

 1 Corresponding Author: Meng QIN; Department of Law and Economic Management, Hulunbuir University,
Hulunbuir, 021008, China; yyuereentg@126.com

A Software Code Infringement Detection

Scheme Based on Integration Learning

Meng QINa,1

a Department of Law and Economic Management, Hulunbuir University, Hulunbuir,

021008, China

Abstract. A software code plagiarism detection scheme based on ensemble
learning is designed to address the issue of low accuracy in traditional abstract
syntax tree based software code infringement detection methods. We adopt the
AST structure of the code to integrate domain partitioning in IR with AST, and use
a weighted simplified abstract syntax tree to design feature extraction and
similarity calculation methods, to achieve partial detection of semantic plagiarism
and calculate the similarity between text and source code. Then, the feature set of
the known classification training set is placed into a random forest based ensemble
classifier for training, and an association between error rate and the classification
effect of the decision tree in the random forest are proposed to acquire feature
node matching with the feature in the code base. The experimental results show
that our scheme has higher accuracy than traditional detection methods based on
abstract syntax trees. It can not only detect code similarity, but also provide the
types of plagiarism, which has better comprehensive identification performance.

Keywords. code infringement; AST; plagiarism detection; integration learning;

SVM

1. Introduction

The source code, as the core of software, is the result of the hard work of developers, as
well as the crystallization of wisdom and art. However, the universality of some
software in terms of functionality leads to plagiarism not only in the design level, but
also in the underlying code, resulting in frequent software infringement cases. Software
developers often refer to the code of others when coding software, especially obtaining
a large amount of code through the internet. A large amount of open source code has
brought great convenience to this development model, but due to the diverse types of
licenses used for open source code, the constraints of each license are different. Blindly
reusing software is likely to bring serious legal risks to enterprises. Due to the large
number of enterprise software developers and code volume, as well as the countless
number of open-source software, manual inspection of various licenses and
infringement risks is almost impossible. Therefore, in order to help enterprises avoid
potential legal risks, it is necessary to have a method and system that can detect and
report potential software infringement risks. The homology analysis technology of
source code can be used to compare the similarity between codes. This technology has
been widely used in various fields such as code plagiarism, software copyright
protection, vulnerability mining, etc. Currently, typical representatives of code
similarity detection software at home and abroad include Sim, Moss, Yap, Jplag,

Intelligent Computing Technology and Automation
Z. Hou (Ed.)

© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/ATDE231264

848

BuaaSim, and CCFinder. [1]. Literature [2] summarizes different approaches to
automatically detecting similar code and categorizes them into four methods: text based,
syntax tree based, graph based, and metric based, all of which are mostly pipeline
based [3-5]. In recent years, ensemble learning has also become a commonly used
method for model aggregation. Multiple model ensemble methods can further improve
the expression ability of models and unleash the potential of features. However, as is
well known, the detection ability of models is not only limited by the model's
expressive ability, but also by the potential ability of features. Some experts construct
multiple model ensemble based on multiple features to elevate the upper limit of
feature potential, Make the model's expressive power no longer limited to single
features.

This article proposes a software code infringement detection method based on
AST and ensemble learning classification, aiming to improve the efficiency and
accuracy of code plagiarism detection. We first clarified the concept of text similarity
and focused on discussing the application process of AST in information retrieval
methods. On this basis, a preliminary study was conducted on the data preprocessing
process. Comprehensively consider the characteristics of vocabulary, structure, and
code style to describe and compare the characteristics of different codes more
comprehensively, in order to analyze and evaluate code pairs. Then, the similarity
alignment method is used to construct a feature sequence, and suitable similarity
calculation formulas are selected based on specific requirements and the representation
of the code feature set. Finally, the improved random forest was applied for random
sampling and training to obtain a classification with similar codes. The experimental
part uses the resource library of student program assignments as a case study to extract
feature sets from the code using the previously mentioned method. The results indicate
that the method proposed in this article has improved time efficiency and accuracy in
detecting source code plagiarism, and can be effectively used for software code
infringement identification.

2. Program Similarity Calculation Method

From the analysis of the technical characteristics of various existing code plagiarism
detection systems, it can be seen that a single method cannot effectively detect
plagiarism. In order to reduce the error rate of existing detection methods, this article
comprehensively uses text analysis, structural measurement, and attribute counting
techniques to calculate the text similarity, structural similarity, and variable similarity
of the program. Based on the weight of these three similarities, the final overall
program similarity is obtained to determine whether there is plagiarism. Through
experiments, it has been confirmed that this method can effectively detect various
plagiarism behaviors, and the accuracy and recall of the detection results have been
improved. Especially for detecting plagiarism behavior in program assignments with
simple structure in programming courses, it has stronger practicality [6].

