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Abstract. A software code plagiarism detection scheme based on ensemble 
learning is designed to address the issue of low accuracy in traditional abstract 
syntax tree based software code infringement detection methods. We adopt the 
AST structure of the code to integrate domain partitioning in IR with AST, and use 
a weighted simplified abstract syntax tree to design feature extraction and 
similarity calculation methods, to achieve partial detection of semantic plagiarism 
and calculate the similarity between text and source code. Then, the feature set of 
the known classification training set is placed into a random forest based ensemble 
classifier for training, and an association between error rate and the classification 
effect of the decision tree in the random forest are proposed to acquire feature 
node matching with the feature in the code base. The experimental results show 
that our scheme has higher accuracy than traditional detection methods based on 
abstract syntax trees. It can not only detect code similarity, but also provide the 
types of plagiarism, which has better comprehensive identification performance. 
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1. Introduction 

The source code, as the core of software, is the result of the hard work of developers, as 
well as the crystallization of wisdom and art. However, the universality of some 
software in terms of functionality leads to plagiarism not only in the design level, but 
also in the underlying code, resulting in frequent software infringement cases. Software 
developers often refer to the code of others when coding software, especially obtaining 
a large amount of code through the internet. A large amount of open source code has 
brought great convenience to this development model, but due to the diverse types of 
licenses used for open source code, the constraints of each license are different. Blindly 
reusing software is likely to bring serious legal risks to enterprises. Due to the large 
number of enterprise software developers and code volume, as well as the countless 
number of open-source software, manual inspection of various licenses and 
infringement risks is almost impossible. Therefore, in order to help enterprises avoid 
potential legal risks, it is necessary to have a method and system that can detect and 
report potential software infringement risks. The homology analysis technology of 
source code can be used to compare the similarity between codes. This technology has 
been widely used in various fields such as code plagiarism, software copyright 
protection, vulnerability mining, etc. Currently, typical representatives of code 
similarity detection software at home and abroad include Sim, Moss, Yap, Jplag, 
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BuaaSim, and CCFinder. [1]. Literature [2] summarizes different approaches to 
automatically detecting similar code and categorizes them into four methods: text based, 
syntax tree based, graph based, and metric based, all of which are mostly pipeline 
based [3-5]. In recent years, ensemble learning has also become a commonly used 
method for model aggregation. Multiple model ensemble methods can further improve 
the expression ability of models and unleash the potential of features. However, as is 
well known, the detection ability of models is not only limited by the model's 
expressive ability, but also by the potential ability of features. Some experts construct 
multiple model ensemble based on multiple features to elevate the upper limit of 
feature potential, Make the model's expressive power no longer limited to single 
features. 

This article proposes a software code infringement detection method based on 
AST and ensemble learning classification, aiming to improve the efficiency and 
accuracy of code plagiarism detection. We first clarified the concept of text similarity 
and focused on discussing the application process of AST in information retrieval 
methods. On this basis, a preliminary study was conducted on the data preprocessing 
process. Comprehensively consider the characteristics of vocabulary, structure, and 
code style to describe and compare the characteristics of different codes more 
comprehensively, in order to analyze and evaluate code pairs. Then, the similarity 
alignment method is used to construct a feature sequence, and suitable similarity 
calculation formulas are selected based on specific requirements and the representation 
of the code feature set. Finally, the improved random forest was applied for random 
sampling and training to obtain a classification with similar codes. The experimental 
part uses the resource library of student program assignments as a case study to extract 
feature sets from the code using the previously mentioned method. The results indicate 
that the method proposed in this article has improved time efficiency and accuracy in 
detecting source code plagiarism, and can be effectively used for software code 
infringement identification. 

