

techniques. The supervised techniques involved the utilization of labelled data for both 

training and testing, specifically employing Support Vector Machines (SVM). On the 

other hand, unsupervised techniques employed labelled data solely for testing purposes, 

and the algorithms evaluated included Isolation Forest, Convolutional Neural Network 

(CNN), Bayesian Convolutional Neural Network (BCNN), Wavelet Neural Network 

(WNN), Bidirectional Long Short-Term Memory (LSTM) in addition to the Aimsun 

Live’s Incident Detection Module (IDM)2. Aimsun’s IDM was used for benchmarking 

our experiments against a proprietary data-driven module which is integrated in the 

Aimsun Live solution for real-time transportation management and described in [12]. 

 
2 Aimsun Live IDM is a component of a larger system that combines simulation and data-driven prediction 

modules. This component only uses data-driven techniques without any simulation. 

G. Gkioka et al. / AI-Driven Real-Time Incident Detection62



The selection of input features for the Machine Learning algorithms was based on 

an extensive literature review of AI-based approaches and a thorough analysis of the 

available data features. Notably, flow emerged as the most reliable feature, as supported 

by rigorous analysis explained in Section 3. Building upon this finding, we have 

conducted experiments involving different combinations of temporal and spatial features, 

tailored to our use case, and after careful consideration, we selected the following 

features to serve as inputs for the Machine Learning algorithms: Flow, Upstream and 

downstream flow for adjacent detectors, Mean upstream and downstream flow of 

detector {5, 10, 15} minutes before, Mean upstream and downstream flow of detector {5, 

10, 15} minutes after, Mean upstream and downstream flow of adjacent detectors {5, 10, 

15} minutes before, Mean upstream and downstream flow of adjacent detectors {5, 10, 

15} minutes after. For the deep learning algorithms, we have chosen five-time steps to 

make the sequences to be used as input.  

Regarding the AI models which constitute the focus of our research work, we have 

carefully selected those algorithms based on insights from relevant studies and their 

demonstrated effectiveness in the field of traffic incident detection. Support Vector 

Machines (SVM) were chosen due to their documented advantages, including lower 

misclassification rates, higher correct detection rates, lower false alarm rates, and 

relatively faster detection times compared to other models [13]. Isolation Forests were 

incorporated into our approach, drawing from numerous works in the field of AID. They 

offer notable benefits, such as their efficient time complexity, low memory requirements, 

and the ability to effectively handle multi-dimensional feature spaces, mitigating the 

computational costs associated with distance calculation in various distance and density-

based methods [14]. To capture time series patterns with time-varying period and 

intensity [15], we employed Wavelet transformation (WCNN), leveraging the 

PyWavelets library, an open-source wavelet transform software for Python, which allows 

the decomposition of the time series into a sum of frequency components, effectively 

capturing temporal dependencies and seasonalities. Incorporating Bayesian deep 

learning models can capture uncertainty over weights and activations using probabilistic 

layers trained through Bayesian inference and offer a straightforward extension of 

traditional DL models to better account for uncertainty and capture more nuanced 

relationships in the data [16]. Autoencoders, being unsupervised Machine Learning 

models, extract nonlinear features of traffic flow data and are generally used in anomaly 

detection tasks, since they try to minimize the reconstruction error as part of their training, 

thus can detect anomalies by checking the magnitude of the reconstruction loss [17]. 

Finally, the bidirectional Long Short-Term Memory (LSTM) model has been deemed 

suitable due to its ability to capture temporal autocorrelation within the data [14]. This 

architecture, trained on historical data, enables estimation of future values, and facilitates 

the classification of anomalous behavior using a threshold learnt from the data for loss 

values and comparing actual traffic data with corresponding patterns.  

It is worth mentioning that for the case of Supervised Learning, since we have an 

extremely unbalanced dataset, we have made use of oversampling and under sampling 

techniques. In practice, the availability of traffic event samples of our dataset is 

considerably fewer compared to those of nonevent type, resulting in an imbalanced 

distribution between the two types of samples. Consequently, traffic incident detection 

can be viewed as a classification problem involving imbalanced data. The challenge of 

working with imbalanced datasets is that most machine learning techniques will ignore, 

and in turn have poor performance on, the minority class, although it is the performance 
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on the minority class that is mostly important. To address this issue, the Synthetic 

Minority Oversampling Technique (SMOTE) [18] and Tomek link [19] is frequently 

employed. In our experiments, we have chosen to combine SMOTE with Tomek links 

technique, as it has been shown that this method is much superior compared with that of 

using only one of the two [20] [21]. 

