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Abstract. In the sensor networks considered in this paper, the topology of agents 

aggregating neighbors’ data can be locally adjusted by each entity. In the sense of 

Fiedler value of network, this proper topological adjustment is easy to deploy and 

greatly benefits the increase of convergence rate in the tasks such as target 

localization, parameter estimation and data fusion. To this end, a distributed 

topology-based sensor consensus acceleration algorithm is proposed. By distributed 

estimating the eigenspaces of Laplacian matrix, this algorithm provides a direction 

for each sensor adjusting their aggregation weights, such that the Fiedler value is 

optimized towards a local maxima. Moreover, this method can also tackle the 

repeated eigenvalues and non-unique Fielder values. A numerical example is also 

provided to demonstrate the effectiveness of the proposed distributed strategy. 
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1. Introduction 

Advances in ad-hoc sensor networks have offered flexibility and adaptability, catering 

to the demands of complex real-world scenarios even in the absence of a central 

infrastructure. These networks consist of a collection of self-organizing sensors, each 

endowed with autonomous communication capabilities, enabling ad-hoc networks to 

collectively engage in intricate, real-time environmental monitoring. To this end, 

distributed information aggregation and cooperative algorithms come into play, serving 

diverse objectives such as consensus seeking, target localization, parameter estimation 

and data fusion within ad-hoc networks.  

The efficiency of the entire system hinges significantly on the rate at which data is 

disseminated and aggregated throughout the network. Various factors influence this 

convergence rate, including chip processing speed, algorithmic efficiency, network scale, 
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and more. However, the network topology, while easily adjustable, exerts substantial 

influence on the convergence process but has received relatively less investigation yet. 

Throughout this paper, the network convergence rate is quantified using the well-

known Fiedler value [1] or generalized algebraic connectivity [2] of a digraph. However, 

before acceleration of convergence, estimation the connectivity of entire network in a 

distributed manner already faces difficulty. Yang et al. [3] have proposed a decentralized 

estimation procedure that allows each agent to track the algebraic connectivity of a time-

varying undirected graph. In the case of directed graphs, Asadi et al. [4] solves the 

generalized algebraic connectivity estimation problem by a modified distributed power 

iteration subspace consensus algorithm, for weighted digraphs. 

 Several techniques have been proposed in the literature to optimize the topology of 

networks to improve algebraic connectivity, but most of them are executed based on 

global network information. Xiao et al. [5] propose a prestigious semidefinite program 

framework for optimizing the edge weights of linear distributed averaging consensus 

problem. Shafi et al. [6] present a convex optimization method to adjust node and edge 

weights to impose individual constraints on several eigenvalues. Kim et al. [7] propose 

an iterative greedy-type algorithm for maximizing the Fiedler value of a state-dependent 

graph Laplacian with a guaranteed local convergence behavior. 

The contribution of this work is the proposal of a distributed topology-based sensor 

consensus acceleration algorithm. This algorithm dynamically updates the weights of a 

sensor aggregating data among its neighbors based on local information, thus 

progressively accelerating the convergence of the entire network. The key idea is to 

elucidate the relationship between the Fiedler value and edge weights based on 

variational theory and then design distributed algorithms for estimating eigenspaces and 

optimizing the topology. The feasibility and efficiency of these methods have been 

verified through simulations. 

2. Preliminaries 

Throughout this paper, vectors are by default considered as column vectors. The N -by

N  real space and complex space are respectively denoted as 
N N

 and 
N N

. Let nI  

represent the identity matrix with subscript indicating its dimension. For a vector x , 

denote ix  as the 
thi  element of it. Define the function  that maps a complex 

number to its real part, and the function diag  that maps a square matrix to a vector 

whose 
thi  element is the 

thi  diagonal entry of it. The Kronecker product and Hadamard 

product are denoted as  and , respectively. 

2.1. Network Model 

In a sensor network of N  agents, each agent can only transfer information with a certain 

subset of the entire agents set 1, 2, , N , due to the limitations of wireless sensing 

range, communication routes or protocols. To describe such information transferring 

topology, a communication network is defined as a boolean directed graph 

, ,c C  with 0,1,ij ijN N
C c c  and . An edge ,j i  means 
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that node j  can send information to node i  with 1ijc  and the neighbors of agent i  is 

denoted as | 1i ijj c  containing all the agents that can transfer information to it.  