2. Program Similarity Calculation Method 

From the analysis of the technical characteristics of various existing code plagiarism 
detection systems, it can be seen that a single method cannot effectively detect 
plagiarism. In order to reduce the error rate of existing detection methods, this article 
comprehensively uses text analysis, structural measurement, and attribute counting 
techniques to calculate the text similarity, structural similarity, and variable similarity 
of the program. Based on the weight of these three similarities, the final overall 
program similarity is obtained to determine whether there is plagiarism. Through 
experiments, it has been confirmed that this method can effectively detect various 
plagiarism behaviors, and the accuracy and recall of the detection results have been 
improved. Especially for detecting plagiarism behavior in program assignments with 
simple structure in programming courses, it has stronger practicality [6]. 

In the process of software code infringement detection, we borrow the method 
from literature [7] and use a combination of AST in IR and random forest to conduct it, 
as depicted in figure 1. The former can quickly retrieve potential plagiarism code pairs 
from massive source libraries, but it is basically unsupervised, so when using datasets 
with classification labels, these prior knowledge cannot be applied. In addition, the 
potential plagiarism code pairs after retrieval only indicate that there is suspicion of 
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plagiarism in these code pairs. To truly determine whether plagiarism is true, a more 
granular analysis of the characteristics of the code pairs is needed. 

 

 
Figure 1. Program similarity algorithm calculation process. 

3. Software Industry Code Infringement Detection Based on Integration Learning 

3.1 Data Preprocessing 

To eliminate confusion in code plagiarism, AST preprocessing can be performed to 
eliminate the effects of changing comments, spaces, and variable names [8]. The 
preprocessing content includes: (1) traversing the AST and removing annotation nodes 
from the AST. Annotations usually do not affect the structure and logic of the code, so 
they can be ignored. (2) Replace all variable names with unified placeholders. This can 
eliminate differences in variable names, making the structure and logic of the code 
easier to compare. (3) Replace all identifiers (such as function names, class names, etc.) 
with unified placeholders. This can eliminate differences in identifiers and make the 
structure and logic of the code easier to compare. (4) Ignore surface differences such as 
changes in comments, spaces, and variable names, and remove comment nodes from 
AST. Annotations usually do not affect the structure and logic of the code, so they can 
be ignored. The specific replacement rules are shown in Table 1: 

Table 1. Source code character replacement rules 

Replacement Rules Replacement object Replace with 

Annotation Replacement Rule Annotation Node "COMMENT" 
Space Replacement Rule Space Node "SPACE" 
Variable Name Replacement Rule Variable Name Node "VAR" 
Constant Replacement Rule Constant Value Node "CONST" 
Identifier replacement rule identifier node "IDENTIFIER 

3.2 Construction Feature Sequence 

Using the JDT (Java Development Tools) tool suite of the Eclipse platform to 
automatically extract abstract syntax trees (ASTs) from Java programs in the code set. 
In the construction path of the project, introduce the JDT library to use the AST parsing 
function provided by JDT. We can add JDT libraries by right-clicking on the project, 
selecting "Build Path" ->"Configure Build Path", and then on the "Libraries" tab. We 
first created an ASTParser object and set the source code of the code file to be parsed. 
Then, parse the AST by calling the createAST method and use the ASTVisitor to 
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process the various nodes of the AST [9, 10]. To reduce computational overhead, it is 
possible to consider deep traversing the AST and converting the node sequence into a 
string feature sequence. This can encode the structure and information of AST into a 
string, facilitating similarity comparison and matching. Part of the key codes for this 
process are described as follows: 

import ... org.eclipse.jdt.core.dom.*; 
public class ASTFeatureExtractor { 

    private StringBuilder featureSequence; 
    public String extractFeatures(String code) { 
        // Create ASTParser 
        ASTParser parser = ASTParser.newParser(AST.JLS14); 
        parser.setKind(ASTParser.K_COMPILATION_UNIT); 
        //set source code of ASTParser 
        parser.setSource(code.toCharArray()); 
        // resolv AST 
        CompilationUnit cu = (CompilationUnit) parser.createAST(null); 
        // Initialize feature sequence 
        featureSequence = new StringBuilder(); 
        // depth-first traversal 
        cu.accept(new ASTVisitor() { 
            @Override 
            public boolean visit(SimpleName node) { 
                // Add node information to feature sequence 
                featureSequence.append(node.getIdentifier()).append(" "); 
                return super.visit(node); 
            } 
            // Rewrite the visit method for other types of nodes as needed to add 
node information to the feature sequence 
        }); 
        // Return feature sequence 
        return featureSequence.toString(); 
    } 
} 

By converting AST into a string feature sequence, the computational cost of 
subtree matching can be reduced while preserving the structure and information of the 
code. This allows for more efficient similarity comparison and matching, thereby 
improving the efficiency of code similarity detection. 