To comprehensively evaluate and compare the performance of the aforementioned 

techniques, we employed commonly used metrics in AI-related works, namely precision, 

recall, and F1-score. These metrics have been widely adopted in the field due to their 

effectiveness in assessing algorithm performance [22]. It is important to note the 

interdependence of these metrics, where improvements in one metric may be 

accompanied by a degradation in others [23]. Table 1 shows results of the standard set 

of metrics used in our AI experiments, namely precision, recall and F1-score. 

Table 1. Evaluation metrics. 

Algorithm Precision Recall F1-score 

SVM 0.58 0.97 0.64 

Isolation Forest 0.01 0.44 0.02 

CNN 0.01 0.94 0.02 

WNN 0.05 0.96 0.09 

Autoencoder 0.03 0.49 0.05 

Bidirectional 
LSTM 0.19 0.43 0.26 

Aimsun IDM  0.08 0.50 0.14 

The results obtained from our analysis exhibit some fluctuations across the 

employed techniques, highlighting the need for further investigation and analysis. It is 

important to remember that labelled incidents were limited to visible areas of the network, 

therefore the false positive rate is seriously affected. There is no certainty that false 

positives might be due to an invisible event to the data supplier (therefore, there was an 

event, but it was not labelled) or truly a faulty prediction by the algorithm. Moreover, it 

is crucial to consider that the evaluation dataset has been formatted in 5 minutes intervals 

to feed the algorithms, therefore when computing precision there is a true positive when 

the event is detected at exactly the annotated timestamp. However, in real scenarios an 

ideal incident detection algorithm should be able to spot an event ideally before it 

happens or at least within a reasonable time margin. In this light, among the algorithms 

tested, the Support Vector Machine (SVM) emerged as the top-performing method, 

demonstrating high precision and recall. This finding aligns with existing literature [24] 

[6], which suggests that SVM performs exceptionally well when a labelled incidents 

dataset is available, given its supervised nature. However, we should acknowledge that 

this approach may suffer from overfitting issues and limited generalizability to unseen 

samples. On the other hand, the Isolation Forest algorithm has managed to achieve a 

satisfactory recall but exhibited very low precision, resulting in a significant number of 

false positives and subsequently impacting the obtained F1-score. The Convolutional 

Neural Network (CNN) and Wavelet Neural Network (WNN) demonstrated high recall 

rates but struggled to achieve satisfactory precision. Nevertheless, the wavelet 

transformation exhibited slightly better performance than the CNN, confirming findings 

from literature where wavelet transformations successfully applied to time-series 

datasets [25]. For the Autoencoder, the results were consistent with other deep learning 

methods tested, indicating that its performance is comparable. Even though Aimsun’s 
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IDM and Bidirectional LSTM showquite  low performance per timestamp, when 

analyzing results on an event-based rationale (within a time margin of 15 minutes around 

the labelled event), we have been able to detect 11 events out of a total of 15 in the 

analyzed period (May 2021) yielding a recall of 73% which is an acceptable level of 

performance for non-recurrent events. However, one of the limitations is the fact that 

these techniques are bound to produce a high number of false positives as shown by the 

precision results.  

4.2. Real-time operation 

After having performed the training of the AI data-driven model in the offline mode 

as explained in the previous section, our system is able to operate in real-time to raise 

alerts. Figure 4 displays the process flow of the online module of our system.  As soon 

as new data become available, the online module of our system captures it. In our case, 

the data is refreshed every minute, thus, the respective information is collected, stored 

locally and then aggregated in five-minute intervals to be fed in the pre-processing and 

data cleaning stage of the pipeline. The specific procedures for pre-processing remain 

consistent with those outlined in the offline mode of operation, maintaining uniformity 

in the approach to data preparation and cleaning. Then, the data are transformed in the 

required format to be fed in the step of model prediction. Should the entry contain 

anomalies (represented as “1”), then feedback is requested from operators, to confirm 

the identified incident. This human-in-the-loop concept is crucial, since it assists in 

creating a refined incident dataset and ensures that the system’s performance could 

increase over time, given that it is retrained on this evolving dataset.  It is worth 

mentioning that stakeholders can enhance the quality and accuracy of the reported 

incidents, by creating manual entries of identified incidents. Finally, in the case that the 

system has identified an anomaly in the data and labels it as incident, it then produces as 

output an entity of type “Incident” with the location and time attributes of the incident. 