In the process of software code infringement detection, we borrow the method
from literature [7] and use a combination of AST in IR and random forest to conduct it,
as depicted in figure 1. The former can quickly retrieve potential plagiarism code pairs
from massive source libraries, but it is basically unsupervised, so when using datasets
with classification labels, these prior knowledge cannot be applied. In addition, the
potential plagiarism code pairs after retrieval only indicate that there is suspicion of

M. Qin / A Software Code Infringement Detection Scheme Based on Integration Learning 849

plagiarism in these code pairs. To truly determine whether plagiarism is true, a more
granular analysis of the characteristics of the code pairs is needed.

Figure 1. Program similarity algorithm calculation process.

3. Software Industry Code Infringement Detection Based on Integration Learning

3.1 Data Preprocessing

To eliminate confusion in code plagiarism, AST preprocessing can be performed to
eliminate the effects of changing comments, spaces, and variable names [8]. The
preprocessing content includes: (1) traversing the AST and removing annotation nodes
from the AST. Annotations usually do not affect the structure and logic of the code, so
they can be ignored. (2) Replace all variable names with unified placeholders. This can
eliminate differences in variable names, making the structure and logic of the code
easier to compare. (3) Replace all identifiers (such as function names, class names, etc.)
with unified placeholders. This can eliminate differences in identifiers and make the
structure and logic of the code easier to compare. (4) Ignore surface differences such as
changes in comments, spaces, and variable names, and remove comment nodes from
AST. Annotations usually do not affect the structure and logic of the code, so they can
be ignored. The specific replacement rules are shown in Table 1:

Table 1. Source code character replacement rules

Replacement Rules Replacement object Replace with

Annotation Replacement Rule Annotation Node "COMMENT"
Space Replacement Rule Space Node "SPACE"
Variable Name Replacement Rule Variable Name Node "VAR"
Constant Replacement Rule Constant Value Node "CONST"
Identifier replacement rule identifier node "IDENTIFIER

3.2 Construction Feature Sequence

Using the JDT (Java Development Tools) tool suite of the Eclipse platform to
automatically extract abstract syntax trees (ASTs) from Java programs in the code set.
In the construction path of the project, introduce the JDT library to use the AST parsing
function provided by JDT. We can add JDT libraries by right-clicking on the project,
selecting "Build Path" ->"Configure Build Path", and then on the "Libraries" tab. We
first created an ASTParser object and set the source code of the code file to be parsed.
Then, parse the AST by calling the createAST method and use the ASTVisitor to

M. Qin / A Software Code Infringement Detection Scheme Based on Integration Learning850

process the various nodes of the AST [9, 10]. To reduce computational overhead, it is
possible to consider deep traversing the AST and converting the node sequence into a
string feature sequence. This can encode the structure and information of AST into a
string, facilitating similarity comparison and matching. Part of the key codes for this
process are described as follows:

import ... org.eclipse.jdt.core.dom.*;
public class ASTFeatureExtractor {

 private StringBuilder featureSequence;
 public String extractFeatures(String code) {
 // Create ASTParser
 ASTParser parser = ASTParser.newParser(AST.JLS14);
 parser.setKind(ASTParser.K_COMPILATION_UNIT);
 //set source code of ASTParser
 parser.setSource(code.toCharArray());
 // resolv AST
 CompilationUnit cu = (CompilationUnit) parser.createAST(null);
 // Initialize feature sequence
 featureSequence = new StringBuilder();
 // depth-first traversal
 cu.accept(new ASTVisitor() {
 @Override
 public boolean visit(SimpleName node) {
 // Add node information to feature sequence
 featureSequence.append(node.getIdentifier()).append(" ");
 return super.visit(node);
 }
 // Rewrite the visit method for other types of nodes as needed to add
node information to the feature sequence
 });
 // Return feature sequence
 return featureSequence.toString();
 }
}

By converting AST into a string feature sequence, the computational cost of
subtree matching can be reduced while preserving the structure and information of the
code. This allows for more efficient similarity comparison and matching, thereby
improving the efficiency of code similarity detection.

3.3 Code Similarity Matching Strategy

Random forest is an ensemble learning algorithm based on decision trees, which
improves the accuracy of classification or regression by integrating the prediction
results of multiple decision trees Build a set of decision tree models using the random
forest algorithm. By using out of pocket errors to assign weights to random forest
decision trees, the model's attention to difficult to classify samples can be increased,
thereby improving the model's generalization ability and accuracy. The approach in this
article is to predict each decision tree using samples not selected by the decision tree
and calculate the prediction error. The out of pocket error is the average error of all
decision trees. Calculate the weight based on the OOB error of each decision tree [11].