3.3 Code Similarity Matching Strategy 

Random forest is an ensemble learning algorithm based on decision trees, which 
improves the accuracy of classification or regression by integrating the prediction 
results of multiple decision trees Build a set of decision tree models using the random 
forest algorithm. By using out of pocket errors to assign weights to random forest 
decision trees, the model's attention to difficult to classify samples can be increased, 
thereby improving the model's generalization ability and accuracy. The approach in this 
article is to predict each decision tree using samples not selected by the decision tree 
and calculate the prediction error. The out of pocket error is the average error of all 
decision trees. Calculate the weight based on the OOB error of each decision tree [11]. 
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The reciprocal of out of pocket errors can be used as weights, meaning that the smaller 
the error, the greater the weight of the decision tree Those samples that have not been 
selected are called out of bag samples. Assuming there are m out of bag samples, use 
the corresponding decision tree to classify these m samples and calculate the OOB 
error. 

The computation equation is: 

_ ( )

_ ( )

_ ( )

err num i
obb err i

obb num i


                                     (1) 

where _ ( )err num i  is the number of sample classification errors of the ith 

classifier; _ ( )obb num i  is the samples number of out_of_bag, whose generalization 

error rate is the error rate on the training set, that is, an unbiased estimation of base 

classifiers. _ ( )obb err i  is adopted to replace the posterior probability to simplify 

the computation as  
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Then the weight equations can be transformed as: 
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Compute the following _ ( )obb err i  of n decision trees and assign them 

corresponding weight as [1] [ ]WRF WRF n . The samples are classified by 

[1] [ ]WRF WRF n  for the testing set and the classification results are recorded by 

each decision tree. For each classification result it is performed weighted statistics to 
acquired the final prediction result  

1 2 m
{ ,..., }pred pred pred pred ，                                 (3) 

4. Simulations  

The dataset used in the experiment was selected from the public software libraries 
NPM (Node Package Manager) and PyPI (Python Package Index), involving a total of 
6100 C# program code files. Randomly select a certain number of program code files 
from the entire dataset as samples. Ensure that the number of samples is large enough 
to represent the characteristics of the entire dataset. Manual judgment: Each sample 
program code file is manually judged by professional personnel or domain experts. 
They will check each sample file for plagiarism and attempt to determine the means of 
plagiarism Record the plagiarism judgment results and classification of each sample 
program code file for subsequent analysis and evaluation. The experimental data 
includes two parts: the code set of the program to be tested contains 2000 samples of 
program code that require plagiarism detection. These samples can come from different 
sources, such as student assignments, open-source software libraries, or commercial 
software, to evaluate the performance and accuracy of plagiarism detection algorithms 
in practical applications; The known plagiarism sample set contains a total of 500 
program code samples that have been determined to have plagiarism behavior. These 
samples can be determined by experts or manual judgment, or come from known 
plagiarism cases. 
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Based on the experimental dataset, set the similarity ratio coefficient and threshold 
to adjust the accuracy of the algorithm. The similarity ratio coefficient is used to 
measure the similarity between two program codes, while the threshold is used to 
determine when two program codes are judged as plagiarism. As shown in Table 2, in 
order to evaluate the impact of different parameter settings on algorithm performance 
and select the optimal parameter combination to improve the accuracy of plagiarism 

detection, this article sets a similarity ratio coefficient α1, α2. The similarity 

threshold between two program codes is θ，which indicates when two program codes 

will be judged as plagiarism. Comparing the AST-SVM proposed in this article with the 
AST plagiarism detection method, the detection accuracy of different types of 
plagiarism codes is shown in Table 3. From it, it can be seen that the accuracy of 
AST-SVM in detecting code plagiarism behavior for Type A and Type B types is higher 
than 0.8, while the accuracy of detecting Type C and Type D types is relatively low, 
with 0.772 and 0.643, respectively. It can be seen that our scheme is effective in 
detecting different types of code infringement. 