Moving forward, we're focusing on enhancing our incident detection model through 

Online and Batch Learning. Online Learning allows the model to learn incrementally 

with each new incident, offering a dynamic solution for handling class imbalance. 

However, we must account for potential instability due to data sequencing. Batch 

Learning, on the other hand, involves accumulating data before model retraining, and 

while it helps manage class imbalance, its slower adaptation to new incidents poses a 

challenge. Furthermore, the feedback loop which we have implemented to compare 

model predictions with actual outcomes is key to our continued improvement. Any 

discrepancies detected can then be harnessed to optimize the model via online learning 

or by being added to the next batch of training data.Regardless of the approach, 

implementing robust validation strategies and a feedback loop for comparing model 

predictions to actual outcomes is crucial.  
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Figure 5. Process flow for the online mode. 

5. Conclusion and Future steps  

This work presents the conceptual and technical framework, methodology in 

addition to the implementation and preliminary findings in developing an automatic 

incident detection system. Our background research and our work has led us to identify 

several challenges regarding data-driven approaches in automatic incident detection. 

Firstly, the quality of the input data is crucial in AI-based approaches and integrating 

vigorous pre-processing techniques, while tackling missing values, needs to be taken 

care of to avoid inaccurate results. This is in line with literature in the domain of Machine 

Learning and data-driven studies and our findings confirm that.  Moreover, we have 

observed a scarcity of established benchmarks for evaluating the efficacy of the models' 

performance; the difficulty of obtaining benchmarks at model level is understandable, 

however we deem that it would be possible to compare similar purpose algorithms which 

could be a suggested future direction in the field. 

Regarding the limitations of our research, the results of our models are completely 

dependent on the data quality and reliability, and more specifically on the measurements 

of the detectors, and the incident dataset, the basis of our evaluation. The high number 

of false positives produced by the models is difficult to assess because maybe it is related 

to potential blind spots in the network which hinders the detection of incidents. One way 

to decrease the false alerts generated is to incorporate various types of data, such as 

CCTV cameras which is also the vision of our work for the future, to train the algorithms. 

Despite the abundance of available data and the advanced capabilities of machine 

learning algorithms, only a limited number of studies have effectively utilized the 

combination of multiple data sources, as stated by the review conducted by Kashinath et 
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al. [26] .To bridge this research gap, as a future direction, we envisage to extend our 

work by integrating multimodal heterogenous data sources, such as CCTV video streams, 

potentially GPS data and floating vehicle data to enhance the performance of our 

system’s detection capabilities. Furthermore, we are considering integrating online 

machine learning methods to update the models continuously and to ensure that they 

follow the patterns and trends of the most recent data. Our future work also entails 

incorporating supplementary real-world datasets which make use of inductive loop 

detectors in various use cases and perform more experiments to test our algorithms. 

Under this light, further processing would be required to extend our work for datasets 

either stemming from proprietary sources or openly available datasets (e.g., METR-LA, 

PEMS), and subsequently validation and further optimization of our models is expected.  

In conclusion, the findings of our research highlight the significant potential of 

machine learning in automating the incident detection process, providing real-time alerts 

and insights to improve emergency response and public safety. By harnessing the power 

of artificial intelligence and advanced data analytics, organizations and authorities can 

proactively identify and respond to incidents, reducing response times and mitigating 

potential risks. Despite the certain limitations and challenges discussed as part of this 

paper, both our ongoing work and the future directions outlined as part of our research 

aim to address these limitations and ultimately push the boundaries of automatic incident 

detection, paving the way for a safer, more reliable, and efficient future of mobility. 
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