M. Qin / A Software Code Infringement Detection Scheme Based on Integration Learning 851

The reciprocal of out of pocket errors can be used as weights, meaning that the smaller
the error, the greater the weight of the decision tree Those samples that have not been
selected are called out of bag samples. Assuming there are m out of bag samples, use
the corresponding decision tree to classify these m samples and calculate the OOB
error.

The computation equation is:

_ ()

_ ()

_ ()

err num i
obb err i

obb num i

 (1)

where _ ()err num i is the number of sample classification errors of the ith

classifier; _ ()obb num i is the samples number of out_of_bag, whose generalization

error rate is the error rate on the training set, that is, an unbiased estimation of base

classifiers. _ ()obb err i is adopted to replace the posterior probability to simplify

the computation as

_ () 1 ()obb err i con i

Then the weight equations can be transformed as:

1

1 / (1 _ ()) 2
() 1

1 / (1 _ ())
T

j

obb err i T
weight i

Tobb err j

 (2)

Compute the following _ ()obb err i of n decision trees and assign them

corresponding weight as [1] []WRF WRF n . The samples are classified by

[1] []WRF WRF n for the testing set and the classification results are recorded by

each decision tree. For each classification result it is performed weighted statistics to
acquired the final prediction result

1 2 m
{ ,..., }pred pred pred pred ， (3)

4. Simulations

The dataset used in the experiment was selected from the public software libraries
NPM (Node Package Manager) and PyPI (Python Package Index), involving a total of
6100 C# program code files. Randomly select a certain number of program code files
from the entire dataset as samples. Ensure that the number of samples is large enough
to represent the characteristics of the entire dataset. Manual judgment: Each sample
program code file is manually judged by professional personnel or domain experts.
They will check each sample file for plagiarism and attempt to determine the means of
plagiarism Record the plagiarism judgment results and classification of each sample
program code file for subsequent analysis and evaluation. The experimental data
includes two parts: the code set of the program to be tested contains 2000 samples of
program code that require plagiarism detection. These samples can come from different
sources, such as student assignments, open-source software libraries, or commercial
software, to evaluate the performance and accuracy of plagiarism detection algorithms
in practical applications; The known plagiarism sample set contains a total of 500
program code samples that have been determined to have plagiarism behavior. These
samples can be determined by experts or manual judgment, or come from known
plagiarism cases.

M. Qin / A Software Code Infringement Detection Scheme Based on Integration Learning852

Based on the experimental dataset, set the similarity ratio coefficient and threshold
to adjust the accuracy of the algorithm. The similarity ratio coefficient is used to
measure the similarity between two program codes, while the threshold is used to
determine when two program codes are judged as plagiarism. As shown in Table 2, in
order to evaluate the impact of different parameter settings on algorithm performance
and select the optimal parameter combination to improve the accuracy of plagiarism

detection, this article sets a similarity ratio coefficient α1, α2. The similarity

threshold between two program codes is θ，which indicates when two program codes

will be judged as plagiarism. Comparing the AST-SVM proposed in this article with the
AST plagiarism detection method, the detection accuracy of different types of
plagiarism codes is shown in Table 3. From it, it can be seen that the accuracy of
AST-SVM in detecting code plagiarism behavior for Type A and Type B types is higher
than 0.8, while the accuracy of detecting Type C and Type D types is relatively low,
with 0.772 and 0.643, respectively. It can be seen that our scheme is effective in
detecting different types of code infringement.

Table 2. Parameter setting for similarity comparison experiment

Similarity ratio θ=0.25 θ=0.5 θ=1

α1=0， α2,=1 0.392 0.478 0.472

α1=0， α2,=0.25 0.456 0.518 0.335

α1=0.25， α2,=5 0.661 0.721 0.483

α1=0.5， α2,=75 0.702 0.867 0.607

α1=1， α2=0 0.531 0.664 0.528

Table 3. Detection results of different types of plagiarism rates

Algorithm Type A Type B Type C Type D

AST 0.814 0.905 0.765 0.587

AST-SVM 0.776 0.873 0.772 0.643

In order to further test the comprehensive performance of the algorithm, two

program code files are randomly selected from the dataset for combination. Repeat this
step until a sufficient number of composite samples are obtained. Extract a portion
from each combination sample as the text set of the program code to be tested, and use
the N-gram method to extract features.
 Firstly, perform rough segmentation on the document to obtain segment

sequences.
 Perform gram segmentation on segment sequences to obtain a list of gram

frequencies. And select gram segments with frequencies greater than the set
threshold as feature vectors.