In this work, each agent is allowed to customize the weights that it aggregates 

neighbors’ information, in order to optimize the convergence rate of entire sensor 

network. Specifically, denote the aggregation network as a weighted directed graph 

, ,a W  and each agent maintains one row of 1* 2* *, ,, NW W W W , namely, 

* 11 12 1,,, ,i NW w ww  contains the control gains of agent i  aggregating the 

information from neighbors. Then the system control input can be written as 

 
1 1

1

,i

N N
ij ij

i j ij j i
i k

N
j j

k k i

c w
u xx a x

c w
x  (1) 

where , m
i iu x  are respectively m -dimensional control input and state of agent i . 

Let ij N N
A a  be the adjacency matrix of the aggregation network and 

1 2 ,, , Nxx x x  be the concatenate system state then the compact form of system 

dynamics is 

 N m m xx I IA Ix L . (2) 

This system are typical consensus-based sensor networks and L  is the Laplacian 

matrix. To ensure the information diffusion among this sensor network, a basic 

assumption on topology connectivity has to be made. 

Assumption 1, the aggregation matrix A  is irreducible and row stochastic. That is, the 

communication network is strongly connected, and each agent has to assign the weights 

that satisfy 
1 1

, 1
N N

ij ij ij
j j

i c aw . 

3. Main Technical Results 

To evaluate the speed of system (2) converging, the mostly used index is the second 

smallest real part of the eigenvalues of Laplacian matrix L . Define the function 

: N N N
 that yields the spectrum of a square matrix and : N N

i  that 

maps a square matrix to one of its eigenvalues that have the 
thi  smallest real parts. 

Moreover, define the function : N N
i  with ( )i i LL . In this way, 

the so-called Fiedler eigenvalue  in directed graphs can be represented by 

 2 .L  (3) 

By default, the eigenvalues of L  are always in the ascending order of their real parts 

as 1 2, , , N  and we call the eigenvalues that belong to 2|i i L  as active 

eigenvalues corresponding to function 2 . 
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The basic idea of this work is to optimize the performance metric  of the sensor 

network by allowing each agent to distributively finetune the aggregation weights among 

its neighbors.  

Specifically, in a distributed manner, the i th agent only have access to the i th row 

*iC  of communication topology 1* 2* *, ,, NC C C C . After receive the neighbors’ 

information, agent i  designs the weight vector * 0iW  to generate the control input 

* * ii ii i mu e W I xC  where 
1* * 1i iWC and ,1, ,00,ie  is 

the 
thi  canonical basis vector of 

N
. Then we aim to give a direction 

,1 ,2 ,,, ,i i i i NW  distributively for each agent, to optimize 

 
1

2 2

, , 0

* 1

max lim ,

,
,

.
1,

.
0

NW W

i i

i i i
s

L L L

i W W
t

i C W W

. (4) 

By solving this optimization problem, agents can cooperatively adjust the network 

topology such that the Fiedler value of Laplacian matrix converges to a local maxima. 

Assumption 2: All the active eigenvalues of Laplacian matrix L  are non-defective.  

With this assumption, let ( ), 1, 2, ,
i

L i t  be the active eigenvalues whose 

real parts equal to 2 L  and 
i

r  be the algebraic multiplicity of 
i

. Under 

assumption 2, we can denote i
i

N rP  and i
i

N rQ  as two matrices whose 

columns are independent normalized left and right eigenvectors corresponding to 
i
, 

with 
i ii rP Q I . According to the perturbation theory of Kato [8], we are ready to 

deduce the directional derivative of 2 L , although the function 2 L  is not 

Lipchitz everywhere. 

Lemma 1: Given a square matrix L  with spectrum ( )L  and perturbation matrix 

1 2, ,: , NW W W W , then the directional derivative of 2 L  with respect to 

perturbation intensity 0  is 

 
2

1,2,0

2

,
lim min | , .

iij j j j jti
P v

L
v LQ v

L L
 (5) 

Specifically, the set j  is the spectrum of 
ii

P LQ . 

We denote qrf  as the QR decomposition and propose the following algorithm. 

*iC
| 1i ijj c i id

* 00iW * * *1 1
0 0 1i i iW C W

thk i * *i i iT k e W k
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0 N N
iS * 1 0i i iT k S k e

1iS k

1 1 1 1

1
1

i

i i i i j
j

i
i

S k S k R d S k S k
d

1iS k 0H 2H k

2 2 2 2 2 2,

2 2 2 2

,

1

qr NN N

N

k H k Q k R k f H k k I

H k R k Q k k I

2 2 2= max diagr k H k

2 2 2
r

NIH kk 2 2, SS
j ip k q k

*
*i kW

*

*

* * * * * *

max

. . 01 , 0,

i
j i jiW

N i i i i i

k

i

p k q

s t k W k

W

k k C kW W W W

Theorem 1: Under assumption 1 and 2, let 2|a i iL k L k  be the 

active eigenvalues set of the current Laplacian matrix, then for each agent, the solution 
*
*i kW  to (8) exists and the topology difference W k  satisfies 

 0max
z

z
z a L k W k

W k
, (9) 

if the directional derivative of /z W k  exists at W k . 