Table 2. Parameter setting for similarity comparison experiment 

Similarity ratio θ=0.25 θ=0.5 θ=1 

α1=0， α2,=1 0.392 0.478 0.472 

α1=0， α2,=0.25 0.456 0.518 0.335 

α1=0.25， α2,=5 0.661 0.721 0.483 

α1=0.5， α2,=75 0.702 0.867 0.607 

α1=1， α2=0 0.531 0.664 0.528 

 

Table 3. Detection results of different types of plagiarism rates 

Algorithm Type A Type B Type C Type D 

AST 0.814 0.905 0.765 0.587 

AST-SVM 0.776 0.873 0.772 0.643 

 
In order to further test the comprehensive performance of the algorithm, two 

program code files are randomly selected from the dataset for combination. Repeat this 
step until a sufficient number of composite samples are obtained. Extract a portion 
from each combination sample as the text set of the program code to be tested, and use 
the N-gram method to extract features.  
 Firstly, perform rough segmentation on the document to obtain segment 

sequences. 
 Perform gram segmentation on segment sequences to obtain a list of gram 

frequencies. And select gram segments with frequencies greater than the set 
threshold as feature vectors. 

 Each gram fragment is a dimension, forming a feature vector table. 
For each detected program code text, calculate the Manhattan distance between 

them, and set a threshold based on the Manhattan distance calculation to determine 
whether two program code texts are considered plagiarism. Figures 2 shows the 
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detection error rate and recall rate of two different algorithms under the same 
conditions. It can be concluded that the detection accuracy of AST-SVM for Type l, 2, 
and 3 plagiarism methods is higher than that of AST model, and the overall recall rate 
has also increased by nearly 3.25%. Compared to traditional text feature based methods, 
AST-SVM can better capture the structural and semantic information of program code. 
Due to the fact that abstract syntax trees can reflect the hierarchical structure and 
syntax rules of code, they can more accurately determine the similarity and plagiarism 
relationship between two pieces of code. 

 

 
(a) Number of correct detection results 

 
(b) Number of misjudgment results 

Figure 2. Comparison of the comprehensive performance of two algorithms for different types of plagiarism 
methods. 

In addition, although this method uses N-grams to represent program code, which 
can improve the detection accuracy of plagiarism methods for reordering and adding 
operation types, if the plagiarist performs more reordering and adding operations on the 
code, it will affect the generated N-gram set and frequency. The N-gram set and 
frequency in the original code may not fully cover the newly added code portion, 
resulting in a decrease in detection accuracy. For n-grams, we may need to know that 
the larger the corpus size, the more useful the n-grams are for statistical language 
models, or the n-size of n-grams also has a significant impact on performance. 
Therefore, in the future, more complex plagiarism detection algorithms can be 
considered, such as deep learning based methods for learning more complex code 
patterns and structures, thereby improving the detection ability for reordering and new 
operations. 

5. Conclusion  

This article attempts to use machine learning techniques to train a model to identify 
infringement behavior in source code. This method can train a large amount of source 
code to enable the model to learn different types of infringement patterns and detect 
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them in new source code. We have provided a detailed explanation of the overall 
structure of existing code plagiarism detection, and conducted in-depth research on the 
classification of features based on IR retrieval and AST. On this basis, it is proposed to 
use the AST+SVM method to structurally represent program code through an abstract 
syntax tree, in order to better capture the hierarchical structure and syntax rules of the 
code. The experimental results show that compared to text feature based methods, this 
structured representation can more accurately depict the semantic information of the 
code, which improves the overall recall rate of plagiarism detection, and it also has 
advantages especially when dealing with structured program code. 
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