 Each gram fragment is a dimension, forming a feature vector table.
For each detected program code text, calculate the Manhattan distance between

them, and set a threshold based on the Manhattan distance calculation to determine
whether two program code texts are considered plagiarism. Figures 2 shows the

M. Qin / A Software Code Infringement Detection Scheme Based on Integration Learning 853

detection error rate and recall rate of two different algorithms under the same
conditions. It can be concluded that the detection accuracy of AST-SVM for Type l, 2,
and 3 plagiarism methods is higher than that of AST model, and the overall recall rate
has also increased by nearly 3.25%. Compared to traditional text feature based methods,
AST-SVM can better capture the structural and semantic information of program code.
Due to the fact that abstract syntax trees can reflect the hierarchical structure and
syntax rules of code, they can more accurately determine the similarity and plagiarism
relationship between two pieces of code.

(a) Number of correct detection results

(b) Number of misjudgment results

Figure 2. Comparison of the comprehensive performance of two algorithms for different types of plagiarism
methods.

In addition, although this method uses N-grams to represent program code, which
can improve the detection accuracy of plagiarism methods for reordering and adding
operation types, if the plagiarist performs more reordering and adding operations on the
code, it will affect the generated N-gram set and frequency. The N-gram set and
frequency in the original code may not fully cover the newly added code portion,
resulting in a decrease in detection accuracy. For n-grams, we may need to know that
the larger the corpus size, the more useful the n-grams are for statistical language
models, or the n-size of n-grams also has a significant impact on performance.
Therefore, in the future, more complex plagiarism detection algorithms can be
considered, such as deep learning based methods for learning more complex code
patterns and structures, thereby improving the detection ability for reordering and new
operations.

5. Conclusion

This article attempts to use machine learning techniques to train a model to identify
infringement behavior in source code. This method can train a large amount of source
code to enable the model to learn different types of infringement patterns and detect

M. Qin / A Software Code Infringement Detection Scheme Based on Integration Learning854

them in new source code. We have provided a detailed explanation of the overall
structure of existing code plagiarism detection, and conducted in-depth research on the
classification of features based on IR retrieval and AST. On this basis, it is proposed to
use the AST+SVM method to structurally represent program code through an abstract
syntax tree, in order to better capture the hierarchical structure and syntax rules of the
code. The experimental results show that compared to text feature based methods, this
structured representation can more accurately depict the semantic information of the
code, which improves the overall recall rate of plagiarism detection, and it also has
advantages especially when dealing with structured program code.

References

[1] Cai Liang，Zhang Gang，Zhao Fengyu. Method and Implementation of Code Infringement Detection

Based on Local Proxy and Index Information. Software Guide, 2017, 16(6): 5-10.
[2] Xin-Juna W U, Yub L. Research on Code Plagiarism Detection and Application in the Experimental

Teaching. Experiment Science and Technology, 2011, 9(5): 275-278
[3] Cao Yuzhong, Jin Maozhong, Liu Chao. Overview of Clone Code Detection Technology. Computer

Engineering and Science，2006，28 (A2) : 9-103.

[4] Han M L, Kwak B, Kim H K, et al. Implementation of the Personal Information Infringement
Detection Module in the HTML5 Web Service Environment. Journal of the Korea Institute of
Information Security & Cryptology, 2016, 26(4):1025-1036.

[5] Matefi R, Musan M. ECJ case law and its impact on the evolution of administrative liability; state
liability for infringement. Bulletin of the Transilvania University of Braov, 2011, 4(1):4.

[6] YANG Chao. Hybrid plagiarism detection method in program code based on multiple techniques.
Computer Engineering and Applications, 2016, 52(18): 222-227.

[7] Zhang Min. Source Code Plagiarism Detection Based on Information Retrieval and Stacking
Integrated Learning [D]. Beijing Jiaotong University, 2023.

[8] Jinyuan Z, Yuanguang T, Shudong Z. Integrated design of target detection system based on marine
data buoy. Meteorological,Hydrological and Marine Instruments, 2013, 30(2):73-76.

[9] Jin X, Luo J, Yu J, et al. Reinforced Similarity Integration in Image-Rich Information Networks. IEEE
Transactions on Knowledge and Data Engineering, 2013, 25(2):448-460.

[10] A, Alena G. Esposito, and P. J. B. B. Self-derivation through memory integration under low surface
similarity conditions: The case of multiple languages. Journal of Experimental Child Psychology,
2019, 187:104661-104661.

[11] Gordon P C, Hendrick R, Johnson M, et al. Similarity-based interference during language
comprehension: Evidence from eye tracking during reading. Journal of Experimental Psychology
Learning Memory & Cognition, 2006, 32(6):1304.

M. Qin / A Software Code Infringement Detection Scheme Based on Integration Learning 855