Proof: In the algorithm, iteration (6) is designed for all the agents, such that the thj  

column of 1iS k  converges towards the same solution to the linear equation 

 *, j j iT k s ej , (10) 

Putting together the solutions to these N  equations yields 1 2
ˆ : , ,, Ns ssS , which 

thus satisfies ˆ
NT k S I . Therefore, Ŝ  is the inverse of T k . Noted that 

2 NT k I L k  and T k  is nonsingular, Ŝ  is uniquely determined and has the 

same eigenspaces as L k . 

Then, before computing the left and right eigenvectors of active eigenvalues [9], one 

need to ensure the estimation matrix iS k  can uniformly converges to Ŝ . According 

to [10][11], under assumption 1 and 2, for each agent, if its state matrix 1 0iS k  is 

initialized as * 1 0i i iT k S k e ,  the consensus protocol (6) yields 
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1

1, lim ˆ
ik

i SS k , (11) 

with exponential convergence rate. 

After Ŝ  is obtained, 2H k  in the next step (7) can converge to an upper triangular 

matrix within a few iterations, with the same eigenvalues as Ŝ  on its diagonal. That is, 

the obtained 2 2, SS
j ip k q k  are good estimation of eigenvectors of Ŝ  

corresponding to active eigenvalues. According to Lemma 1, the optimizer of (8) is the 

greatest directional derivative of this active eigenvalue w.r.t *iW k , namely, the 
thi  

row of weights matrix.  

Moreover, the constrains of (8) ensures that there always exists a trivial direction of 

W k , along which 2 L k  is undiminished, i.e., 

 

†
* * *

2 2

0| , ,1 ,

0

0N i i ik W kW W i W W

W

k

L k L k
. (12) 

Therefore, the obtained *
*i kW  from (8) satisfies (9), and does not break the property 

of W k  being irreducible and row stochastic. Hence, *
*i kW  is a feasible direction 

for the Fiedler value of entire directed weighted network to grow in general, under 

assumption 1, 2 and provided the active eigenvalues of L k  are well separated. 

4. Numerical Example 

This section aims to present a data aggregation process in consensus sensor network for 

supporting the designed algorithm. Consider 10N  sensor entities that are connected 

through a strongly connected communication network C . Sensors maintain state vectors 

(e.g., measured values) and distributively fuse them in a consensus way, by local 

interaction. Regarding the problem this work investigates, we randomly initialize the 

weighted network 0W , by which a sensor aggregates neighboring state vectors, then 

apply Algorithm 1 to simulate the progressively accelerating sensor consensus process. 

Based on the information presented in figure 1, it is evident that Algorithm 1 

typically provides a network weight direction that leads to an increase in the Fiedler 

eigenvalue of sensor networks. Corresponding to the two cases described in Theorem 1, 

the smooth segment depicted in figure 1(a) illustrates that the current weight distribution 

possesses a well-separated spectrum, and Algorithm 1 will enhance its Fiedler eigenvalue 

along the gradient. In contrast, the oscillating segment signifies that the algorithm selects 

a direction that separates the repeated values. This separation may temporarily result in 

a decrease in the Fiedler eigenvalue, but once the separation is complete, it will resume 

its upward trajectory. 
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(a)

(b)

Figure 1. (a): Evolution of Fiedler values versus iteration k in five different network structures and initial 

weights. (b): Evolution of the partial derivative of z that belongs to the set in (9) w.r.t the change of network 

weights versus iteration k .

5. Conclusion

In this paper, we have addressed the problem of accelerating data aggregation for a 

weighted directed sensor network in a distributed approach. To this end, we focus on 

optimizing the network topology using local information. An integrated distributed 

acceleration algorithm is proposed that generates a direction for each sensor to adjust its 

aggregation weights, along which the second smallest eigenvalue of entire Laplacian 

matrix is guaranteed to have an increasing or undiminished real part in general. For the 

corner case where the Laplacian matrix exhibits repeated second smallest real parts, the 

designed algorithm is proven to separate them within a few iterations. The effectiveness 

of the proposed method is verified by a numerical example.
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